summaryrefslogblamecommitdiffstats
path: root/šola/ds1/kolokvij1.lyx
blob: 1df6ebc468f119edcb0e01dfc68d033e59f49db3 (plain) (tree)
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072





































































                                                                                                             
              
























                              







































































































































































































































                                                                                                
                























































































































































































                                                                                                                                                                  
                                                               





                      






















































































                                                                                                                                                                                                                                                                                                   










                          



                      

































































































































































































































































































































































































































































                                                                                                                                                     
                                            


















                                                                          
                                                                                                                                                                                                              
















































































                                                                                                                                                  
                  


                      















































                                                                                                                             



















                          
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\begin_preamble
\usepackage{siunitx}
\usepackage{pgfplots}
\usepackage{listings}
\usepackage{multicol}
\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}}
\end_preamble
\use_default_options true
\begin_modules
enumitem
\end_modules
\maintain_unincluded_children false
\language slovene
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification false
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1cm
\topmargin 1cm
\rightmargin 1cm
\bottommargin 2cm
\headheight 1cm
\headsep 1cm
\footskip 1cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style german
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header

\begin_body

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
newcommand
\backslash
euler{e}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
setlength{
\backslash
columnseprule}{0.2pt}
\backslash
begin{multicols}{2}
\end_layout

\end_inset


\end_layout

\begin_layout Paragraph
Izjavni račun
\end_layout

\begin_layout Standard
\begin_inset Formula $\forall\exists$
\end_inset

,
\begin_inset Formula $\neg$
\end_inset

, 
\begin_inset Formula $\wedge\uparrow\downarrow$
\end_inset

, 
\begin_inset Formula $\vee\oplus$
\end_inset

, 
\begin_inset Formula $\Rightarrow$
\end_inset

 (left to right), 
\begin_inset Formula $\Leftrightarrow$
\end_inset


\end_layout

\begin_layout Standard
absorbcija: 
\begin_inset Formula $a\wedge\left(b\vee a\right)\sim a,\quad a\vee\left(b\wedge a\right)\sim a$
\end_inset


\end_layout

\begin_layout Standard
kontrapozicija: 
\begin_inset Formula $a\Rightarrow b\quad\sim\quad\neg a\vee b$
\end_inset


\end_layout

\begin_layout Standard
osnovna konjunkcija 
\begin_inset Formula $\coloneqq$
\end_inset

 minterm
\end_layout

\begin_layout Standard
globina 
\begin_inset Formula $\coloneqq$
\end_inset

 
\begin_inset Formula $\begin{cases}
1 & \text{izraz nima veznikov}\\
1+\max\left\{ A_{1}\dots A_{n}\right\}  & A_{i}\text{ param. zun. vezn.}
\end{cases}$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $A_{1},\dots,A_{n},B$
\end_inset

 je pravilen sklep, če 
\begin_inset Formula $\vDash\bigwedge_{k=1}^{n}A_{k}\Rightarrow B$
\end_inset

.
 
\begin_inset Note Note
status open

\begin_layout Plain Layout
zaključek 
\begin_inset Formula $B$
\end_inset

 drži pri vseh tistih naborih vrednostih spremenljivk, pri katerih hkrati
 držijo vse predpostavke 
\begin_inset Formula $A_{i}$
\end_inset

.
\end_layout

\end_inset


\end_layout

\begin_layout Paragraph

\series bold
Pravila sklepanja
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{align*}
\end_layout

\begin_layout Plain Layout

&& A, A
\backslash
Rightarrow B & 
\backslash
vDash B && 
\backslash
text{
\backslash
emph{modus ponens}} && 
\backslash
text{M.
 P.}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& A
\backslash
Rightarrow B, 
\backslash
neg B & 
\backslash
vDash 
\backslash
neg A && 
\backslash
text{
\backslash
emph{modus tollens}} && 
\backslash
text{M.
 T.}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& A
\backslash
wedge B, 
\backslash
neg B & 
\backslash
vDash A && 
\backslash
text{
\backslash
emph{disjunktivni silogizem}} && 
\backslash
text{D.
 S.}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& A
\backslash
Rightarrow B, B
\backslash
Rightarrow C & 
\backslash
vDash A
\backslash
Rightarrow C && 
\backslash
text{
\backslash
emph{hipotetični silogizem}} && 
\backslash
text{H.
 S}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& A, B & 
\backslash
vDash A
\backslash
wedge B && 
\backslash
text{
\backslash
emph{združitev}} && 
\backslash
text{Zd.}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& A
\backslash
wedge B & 
\backslash
vDash A && 
\backslash
text{
\backslash
emph{poenostavitev}} && 
\backslash
text{Po.}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout


\backslash
end{align*}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
Protiprimer 
\begin_inset Formula $1,\dots,1\vDash0$
\end_inset

 dokaže nepravilnost sklepa.
\end_layout

\begin_layout Paragraph

\series bold
Pomožni sklepi
\series default
:
\end_layout

\begin_layout Itemize
Pogojni sklep (P.S.):
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
newline
\end_layout

\end_inset


\begin_inset Formula $A_{1},\dots,A_{n}\vDash B\Rightarrow C\quad\sim\quad A_{1},\dots,A_{n},B\vDash C$
\end_inset


\end_layout

\begin_layout Itemize
S protislovjem (R.A.
 – 
\emph on
reduction ad absurdum
\emph default
): 
\begin_inset Formula $A_{1},\dots,A_{n}\vDash B\quad\sim\quad A_{1},\dots,A_{n},\neg B\vDash0$
\end_inset


\end_layout

\begin_layout Itemize
Analiza primerov (A.
 P.): 
\begin_inset Formula $A_{1},\dots,A_{n},B_{1}\vee B_{2}\vDash C\sim\left(A_{1},\dots,A_{n},B_{1}\vDash C\right)\wedge\left(A_{1},\dots,A_{n},B_{2}\vDash C\right)$
\end_inset


\end_layout

\begin_layout Itemize
\begin_inset Formula $A_{1},\dots,A_{n},B_{1}\wedge B_{2}\vDash C\quad\sim\quad A_{1},\dots,A_{n},B_{1},B_{2}\vDash C$
\end_inset


\end_layout

\begin_layout Paragraph
Predikatni račun
\end_layout

\begin_layout Standard
\begin_inset Formula $P:D^{n}\longrightarrow\left\{ 0,1\right\} $
\end_inset


\end_layout

\begin_layout Standard
De Morganov zakon negacije:
\end_layout

\begin_layout Itemize
\begin_inset Formula $\forall x:\neg P\left(x\right)\quad\sim\quad\neg\exists x:P\left(x\right)$
\end_inset


\end_layout

\begin_layout Itemize
\begin_inset Formula $\exists x:\neg P\left(x\right)\quad\sim\quad\neg\forall x:P\left(x\right)$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout

\end_layout

\end_inset


\end_layout

\begin_layout Standard
Izjava je zaprta izjavna formula, torej taka, ki ne vsebuje prostih (
\begin_inset Formula $=$
\end_inset

nevezanih) nastopov spremenljivk.
\end_layout

\begin_layout Paragraph
Množice
\end_layout

\begin_layout Standard
\begin_inset Formula $^{\mathcal{C}},\cap\backslash,\cup\oplus$
\end_inset

 (left to right)
\end_layout

\begin_layout Standard
Distributivnost: 
\begin_inset Formula $\cup\cap$
\end_inset

, 
\begin_inset Formula $\cap\cup$
\end_inset

, 
\begin_inset Formula $\left(\mathcal{A}\oplus\mathcal{B}\right)\cap\mathcal{C}=\left(\mathcal{A\cap\mathcal{C}}\right)\oplus\left(\mathcal{B}\cap\mathcal{C}\right)$
\end_inset


\end_layout

\begin_layout Standard
Asociativnost: 
\begin_inset Formula $\oplus\cup\cap$
\end_inset

