summaryrefslogtreecommitdiffstats
path: root/src/video_core/texture_cache/texture_cache.h
blob: 6d3d2da7db162551ffff2d43afdc4f96cdfdfc34 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#pragma once

#include <algorithm>
#include <array>
#include <memory>
#include <mutex>
#include <set>
#include <tuple>
#include <unordered_map>
#include <vector>

#include <boost/icl/interval_map.hpp>
#include <boost/range/iterator_range.hpp>

#include "common/assert.h"
#include "common/common_types.h"
#include "common/math_util.h"
#include "core/core.h"
#include "core/memory.h"
#include "core/settings.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/copy_params.h"
#include "video_core/texture_cache/surface_base.h"
#include "video_core/texture_cache/surface_params.h"
#include "video_core/texture_cache/surface_view.h"

namespace Tegra::Texture {
struct FullTextureInfo;
}

namespace VideoCore {
class RasterizerInterface;
}

namespace VideoCommon {

using VideoCore::Surface::PixelFormat;

using VideoCore::Surface::SurfaceTarget;
using RenderTargetConfig = Tegra::Engines::Maxwell3D::Regs::RenderTargetConfig;

template <typename TSurface, typename TView>
class TextureCache {
    using IntervalMap = boost::icl::interval_map<CacheAddr, std::set<TSurface>>;
    using IntervalType = typename IntervalMap::interval_type;

public:
    void InvalidateRegion(CacheAddr addr, std::size_t size) {
        std::lock_guard lock{mutex};

        for (const auto& surface : GetSurfacesInRegion(addr, size)) {
            Unregister(surface);
        }
    }

    /***
     * `Guard` guarantees that rendertargets don't unregister themselves if the
     * collide. Protection is currently only done on 3D slices.
     ***/
    void GuardRenderTargets(bool new_guard) {
        guard_render_targets = new_guard;
    }

    void GuardSamplers(bool new_guard) {
        guard_samplers = new_guard;
    }

    void FlushRegion(CacheAddr addr, std::size_t size) {
        std::lock_guard lock{mutex};

        auto surfaces = GetSurfacesInRegion(addr, size);
        if (surfaces.empty()) {
            return;
        }
        std::sort(surfaces.begin(), surfaces.end(), [](const TSurface& a, const TSurface& b) {
            return a->GetModificationTick() < b->GetModificationTick();
        });
        for (const auto& surface : surfaces) {
            FlushSurface(surface);
        }
    }

    TView GetTextureSurface(const Tegra::Texture::FullTextureInfo& config,
                            const VideoCommon::Shader::Sampler& entry) {
        std::lock_guard lock{mutex};
        const auto gpu_addr{config.tic.Address()};
        if (!gpu_addr) {
            return {};
        }
        const auto params{SurfaceParams::CreateForTexture(system, config, entry)};
        const auto [surface, view] = GetSurface(gpu_addr, params, true, false);
        if (guard_samplers) {
            sampled_textures.push_back(surface);
        }
        return view;
    }

    bool TextureBarrier() {
        const bool any_rt =
            std::any_of(sampled_textures.begin(), sampled_textures.end(),
                        [](const auto& surface) { return surface->IsRenderTarget(); });
        sampled_textures.clear();
        return any_rt;
    }

    TView GetDepthBufferSurface(bool preserve_contents) {
        std::lock_guard lock{mutex};
        auto& maxwell3d = system.GPU().Maxwell3D();

        if (!maxwell3d.dirty_flags.zeta_buffer) {
            return depth_buffer.view;
        }
        maxwell3d.dirty_flags.zeta_buffer = false;

        const auto& regs{maxwell3d.regs};
        const auto gpu_addr{regs.zeta.Address()};
        if (!gpu_addr || !regs.zeta_enable) {
            SetEmptyDepthBuffer();
            return {};
        }
        const auto depth_params{SurfaceParams::CreateForDepthBuffer(
            system, regs.zeta_width, regs.zeta_height, regs.zeta.format,
            regs.zeta.memory_layout.block_width, regs.zeta.memory_layout.block_height,
            regs.zeta.memory_layout.block_depth, regs.zeta.memory_layout.type)};
        auto surface_view = GetSurface(gpu_addr, depth_params, preserve_contents, true);
        if (depth_buffer.target)
            depth_buffer.target->MarkAsRenderTarget(false, -1);
        depth_buffer.target = surface_view.first;
        depth_buffer.view = surface_view.second;
        if (depth_buffer.target)
            depth_buffer.target->MarkAsRenderTarget(true, 8);
        return surface_view.second;
    }

