diff options
author | Anton Luka Šijanec <anton@sijanec.eu> | 2024-09-01 00:15:18 +0200 |
---|---|---|
committer | Anton Luka Šijanec <anton@sijanec.eu> | 2024-09-01 00:15:18 +0200 |
commit | b94bef6e820fec0ffde7971d3134d5738c1521d1 (patch) | |
tree | 2ae275e51629ae9979a7303f5605bb4988b30234 /šola/ana1 | |
parent | hacker gets hacked, double fdput vuln (diff) | |
download | r-b94bef6e820fec0ffde7971d3134d5738c1521d1.tar r-b94bef6e820fec0ffde7971d3134d5738c1521d1.tar.gz r-b94bef6e820fec0ffde7971d3134d5738c1521d1.tar.bz2 r-b94bef6e820fec0ffde7971d3134d5738c1521d1.tar.lz r-b94bef6e820fec0ffde7971d3134d5738c1521d1.tar.xz r-b94bef6e820fec0ffde7971d3134d5738c1521d1.tar.zst r-b94bef6e820fec0ffde7971d3134d5738c1521d1.zip |
Diffstat (limited to 'šola/ana1')
-rw-r--r-- | šola/ana1/prak.lyx | 1609 | ||||
-rw-r--r-- | šola/ana1/teor.lyx | 6 |
2 files changed, 1612 insertions, 3 deletions
diff --git a/šola/ana1/prak.lyx b/šola/ana1/prak.lyx new file mode 100644 index 0000000..b6b21e7 --- /dev/null +++ b/šola/ana1/prak.lyx @@ -0,0 +1,1609 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass article +\begin_preamble +\usepackage{siunitx} +\usepackage{pgfplots} +\usepackage{listings} +\usepackage{multicol} +\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} +\DeclareMathOperator{\ctg}{ctg} +\end_preamble +\use_default_options true +\begin_modules +enumitem +theorems-ams +\end_modules +\maintain_unincluded_children no +\language slovene +\language_package default +\inputencoding auto-legacy +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification false +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 1cm +\topmargin 1cm +\rightmargin 1cm +\bottommargin 2cm +\headheight 1cm +\headsep 1cm +\footskip 1cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style german +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +newcommand +\backslash +euler{e} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +setlength{ +\backslash +columnseprule}{0.2pt} +\backslash +begin{multicols}{2} +\end_layout + +\end_inset + + +\begin_inset Formula $\log_{a}1=0$ +\end_inset + +, + +\begin_inset Formula $\log_{a}a=1$ +\end_inset + +, + +\begin_inset Formula $\log_{a}a^{x}=x$ +\end_inset + +, + +\begin_inset Formula $a^{\log_{a}x}=x$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\binom{n}{k}\coloneqq\frac{n!}{k!\left(n-k\right)!}$ +\end_inset + +, + +\begin_inset Formula $\log_{a}x^{n}=n\log_{a}x$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $D=b^{2}-4ac$ +\end_inset + +, + +\begin_inset Formula $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $zw=\left(ac-bd\right)+\left(ad+bc\right)i$ +\end_inset + +, + +\begin_inset Formula $\vert zw\vert=\vert z\vert\vert w\vert$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\arg\left(zw\right)=\arg z+\arg w$ +\end_inset + + (kot) +\end_layout + +\begin_layout Standard +\begin_inset Formula $z\overline{z}=a^{2}-\left(bi\right)^{2}=a^{2}+b^{2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\left(\cos\phi+i\sin\phi\right)$ +\end_inset + + +\begin_inset Formula $\left(\cos\psi+i\sin\psi\right)=\cos\left(\phi+\psi\right)+i\sin\left(\phi+\psi\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $z^{2}=a^{2}+2abi-b^{2}$ +\end_inset + +, + +\begin_inset Formula $z^{3}=a^{3}-3ab^{2}+\left(3a^{2}b-b^{3}\right)i$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $(a+b)^{n}=\sum_{k=0}^{n}{n \choose k}ab^{n-k}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $z^{n}=r^{n}\left(\cos\left(n\phi\right)+i\sin\left(n\phi\right)\right)$ +\end_inset + +, + +\begin_inset Formula $\phi=\arctan\frac{\Im z}{\Re z}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Odprta množica ne vsebuje robnih točk. + Zaprta vsebuje vse. