diff options
Diffstat (limited to 'fiz/vaje/10/dokument.lyx')
-rw-r--r-- | fiz/vaje/10/dokument.lyx | 49 |
1 files changed, 34 insertions, 15 deletions
diff --git a/fiz/vaje/10/dokument.lyx b/fiz/vaje/10/dokument.lyx index 3209653..bf0df5c 100644 --- a/fiz/vaje/10/dokument.lyx +++ b/fiz/vaje/10/dokument.lyx @@ -124,10 +124,10 @@ Teoretični model \begin_inset Formula $s_{0}\left(\nu\right)$ \end_inset - je + harmoničnega nihala s tremi parametri je \begin_inset Formula \[ -s_{0}=A\frac{\omega}{\sqrt{\left(\omega^{2}+\omega_{0}^{2}\right)^{2}+4\beta^{2}\omega^{2}}}\text{{,}} +s_{0}=\frac{A}{\sqrt{\left(B^{2}-\omega^{2}\right)^{2}+C^{2}\omega^{2}}}\text{{,}} \] \end_inset @@ -145,15 +145,6 @@ kjer je \end_inset . - Resonančna frekvenca, razbrana iz grafa — vrh, je -\begin_inset Formula $6,5$ -\end_inset - - radianov na sekundo, kar je -\begin_inset Formula $6,5\pi2$ -\end_inset - - nihajev na sekundo. \end_layout \begin_layout Standard @@ -975,7 +966,8 @@ status open \begin_inset Caption Standard \begin_layout Plain Layout -Izmerjeni in izračunani podatki +Izmerjeni in izračunani podatki. + Podatek o amplitudi je natančen na milimeter. \end_layout \end_inset @@ -986,6 +978,10 @@ Izmerjeni in izračunani podatki \end_inset +\begin_inset Note Note +status open + +\begin_layout Plain Layout \begin_inset Float figure placement H wide false @@ -1044,14 +1040,14 @@ addlegendentry{meritve} \backslash -addplot[blue] (x, {0.490752637*x/sqrt((x^2+6.6^2)^2+4*(-0.000179148908)^2*x^2)}); +addplot[blue] (x, {0.47583543/sqrt(-6.87050654^2-x^2)^2+1.2365817^2*x^2}); \end_layout \begin_layout Plain Layout \backslash -addlegendentry{Teoretični model} +addlegendentry{$A=0.47583543$, $B=-6.87050654$, $C=1.2365817$} \end_layout \begin_layout Plain Layout @@ -1224,8 +1220,31 @@ name "fig:graf-1" \end_layout +\end_inset + + +\end_layout + \begin_layout Standard -Meritve se ne ujemajo z napovedano vrednostjo. +\begin_inset CommandInset include +LatexCommand input +filename "graf.tex" + +\end_inset + + +\end_layout + +\begin_layout Standard +Iz grafa za harmonično nihanje razberemo 6,819 kot +\begin_inset Formula $\omega_{0}$ +\end_inset + +, kar pomeni, da je resonančna frekvenca matematičnega nihala +\begin_inset Formula $\SI{1,085}{\per\second}$ +\end_inset + +. \end_layout \end_body |