    TView GetColorBufferSurface(std::size_t index, bool preserve_contents) {
        std::lock_guard lock{mutex};
        ASSERT(index < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets);
        auto& maxwell3d = system.GPU().Maxwell3D();
        if (!maxwell3d.dirty_flags.color_buffer[index]) {
            return render_targets[index].view;
        }
        maxwell3d.dirty_flags.color_buffer.reset(index);

        const auto& regs{maxwell3d.regs};
        if (index >= regs.rt_control.count || regs.rt[index].Address() == 0 ||
            regs.rt[index].format == Tegra::RenderTargetFormat::NONE) {
            SetEmptyColorBuffer(index);
            return {};
        }

        const auto& config{regs.rt[index]};
        const auto gpu_addr{config.Address()};
        if (!gpu_addr) {
            SetEmptyColorBuffer(index);
            return {};
        }

        auto surface_view = GetSurface(gpu_addr, SurfaceParams::CreateForFramebuffer(system, index),
                                       preserve_contents, true);
        if (render_targets[index].target)
            render_targets[index].target->MarkAsRenderTarget(false, -1);
        render_targets[index].target = surface_view.first;
        render_targets[index].view = surface_view.second;
        if (render_targets[index].target)
            render_targets[index].target->MarkAsRenderTarget(true, static_cast<u32>(index));
        return surface_view.second;
    }

    void MarkColorBufferInUse(std::size_t index) {
        if (auto& render_target = render_targets[index].target) {
            render_target->MarkAsModified(true, Tick());
        }
    }

    void MarkDepthBufferInUse() {
        if (depth_buffer.target) {
            depth_buffer.target->MarkAsModified(true, Tick());
        }
    }

    void SetEmptyDepthBuffer() {
        if (depth_buffer.target == nullptr) {
            return;
        }
        depth_buffer.target->MarkAsRenderTarget(false, -1);
        depth_buffer.target = nullptr;
        depth_buffer.view = nullptr;
    }

    void SetEmptyColorBuffer(std::size_t index) {
        if (render_targets[index].target == nullptr) {
            return;
        }
        render_targets[index].target->MarkAsRenderTarget(false, -1);
        render_targets[index].target = nullptr;
        render_targets[index].view = nullptr;
    }

    void DoFermiCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src_config,
                     const Tegra::Engines::Fermi2D::Regs::Surface& dst_config,
                     const Tegra::Engines::Fermi2D::Config& copy_config) {
        std::lock_guard lock{mutex};
        std::pair<TSurface, TView> dst_surface = GetFermiSurface(dst_config);
        std::pair<TSurface, TView> src_surface = GetFermiSurface(src_config);
        ImageBlit(src_surface.second, dst_surface.second, copy_config);
        dst_surface.first->MarkAsModified(true, Tick());
    }

    TSurface TryFindFramebufferSurface(const u8* host_ptr) {
        const CacheAddr cache_addr = ToCacheAddr(host_ptr);
        if (!cache_addr) {
            return nullptr;
        }
        const CacheAddr page = cache_addr >> registry_page_bits;
        std::vector<TSurface>& list = registry[page];
        for (auto& surface : list) {
            if (surface->GetCacheAddr() == cache_addr) {
                return surface;
            }
        }
        return nullptr;
    }

    u64 Tick() {
        return ++ticks;
    }

protected:
    TextureCache(Core::System& system, VideoCore::RasterizerInterface& rasterizer)
        : system{system}, rasterizer{rasterizer} {
        for (std::size_t i = 0; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; i++) {
            SetEmptyColorBuffer(i);
        }