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\sin\left(x\pm y\right)=\sin x\cdot\cos y\pm\sin y\cdot\cos x$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\cos\left(x\pm y\right)=\cos x\cdot\cos y\mp\sin y\cdot\sin x$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\tan\left(x\pm y\right)=\frac{\tan x\pm\tan y}{1\text{\ensuremath{\mp\tan}x\ensuremath{\cdot\tan y}}}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $a_{n}$ +\end_inset + +je konv. + +\begin_inset Formula $\Longleftrightarrow$ +\end_inset + + +\begin_inset Formula $\forall\varepsilon>0:\exists n_{0}\ni:\forall n,m:n_{0}<n<m\wedge\vert a_{n}-a_{m}\vert<\varepsilon$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\euler^{1/k}\coloneqq\lim_{n\to\infty}\left(1+\frac{1}{nk}\right)^{n}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Vrsta je konv., + če je konv. + njeno zap. + delnih vsot. +\end_layout + +\begin_layout Standard +\begin_inset Formula $s_{n}=\begin{cases} +\frac{1-q^{n+1}}{1-q}; & q\not=1\\ +n+1; & q=1 +\end{cases}$ +\end_inset + +. + Geom. + vrsta konv. + +\begin_inset Formula $\Longleftrightarrow q\in\left(-1,1\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Primerjalni krit. +\series default +: + +\begin_inset Formula $\sum_{1}^{\infty}a_{k}$ +\end_inset + + konv. + +\begin_inset Formula $\wedge$ +\end_inset + + +\begin_inset Formula $b_{k}\leq a_{k}$ +\end_inset + +za +\begin_inset Formula $k>n_{0}$ +\end_inset + + +\begin_inset Formula $\wedge$ +\end_inset + + vrsti sta navzdol omejeni +\begin_inset Formula $\Longrightarrow$ +\end_inset + + +\begin_inset Formula $\sum_{1}^{\infty}b_{k}$ +\end_inset + + konv. + +\begin_inset Formula $\sum_{1}^{\infty}a_{k}$ +\end_inset + + rečemo +\shape italic +majoranta +\shape default +. +\end_layout + +\begin_layout Standard + +\series bold +Kvocientni +\series default +: + +\begin_inset Formula $a_{k}>0$ +\end_inset + +, + +\begin_inset Formula $D_{n}\coloneqq\frac{a_{n}+1}{a_{n}}$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\forall n<n_{0}:D_{n}\in\left(0,1\right)\Longrightarrow\sum_{1}^{\infty}a_{k}<\infty$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\forall n<n_{0}:D_{n}\geq1\Longrightarrow\sum_{1}^{\infty}a_{k}=\infty$ +\end_inset + + +\end_layout + +\begin_layout Itemize +Če +\begin_inset Formula $\exists D\coloneqq\lim_{n\to\infty}D_{n}$ +\end_inset + +: + +\begin_inset Formula $\vert D\vert<1\Longrightarrow$ +\end_inset + +konv., + +\begin_inset Formula $\vert D\vert>1\Longrightarrow div.$ +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Korenski +\series default +: + Kot Kvocientni, + le da +\begin_inset Formula $D_{n}\coloneqq\sqrt[n]{a_{n}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Leibnizov +\series default +: + +\begin_inset Formula $a_{n}\to0\Longrightarrow\sum_{1}^{\infty}\left(\left(-1\right)^{k}a_{k}\right)<\infty$ +\end_inset + + +\end_layout + +\begin_layout Standard +Absolutna konvergenca +\begin_inset Formula $\left(\sum_{1}^{\infty}\vert a_{n}\vert<\infty\right)$ +\end_inset + + +\begin_inset Formula $\Longrightarrow$ +\end_inset + + konvergenca +\end_layout + +\begin_layout Standard +Pri konv. + po točkah je +\begin_inset Formula $n_{0}$ +\end_inset + + odvisen od +\begin_inset Formula $x$ +\end_inset + +, + pri enakomerni ni. +\end_layout + +\begin_layout Standard +Potenčna vrsta: + +\begin_inset Formula $\sum_{j=1}^{\infty}b_{j}x^{j}$ +\end_inset + +. + +\begin_inset Formula $R^{-1}=\limsup_{k\to\infty}\sqrt[k]{\vert b_{k}\vert}$ +\end_inset + +. + +\begin_inset Formula $\vert x\vert<R\Longrightarrow$ +\end_inset + +abs. + konv., + +\begin_inset Formula $\vert x\vert>R\Longrightarrow$ +\end_inset + +divergira +\end_layout + +\begin_layout Standard +\begin_inset Formula $\lim_{x\to a}\left(\alpha f\left(x\right)\right)=\alpha\lim_{x\to a}f\left(x\right)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Tabular +<lyxtabular version="3" rows="4" columns="4"> +<features