        SetEmptyDepthBuffer();
        staging_cache.SetSize(2);

        const auto make_siblings = [this](PixelFormat a, PixelFormat b) {
            siblings_table[static_cast<std::size_t>(a)] = b;
            siblings_table[static_cast<std::size_t>(b)] = a;
        };
        std::fill(siblings_table.begin(), siblings_table.end(), PixelFormat::Invalid);
        make_siblings(PixelFormat::Z16, PixelFormat::R16U);
        make_siblings(PixelFormat::Z32F, PixelFormat::R32F);
        make_siblings(PixelFormat::Z32FS8, PixelFormat::RG32F);

        sampled_textures.reserve(64);
    }

    ~TextureCache() = default;

    virtual TSurface CreateSurface(GPUVAddr gpu_addr, const SurfaceParams& params) = 0;

    virtual void ImageCopy(TSurface& src_surface, TSurface& dst_surface,
                           const CopyParams& copy_params) = 0;

    virtual void ImageBlit(TView& src_view, TView& dst_view,
                           const Tegra::Engines::Fermi2D::Config& copy_config) = 0;

    // Depending on the backend, a buffer copy can be slow as it means deoptimizing the texture
    // and reading it from a sepparate buffer.
    virtual void BufferCopy(TSurface& src_surface, TSurface& dst_surface) = 0;

    void ManageRenderTargetUnregister(TSurface& surface) {
        auto& maxwell3d = system.GPU().Maxwell3D();
        u32 index = surface->GetRenderTarget();
        if (index == 8) {
            maxwell3d.dirty_flags.zeta_buffer = true;
        } else {
            maxwell3d.dirty_flags.color_buffer.set(index, true);
        }
    }

    void Register(TSurface surface) {
        const GPUVAddr gpu_addr = surface->GetGpuAddr();
        const CacheAddr cache_ptr = ToCacheAddr(system.GPU().MemoryManager().GetPointer(gpu_addr));
        const std::size_t size = surface->GetSizeInBytes();
        const std::optional<VAddr> cpu_addr =
            system.GPU().MemoryManager().GpuToCpuAddress(gpu_addr);
        if (!cache_ptr || !cpu_addr) {
            LOG_CRITICAL(HW_GPU, "Failed to register surface with unmapped gpu_address 0x{:016x}",
                         gpu_addr);
            return;
        }
        const bool continuous = system.GPU().MemoryManager().IsBlockContinuous(gpu_addr, size);
        surface->MarkAsContinuous(continuous);
        surface->SetCacheAddr(cache_ptr);
        surface->SetCpuAddr(*cpu_addr);
        RegisterInnerCache(surface);
        surface->MarkAsRegistered(true);
        rasterizer.UpdatePagesCachedCount(*cpu_addr, size, 1);
    }

    void Unregister(TSurface surface) {
        if (guard_render_targets && surface->IsProtected()) {
            return;
        }
        if (!guard_render_targets && surface->IsRenderTarget()) {
            ManageRenderTargetUnregister(surface);
        }
        const GPUVAddr gpu_addr = surface->GetGpuAddr();
        const CacheAddr cache_ptr = surface->GetCacheAddr();
        const std::size_t size = surface->GetSizeInBytes();
        const VAddr cpu_addr = surface->GetCpuAddr();
        rasterizer.UpdatePagesCachedCount(cpu_addr, size, -1);
        UnregisterInnerCache(surface);
        surface->MarkAsRegistered(false);
        ReserveSurface(surface->GetSurfaceParams(), surface);
    }

    TSurface GetUncachedSurface(const GPUVAddr gpu_addr, const SurfaceParams& params) {
        if (const auto surface = TryGetReservedSurface(params); surface) {
            surface->SetGpuAddr(gpu_addr);
            return surface;
        }
        // No reserved surface available, create a new one and reserve it
        auto new_surface{CreateSurface(gpu_addr, params)};
        return new_surface;
    }

    std::pair<TSurface, TView> GetFermiSurface(
        const Tegra::Engines::Fermi2D::Regs::Surface& config) {
        SurfaceParams params = SurfaceParams::CreateForFermiCopySurface(config);
        const GPUVAddr gpu_addr = config.Address();
        return GetSurface(gpu_addr, params, true, false);
    }