tabularvalignment="middle"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\sin$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\cos$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\tan$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $30^{\circ}=\frac{\pi}{6}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{1}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{\sqrt{3}}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{\sqrt{3}}{3}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $45^{\circ}=\frac{\pi}{4}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{\sqrt{2}}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{\sqrt{2}}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $60^{\circ}=\frac{\pi}{3}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{\sqrt{3}}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{1}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\sqrt{3}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +</lyxtabular> + +\end_inset + + +\end_layout + +\begin_layout Standard +Krožnica: + +\begin_inset Formula $\left(x-p\right)^{2}+\left(y-q\right)^{2}=r^{2}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Elipsa: + +\begin_inset Formula $\frac{\left(x-p\right)^{2}}{a^{2}}+\frac{\left(y-q\right)^{2}}{b^{2}}=1$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Tabular +<lyxtabular version="3" rows="8" columns="4"> +<features tabularvalignment="middle"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Izraz +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Odvod +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Izraz +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Odvod +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{f}{g}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{f'g-fg'}{g^{2}}$ +\end_inset + +, + +\begin_inset Formula $g\not=0$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $f\left(g\right)$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $f'\left(g\right)g'$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\tan x$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\cos^{-2}x$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\cot x$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-sin^{-2}x$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $a^{x}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $a^{x}\text{\ensuremath{\ln a}}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $x^{x}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $x^{x}\left(1+\ln x\right)$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\log_{a}x$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{1}{x\ln a}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $f^{-1}\left(a\right)$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{1}{f'\left(f^{-1}\left(a\right)\right)}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\arcsin x$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\left(1-x^{2}\right)^{-\frac{1}{2}}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\arccos x$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-\left(1-x^{2}\right)^{-\frac{1}{2}}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\arctan x$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\frac{1}{1+x^{2}}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\text{arccot\,}x$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-\frac{1}{1+x^{2}}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $x^{n}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $nx^{n-1}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +</row> +</lyxtabular> + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $f''\left(I\right)>0\Leftrightarrow f$ +\end_inset + + konveksna na +\begin_inset Formula $I$ +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $f''\left(I\right)<0\Leftrightarrow f$ +\end_inset + + konkavna na +\begin_inset Formula $I$ +\end_inset + + +\begin_inset Formula +\[ +ab>0\wedge a<b\Leftrightarrow a^{-1}>b^{-1},\quad ab<0\wedge a<b\Leftrightarrow a^{-1}<b^{-1} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\lim_{x\to0}\frac{\sin x}{x}=1\quad\quad\tan\phi=\left|\frac{k_{1}-k_{2}}{1+k_{1}k_{2}}\right| +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\lim_{x\to0}x\ln x=0 +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +f\text{ zv.