    Core::System& system;

private:
    enum class RecycleStrategy : u32 {
        Ignore = 0,
        Flush = 1,
        BufferCopy = 3,
    };

    /**
     * `PickStrategy` takes care of selecting a proper strategy to deal with a texture recycle.
     * @param overlaps, the overlapping surfaces registered in the cache.
     * @param params, the paremeters on the new surface.
     * @param gpu_addr, the starting address of the new surface.
     * @param untopological, tells the recycler that the texture has no way to match the overlaps
     * due to topological reasons.
     **/
    RecycleStrategy PickStrategy(std::vector<TSurface>& overlaps, const SurfaceParams& params,
                                 const GPUVAddr gpu_addr, const MatchTopologyResult untopological) {
        if (Settings::values.use_accurate_gpu_emulation) {
            return RecycleStrategy::Flush;
        }
        // 3D Textures decision
        if (params.block_depth > 1 || params.target == SurfaceTarget::Texture3D) {
            return RecycleStrategy::Flush;
        }
        for (auto s : overlaps) {
            const auto& s_params = s->GetSurfaceParams();
            if (s_params.block_depth > 1 || s_params.target == SurfaceTarget::Texture3D) {
                return RecycleStrategy::Flush;
            }
        }
        // Untopological decision
        if (untopological == MatchTopologyResult::CompressUnmatch) {
            return RecycleStrategy::Flush;
        }
        if (untopological == MatchTopologyResult::FullMatch && !params.is_tiled) {
            return RecycleStrategy::Flush;
        }
        return RecycleStrategy::Ignore;
    }

    /**
     *  `RecycleSurface` es a method we use to decide what to do with textures we can't resolve in
     *the cache It has 2 implemented strategies: Ignore and Flush. Ignore just unregisters all the
     *overlaps and loads the new texture. Flush, flushes all the overlaps into memory and loads the
     *new surface from that data.
     * @param overlaps, the overlapping surfaces registered in the cache.
     * @param params, the paremeters on the new surface.
     * @param gpu_addr, the starting address of the new surface.
     * @param preserve_contents, tells if the new surface should be loaded from meory or left blank
     * @param untopological, tells the recycler that the texture has no way to match the overlaps
     * due to topological reasons.
     **/
    std::pair<TSurface, TView> RecycleSurface(std::vector<TSurface>& overlaps,
                                              const SurfaceParams& params, const GPUVAddr gpu_addr,
                                              const bool preserve_contents,
                                              const MatchTopologyResult untopological) {
        const bool do_load = preserve_contents && Settings::values.use_accurate_gpu_emulation;
        for (auto& surface : overlaps) {
            Unregister(surface);
        }
        switch (PickStrategy(overlaps, params, gpu_addr, untopological)) {
        case RecycleStrategy::Ignore: {
            return InitializeSurface(gpu_addr, params, do_load);
        }
        case RecycleStrategy::Flush: {
            std::sort(overlaps.begin(), overlaps.end(),
                      [](const TSurface& a, const TSurface& b) -> bool {
                          return a->GetModificationTick() < b->GetModificationTick();
                      });
            for (auto& surface : overlaps) {
                FlushSurface(surface);
            }
            return InitializeSurface(gpu_addr, params, preserve_contents);
        }
        case RecycleStrategy::BufferCopy: {
            auto new_surface = GetUncachedSurface(gpu_addr, params);
            BufferCopy(overlaps[0], new_surface);
            return {new_surface, new_surface->GetMainView()};
        }
        default: {
            UNIMPLEMENTED_MSG("Unimplemented Texture Cache Recycling Strategy!");
            return InitializeSurface(gpu_addr, params, do_load);
        }
        }
    }

    /**
     * `RebuildSurface` this method takes a single surface and recreates into another that
     * may differ in format, target or width alingment.
     * @param current_surface, the registered surface in the cache which we want to convert.
     * @param params, the new surface params which we'll use to recreate the surface.
     **/
    std::pair<TSurface, TView> RebuildSurface(TSurface current_surface, const SurfaceParams& params,
                                              bool is_render) {
        const auto gpu_addr = current_surface->GetGpuAddr();
        const auto& cr_params = current_surface->GetSurfaceParams();
        TSurface new_surface;
        if (cr_params.pixel_format != params.pixel_format && !is_render &&
            GetSiblingFormat(cr_params.pixel_format) == params.pixel_format) {
            SurfaceParams new_params = params;
            new_params.pixel_format = cr_params.pixel_format;
            new_params.component_type = cr_params.component_type;
            new_params.type = cr_params.type;
            new_surface = GetUncachedSurface(gpu_addr, new_params);
        } else {
            new_surface = GetUncachedSurface(gpu_addr, params);
        }
        const auto& final_params = new_surface->GetSurfaceParams();
        if (cr_params.type != final_params.type ||
            (cr_params.component_type != final_params.component_type)) {
            BufferCopy(current_surface, new_surface);
        } else {
            std::vector<CopyParams> bricks = current_surface->BreakDown(final_params);
            for (auto& brick : bricks) {
                ImageCopy(current_surface, new_surface, brick);
            }
        }
        Unregister(current_surface);
        Register(new_surface);
        new_surface->MarkAsModified(current_surface->IsModified(), Tick());
        return {new_surface, new_surface->GetMainView()};
    }

    /**
     * `ManageStructuralMatch` this method takes a single surface and checks with the new surface's
     * params if it's an exact match, we return the main view of the registered surface. If it's
     * formats don't match, we rebuild the surface. We call this last method a `Mirage`. If formats
     * match but the targets don't, we create an overview View of the registered surface.
     * @param current_surface, the registered surface in the cache which we want to convert.
     * @param params, the new surface params which we want to check.
     **/
    std::pair<TSurface, TView> ManageStructuralMatch(TSurface current_surface,
                                                     const SurfaceParams& params, bool is_render) {
        const bool is_mirage = !current_surface->MatchFormat(params.pixel_format);
        const bool matches_target = current_surface->MatchTarget(params.target);
        const auto match_check = [&]() -> std::pair<TSurface, TView> {
            if (matches_target) {
                return {current_surface, current_surface->GetMainView()};
            }
            return {current_surface, current_surface->EmplaceOverview(params)};
        };
        if (!is_mirage) {
            return match_check();
        }
        if (!is_render && GetSiblingFormat(current_surface->GetFormat()) == params.pixel_format) {
            return match_check();
        }
        return RebuildSurface(current_surface, params, is_render);
    }

    /**
     * `TryReconstructSurface` unlike `RebuildSurface` where we know the registered surface
     * matches the candidate in some way, we got no guarantess here. We try to see if the overlaps
     * are sublayers/mipmaps of the new surface, if they all match we end up recreating a surface
     * for them, else we return nothing.
     * @param overlaps, the overlapping surfaces registered in the cache.
     * @param params, the paremeters on the new surface.
     * @param gpu_addr, the starting address of the new surface.
     **/
    std::optional<std::pair<TSurface, TView>> TryReconstructSurface(std::vector<TSurface>& overlaps,
                                                                    const SurfaceParams& params,
                                                                    const GPUVAddr gpu_addr) {
        if (params.target == SurfaceTarget::Texture3D) {
            return {};
        }
        bool modified = false;
        TSurface new_surface = GetUncachedSurface(gpu_addr, params);
        u32 passed_tests = 0;
        for (auto& surface : overlaps) {
            const SurfaceParams& src_params = surface->GetSurfaceParams();
            if (src_params.is_layered || src_params.num_levels > 1) {
                // We send this cases to recycle as they are more complex to handle
                return {};
            }
            const std::size_t candidate_size = surface->GetSizeInBytes();
            auto mipmap_layer{new_surface->GetLayerMipmap(surface->GetGpuAddr())};
            if (!mipmap_layer) {
                continue;
            }
            const auto [layer, mipmap] = *mipmap_layer;
            if (new_surface->GetMipmapSize(mipmap) != candidate_size) {
                continue;
            }
            modified |= surface->IsModified();
            // Now we got all the data set up
            const u32 width = SurfaceParams::IntersectWidth(src_params, params, 0, mipmap);
            const u32 height = SurfaceParams::IntersectHeight(src_params, params, 0, mipmap);
            const CopyParams copy_params(0, 0, 0, 0, 0, layer, 0, mipmap, width, height, 1);
            passed_tests++;
            ImageCopy(surface, new_surface, copy_params);
        }
        if (passed_tests == 0) {
            return {};
            // In Accurate GPU all tests should pass, else we recycle
        } else if (Settings::values.use_accurate_gpu_emulation && passed_tests != overlaps.size()) {
            return {};
        }
        for (auto surface : overlaps) {
            Unregister(surface);
        }
        new_surface->MarkAsModified(modified, Tick());
        Register(new_surface);
        return {{new_surface, new_surface->GetMainView()}};
    }