+odv.@ }\left[a,b\right]\Rightarrow\exists\xi\in\left[a,b\right]\ni:f\left(b\right)-f\left(a\right)=f'\left(\xi\right)\left(b-a\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +T_{f,a,n}\left(x\right)=\sum_{k=0}^{n}\frac{f^{\left(k\right)}\left(a\right)}{k!}\left(x-a\right)^{k} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $f\text{\ensuremath{\in C^{n+1}}}$ +\end_inset + + na odprtem +\begin_inset Formula $I\subset\mathbb{R}\Rightarrow\forall a,x\in I\exists c\in\left(\min\left\{ a,x\right\} ,\max\left\{ a,x\right\} \right)\ni:f\left(x\right)-T_{f,a,n}\left(x\right)=R_{f,a,n}\left(x\right)=\frac{f^{\left(n+1\right)}\left(c\right)}{\left(n+1\right)!}$ +\end_inset + + +\begin_inset Formula $\left(x-a\right)^{n+1}.\text{ Posledično velja tudi takale ocena:}$ +\end_inset + + +\begin_inset Formula +\[ +\exists M>0\forall x\in I:\left|f^{\left(n+1\right)}\right|\leq M\Rightarrow R_{f,a,n}\left(x\right)=\frac{M}{\left(n+1\right)!}\left|x-a\right|^{n+1} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +R=\lim_{n\to\infty}\left|\frac{c_{n}}{c_{n+1}}\right|,\quad R=\lim_{n\to\infty}\frac{1}{\sqrt[n]{\left|c_{n}\right|}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Zvezna +\begin_inset Formula $\text{f}$ +\end_inset + + na zaprtem intervalu +\begin_inset Formula $\left[a,b\right]$ +\end_inset + + doseže +\begin_inset Formula $\inf$ +\end_inset + + in +\begin_inset Formula $\sup$ +\end_inset + +, + je omejena in doseže vse funkcijske vrednosti na +\begin_inset Formula $\left[f\left(a\right),f\left(b\right)\right]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:I\to\mathbb{R}$ +\end_inset + + je enakomerno zvezna na +\begin_inset Formula $I$ +\end_inset + +, + če +\begin_inset Formula $\forall\varepsilon>0\exists\delta_{\left(\varepsilon\right)}>0\ni:\forall x,y\in I:\left|x-y\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(y\right)\right|<\varepsilon$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:I\to\mathbb{R}$ +\end_inset + + je zvezna na +\begin_inset Formula $I$ +\end_inset + +, + če +\begin_inset Formula $\forall\varepsilon>0\forall x\in I\exists\delta_{\left(x,\varepsilon\right)}>0\ni:\forall x,y\in I:\left|x-y\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(y\right)\right|<\varepsilon$ +\end_inset + + +\end_layout + +\begin_layout Standard +Zvezna +\begin_inset Formula $f$ +\end_inset + + na kompaktni množici je enakomerno zvezna. +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +f'\left(x\right)=\lim_{x\to0}\frac{f\left(x+h\right)-f\left(x\right)}{h} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\sinh x=\frac{e^{x}-e^{-x}}{2},\quad\cosh x=\frac{e^{x}+e^{-x}}{2} +\] + +\end_inset + + +\end_layout + +\begin_layout Paragraph +Uporabne vrste +\end_layout + +\begin_layout Standard +\begin_inset Formula $\sin x=\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n+1\right)!}x^{2n+1}$ +\end_inset + +, + +\begin_inset Formula $\cos x=\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{\left(2n\right)!}x^{2n}$ +\end_inset + +, + +\begin_inset Formula $\sinh x=\sum_{n=0}^{\infty}\frac{x^{2n+1}}{\left(2n+1\right)!}$ +\end_inset + +, + +\begin_inset Formula $e^{x}=\sum_{x=0}^{\infty}\frac{x^{n}}{n!}$ +\end_inset + +, + +\begin_inset Formula $\left(1+x\right)^{\alpha}=\sum_{n=0}^{\infty}\frac{x^{n}}{n!}$ +\end_inset + +, + +\begin_inset Formula $\frac{1}{1-x}=\sum_{n=0}^{\infty}x^{n}$ +\end_inset + +, + +\begin_inset Formula $\ln\left(1+x\right)=\sum_{n=1}^{\infty}\left(-1\right)^{n+1}\frac{x^{n}}{n}$ +\end_inset + +, + +\begin_inset Formula $\ln\left(1-x\right)=-\sum_{n=1}^{\infty}\frac{x^{n}}{n}$ +\end_inset + +. +\end_layout + +\begin_layout Paragraph +Razcep racionalnih +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\frac{p\left(x\right)}{\left(x-a\right)^{3}}=\frac{A}{x-a}+\frac{B}{\left(x-1\right)^{2}}+\frac{C}{\left(x-1\right)^{3}} +\] + +\end_inset + + +\begin_inset Formula +\[ +\frac{p\left(x\right)}{\left(x-a\right)\left(x-b\right)^{2}}=\frac{A}{x-a}+\frac{B}{x-b}+\frac{C}{\left(x-b\right)^{2}} +\] + +\end_inset + + +\begin_inset Formula +\[ +\frac{p\left(x\right)}{\left(x-a\right)\left(x^{2}-b\right)}=\frac{A}{x-a}+\frac{Bx-C}{x^{2}-b} +\] + +\end_inset + + +\end_layout + +\begin_layout Paragraph +Integrali +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\int\frac{1}{x^{2}+a^{2}}dx=\frac{1}{a}\arctan\frac{x}{a}+C +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\frac{1}{x^{2}-a^{2}}dx=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\frac{1}{a^{2}-x^{2}}dx=\frac{1}{2a}\ln\left|\frac{a+x}{a-x}\right|+C +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\frac{1}{ax+b}dx=\frac{1}{a}\ln\left|ax+b\right|+C +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\left(ax+b\right)^{n}dx=\frac{\left(ax+b\right)^{n+1}}{a\left(n+1\right)}+C +\] + +\end_inset + + +\begin_inset Formula +\[ +\int f\left(x\right)g'\left(x\right)dx=f\left(x\right)g\left(x\right)-\int f'\left(x\right)g\left(x\right)dx +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\frac{1}{\sin^{2}\left(x\right)}dx=-\ctg\left(x\right) +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\frac{1}{\cos^{2}\left(x\right)}=\tan\left(x\right) +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\frac{1}{\sqrt{a^{2}+x^{2}}}dx=\ln\left|x+\sqrt{x^{2}+a^{2}}\right| +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\frac{1}{\sqrt{x^{2}-a^{2}}}dx=\ln\left|x+\sqrt{x^{2}-a^{2}}\right| +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\sqrt{a^{2}+x^{2}}dx=\frac{1}{2}\left(x\sqrt{a^{2}+x^{2}}+a^{2}\ln\left(\sqrt{a^{2}+x^{2}}+x\right)\right) +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\sqrt{a^{2}-x^{2}}dx=\frac{1}{2}\left(x\sqrt{a^{2}-x^{2}}+a^{2}\arctan\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right)\right) +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\frac{A}{x-a}dx=A\ln\left|x-a\right| +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\frac{A}{\left(x-a\right)^{n}}dx=\frac{-A}{n-1}\cdot\frac{1}{\left(x-a\right)^{n-1}} +\] + +\end_inset + + +\begin_inset Formula +\[ +\int\frac{Bx+C}{x^{2}+bx+c}=\frac{B}{2}\ln\left|x^{2}+bx+c\right|+\frac{2C-Bb}{\sqrt{-D}}\arctan\left(\frac{2x+b}{\sqrt{-D}}\right) +\] + +\end_inset + + In velja +\begin_inset Formula $D=b^{2}-4c$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Pri +\begin_inset Formula $\int\sin\left(x\right)^{p}\cos\left(x\right)^{q}dx$ +\end_inset + + lih +\begin_inset Formula $q$ +\end_inset + + substituiramo +\begin_inset Formula $t=\cos\left(x\right)$ +\end_inset + +, + lih +\begin_inset Formula $p$ +\end_inset + + pa +\begin_inset Formula $t=\sin\left(x\right)$ +\end_inset + +. + Pri sodih nižamo stopnje s formulo dvonega kota. +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +https://en.wikipedia.org/wiki/List_of_integrals_of_rational_functions +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{multicols} +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/šola/ana1/teor.lyx b/šola/ana1/teor.lyx index f716983..104ba6c 100644 --- a/šola/ana1/teor.lyx +++ b/šola/ana1/teor.lyx @@ -6089,7 +6089,7 @@ Korenski oz. \begin_inset Formula $c_{n}\coloneqq\sqrt[n]{a_{n}}$ \end_inset -.ž +. \end_layout \begin_deeper @@ -13844,7 +13844,7 @@ krat odvedljiva na odprtem intervalu , tedaj -\begin_inset Formula $\forall b\in I\exists\alpha\in I\text{ med \ensuremath{a} in \ensuremath{x}}\ni:R_{n}\left(b\right)=\frac{f^{\left(n+1\right)}\left(\alpha\right)}{\left(n+1\right)!}\left(b-a\right)^{n+1}$ +\begin_inset Formula $\forall b\in I\exists\alpha\in I\text{ med \ensuremath{a} in \ensuremath{b}}\ni:R_{n}\left(b\right)=\frac{f^{\left(n+1\right)}\left(\alpha\right)}{\left(n+1\right)!}\left(b-a\right)^{n+1}$ \end_inset . @@ -15282,7 +15282,7 @@ Naj bo \begin_inset Formula $f:J\to\mathbb{R}$ \end_inset - je Riemannovo integrabilna, + je Riemannovo, če \begin_inset Formula $s\left(f\right)=S\left(f\right)$ \end_inset |