    /**
     * `GetSurface` gets the starting address and parameters of a candidate surface and tries
     * to find a matching surface within the cache. This is done in 3 big steps. The first is to
     * check the 1st Level Cache in order to find an exact match, if we fail, we move to step 2.
     * Step 2 is checking if there are any overlaps at all, if none, we just load the texture from
     * memory else we move to step 3. Step 3 consists on figuring the relationship between the
     * candidate texture and the overlaps. We divide the scenarios depending if there's 1 or many
     * overlaps. If there's many, we just try to reconstruct a new surface out of them based on the
     * candidate's parameters, if we fail, we recycle. When there's only 1 overlap then we have to
     * check if the candidate is a view (layer/mipmap) of the overlap or if the registered surface
     * is a mipmap/layer of the candidate. In this last case we reconstruct a new surface.
     * @param gpu_addr, the starting address of the candidate surface.
     * @param params, the paremeters on the candidate surface.
     * @param preserve_contents, tells if the new surface should be loaded from meory or left blank.
     **/
    std::pair<TSurface, TView> GetSurface(const GPUVAddr gpu_addr, const SurfaceParams& params,
                                          bool preserve_contents, bool is_render) {
        const auto host_ptr{system.GPU().MemoryManager().GetPointer(gpu_addr)};
        const auto cache_addr{ToCacheAddr(host_ptr)};

        // Step 0: guarantee a valid surface
        if (!cache_addr) {
            // Return a null surface if it's invalid
            SurfaceParams new_params = params;
            new_params.width = 1;
            new_params.height = 1;
            new_params.depth = 1;
            new_params.block_height = 0;
            new_params.block_depth = 0;
            return InitializeSurface(gpu_addr, new_params, false);
        }

        // Step 1
        // Check Level 1 Cache for a fast structural match. If candidate surface
        // matches at certain level we are pretty much done.
        if (const auto iter = l1_cache.find(cache_addr); iter != l1_cache.end()) {
            TSurface& current_surface = iter->second;
            const auto topological_result = current_surface->MatchesTopology(params);
            if (topological_result != MatchTopologyResult::FullMatch) {
                std::vector<TSurface> overlaps{current_surface};
                return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
                                      topological_result);
            }
            const auto struct_result = current_surface->MatchesStructure(params);
            if (struct_result != MatchStructureResult::None &&
                (params.target != SurfaceTarget::Texture3D ||
                 current_surface->MatchTarget(params.target))) {
                if (struct_result == MatchStructureResult::FullMatch) {
                    return ManageStructuralMatch(current_surface, params, is_render);
                } else {
                    return RebuildSurface(current_surface, params, is_render);
                }
            }
        }

        // Step 2
        // Obtain all possible overlaps in the memory region
        const std::size_t candidate_size = params.GetGuestSizeInBytes();
        auto overlaps{GetSurfacesInRegion(cache_addr, candidate_size)};

        // If none are found, we are done. we just load the surface and create it.
        if (overlaps.empty()) {
            return InitializeSurface(gpu_addr, params, preserve_contents);
        }

        // Step 3
        // Now we need to figure the relationship between the texture and its overlaps
        // we do a topological test to ensure we can find some relationship. If it fails
        // inmediatly recycle the texture
        for (const auto& surface : overlaps) {
            const auto topological_result = surface->MatchesTopology(params);
            if (topological_result != MatchTopologyResult::FullMatch) {
                return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
                                      topological_result);
            }
        }

        // Split cases between 1 overlap or many.
        if (overlaps.size() == 1) {
            TSurface current_surface = overlaps[0];
            // First check if the surface is within the overlap. If not, it means
            // two things either the candidate surface is a supertexture of the overlap
            // or they don't match in any known way.
            if (!current_surface->IsInside(gpu_addr, gpu_addr + candidate_size)) {
                if (current_surface->GetGpuAddr() == gpu_addr) {
                    std::optional<std::pair<TSurface, TView>> view =
                        TryReconstructSurface(overlaps, params, gpu_addr);
                    if (view) {
                        return *view;
                    }
                }
                return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
                                      MatchTopologyResult::FullMatch);
            }
            // Now we check if the candidate is a mipmap/layer of the overlap
            std::optional<TView> view =
                current_surface->EmplaceView(params, gpu_addr, candidate_size);
            if (view) {
                const bool is_mirage = !current_surface->MatchFormat(params.pixel_format);
                if (is_mirage) {
                    // On a mirage view, we need to recreate the surface under this new view
                    // and then obtain a view again.
                    SurfaceParams new_params = current_surface->GetSurfaceParams();
                    const u32 wh = SurfaceParams::ConvertWidth(
                        new_params.width, new_params.pixel_format, params.pixel_format);
                    const u32 hh = SurfaceParams::ConvertHeight(
                        new_params.height, new_params.pixel_format, params.pixel_format);
                    new_params.width = wh;
                    new_params.height = hh;
                    new_params.pixel_format = params.pixel_format;
                    std::pair<TSurface, TView> pair =
                        RebuildSurface(current_surface, new_params, is_render);
                    std::optional<TView> mirage_view =
                        pair.first->EmplaceView(params, gpu_addr, candidate_size);
                    if (mirage_view)
                        return {pair.first, *mirage_view};
                    return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
                                          MatchTopologyResult::FullMatch);
                }
                return {current_surface, *view};
            }
        } else {
            // If there are many overlaps, odds are they are subtextures of the candidate
            // surface. We try to construct a new surface based on the candidate parameters,
            // using the overlaps. If a single overlap fails, this will fail.
            std::optional<std::pair<TSurface, TView>> view =
                TryReconstructSurface(overlaps, params, gpu_addr);
            if (view) {
                return *view;
            }
        }
        // We failed all the tests, recycle the overlaps into a new texture.
        return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
                              MatchTopologyResult::FullMatch);
    }

    std::pair<TSurface, TView> InitializeSurface(GPUVAddr gpu_addr, const SurfaceParams& params,
                                                 bool preserve_contents) {
        auto new_surface{GetUncachedSurface(gpu_addr, params)};
        Register(new_surface);
        if (preserve_contents) {
            LoadSurface(new_surface);
        }
        return {new_surface, new_surface->GetMainView()};
    }

    void LoadSurface(const TSurface& surface) {
        staging_cache.GetBuffer(0).resize(surface->GetHostSizeInBytes());
        surface->LoadBuffer(system.GPU().MemoryManager(), staging_cache);
        surface->UploadTexture(staging_cache.GetBuffer(0));
        surface->MarkAsModified(false, Tick());
    }

    void FlushSurface(const TSurface& surface) {
        if (!surface->IsModified()) {
            return;
        }
        staging_cache.GetBuffer(0).resize(surface->GetHostSizeInBytes());
        surface->DownloadTexture(staging_cache.GetBuffer(0));
        surface->FlushBuffer(system.GPU().MemoryManager(), staging_cache);
        surface->MarkAsModified(false, Tick());
    }

    void RegisterInnerCache(TSurface& surface) {
        const CacheAddr cache_addr = surface->GetCacheAddr();
        CacheAddr start = cache_addr >> registry_page_bits;
        const CacheAddr end = (surface->GetCacheAddrEnd() - 1) >> registry_page_bits;
        l1_cache[cache_addr] = surface;
        while (start <= end) {
            registry[start].push_back(surface);
            start++;
        }
    }

    void UnregisterInnerCache(TSurface& surface) {
        const CacheAddr cache_addr = surface->GetCacheAddr();
        CacheAddr start = cache_addr >> registry_page_bits;
        const CacheAddr end = (surface->GetCacheAddrEnd() - 1) >> registry_page_bits;
        l1_cache.erase(cache_addr);
        while (start <= end) {
            auto& reg{registry[start]};
            reg.erase(std::find(reg.begin(), reg.end(), surface));
            start++;
        }
    }

    std::vector<TSurface> GetSurfacesInRegion(const CacheAddr cache_addr, const std::size_t size) {
        if (size == 0) {
            return {};
        }
        const CacheAddr cache_addr_end = cache_addr + size;
        CacheAddr start = cache_addr >> registry_page_bits;
        const CacheAddr end = (cache_addr_end - 1) >> registry_page_bits;
        std::vector<TSurface> surfaces;
        while (start <= end) {
            std::vector<TSurface>& list = registry[start];
            for (auto& surface : list) {
                if (!surface->IsPicked() && surface->Overlaps(cache_addr, cache_addr_end)) {
                    surface->MarkAsPicked(true);
                    surfaces.push_back(surface);
                }
            }
            start++;
        }
        for (auto& surface : surfaces) {
            surface->MarkAsPicked(false);
        }
        return surfaces;
    }

    void ReserveSurface(const SurfaceParams& params, TSurface surface) {
        surface_reserve[params].push_back(std::move(surface));
    }

    TSurface TryGetReservedSurface(const SurfaceParams& params) {
        auto search{surface_reserve.find(params)};
        if (search == surface_reserve.end()) {
            return {};
        }
        for (auto& surface : search->second) {
            if (!surface->IsRegistered()) {
                return surface;
            }
        }
        return {};
    }

    constexpr PixelFormat GetSiblingFormat(PixelFormat format) const {
        return siblings_table[static_cast<std::size_t>(format)];
    }

    struct FramebufferTargetInfo {
        TSurface target;
        TView view;
    };

    VideoCore::RasterizerInterface& rasterizer;

    u64 ticks{};

    // Guards the cache for protection conflicts.
    bool guard_render_targets{};
    bool guard_samplers{};

    // The siblings table is for formats that can inter exchange with one another
    // without causing issues. This is only valid when a conflict occurs on a non
    // rendering use.
    std::array<PixelFormat, static_cast<std::size_t>(PixelFormat::Max)> siblings_table;

    // The internal Cache is different for the Texture Cache. It's based on buckets
    // of 1MB. This fits better for the purpose of this cache as textures are normaly
    // large in size.
    static constexpr u64 registry_page_bits{20};
    static constexpr u64 registry_page_size{1 << registry_page_bits};
    std::unordered_map<CacheAddr, std::vector<TSurface>> registry;

    // The L1 Cache is used for fast texture lookup before checking the overlaps
    // This avoids calculating size and other stuffs.
    std::unordered_map<CacheAddr, TSurface> l1_cache;

    /// The surface reserve is a "backup" cache, this is where we put unique surfaces that have
    /// previously been used. This is to prevent surfaces from being constantly created and
    /// destroyed when used with different surface parameters.
    std::unordered_map<SurfaceParams, std::vector<TSurface>> surface_reserve;
    std::array<FramebufferTargetInfo, Tegra::Engines::Maxwell3D::Regs::NumRenderTargets>
        render_targets;
    FramebufferTargetInfo depth_buffer;

    std::vector<TSurface> sampled_textures;

    StagingCache staging_cache;
    std::recursive_mutex mutex;
};

} // namespace VideoCommon