.
 Distributivnost: 
\begin_inset Formula $\oplus\cup\cap$
\end_inset


\end_layout

\begin_layout Standard
Absorbcija: 
\begin_inset Formula $\mathcal{A}\cup\left(\mathcal{A}\cap\mathcal{B}\right)=\mathcal{A}=A\cap\left(\mathcal{A}\cup\mathcal{B}\right)$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\mathcal{A}\subseteq\mathcal{B}\Leftrightarrow\mathcal{A}\cup\mathcal{B}=\mathcal{B}\Leftrightarrow\mathcal{A}\cup\mathcal{B}=\mathcal{A}\Leftrightarrow\mathcal{A}\backslash\mathcal{B}=\emptyset\Leftrightarrow\mathcal{B}^{\mathcal{C}}\subseteq\mathcal{A^{\mathcal{C}}}$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\mathcal{A}=\mathcal{B}\Longleftrightarrow\mathcal{A\oplus\mathcal{B}}=\emptyset$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\mathcal{A}=\emptyset\wedge\mathcal{B}=\emptyset\Longleftrightarrow\mathcal{A}\cup\mathcal{B}=\emptyset$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\left(\mathcal{X}\cap\mathcal{P}\right)\cup\left(\mathcal{X^{C}}\cap\mathcal{Q}\right)=\emptyset\Longleftrightarrow\text{\ensuremath{\mathcal{Q\subseteq X}\subseteq\mathcal{P^{C}}}}$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\mathcal{A}\backslash\mathcal{B}\sim\mathcal{A}\cap\mathcal{B}^{C}$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\mathcal{X}\cup\mathcal{X^{C}}=\emptyset$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\mathcal{W}=\mathcal{W}\cap\mathcal{U}=\mathcal{W\cap}\left(\mathcal{X}\cup\mathcal{X^{C}}\right)=\left(\mathcal{W}\cap\mathcal{X}\right)\cup\left(\mathcal{W}\cap\mathcal{X^{C}}\right)$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\mathcal{A}\oplus\mathcal{B}=\left(\mathcal{A}\backslash\mathcal{B}\right)\cup\left(\mathcal{B\backslash\mathcal{A}}\right)$
\end_inset


\end_layout

\begin_layout Paragraph

\series bold
Lastnosti binarnih relacij
\end_layout

\begin_layout Standard

\end_layout

\begin_layout Paragraph
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{align*}
\end_layout

\begin_layout Plain Layout

&& 
\backslash
forall a
\backslash
in A : & 
\backslash
left(a R a
\backslash
right) && 
\backslash
text{refleksivnost}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& 
\backslash
forall a,b
\backslash
in A : & 
\backslash
left(a R b
\backslash
Rightarrow b R a
\backslash
right)&&
\backslash
text{simetričnost}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& 
\backslash
forall a,b
\backslash
in A : & 
\backslash
left(a R b
\backslash
wedge b R a
\backslash
Rightarrow a=b
\backslash
right) && 
\backslash
text{antisimetričnost}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& 
\backslash
forall a,b,c
\backslash
in A : & 
\backslash
left(a R b
\backslash
wedge b R c
\backslash
Rightarrow a R c
\backslash
right) && 
\backslash
text{tranzitivnost}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& 
\backslash
forall a
\backslash
in A : & 
\backslash
neg
\backslash
left(a R a
\backslash
right) && 
\backslash
text{irefleksivnost}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& 
\backslash
forall a,b
\backslash
in A: &
\backslash
left(a R b
\backslash
Rightarrow 
\backslash
neg
\backslash
left(b R a
\backslash
right)
\backslash
right) && 
\backslash
text{asimetričnost}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& 
\backslash
forall a,b,c
\backslash
in A:&
\backslash
left(a R b
\backslash
wedge b R c
\backslash
Rightarrow 
\backslash
neg
\backslash
left(a R c
\backslash
right)
\backslash
right) && 
\backslash
text{itranzitivnost}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& 
\backslash
forall a,b
\backslash
in A:&
\backslash
left(a
\backslash
not=b
\backslash
Rightarrow
\backslash
left(a R b
\backslash
vee b R a
\backslash
right)
\backslash
right) && 
\backslash
text{sovisnost}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& 
\backslash
forall a,b
\backslash
in A:&
\backslash
left(a R b
\backslash
vee b R a
\backslash
right)&&
\backslash
text{stroga sovisnost}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&&
\backslash
forall a,b,c
\backslash
in A:&
\backslash
left(aRb
\backslash
wedge aRc
\backslash
Rightarrow b=c
\backslash
right)&&
\backslash
text{enoličnost}
\end_layout

\begin_layout Plain Layout


\backslash
end{align*}
\end_layout

\end_inset

Sklepanje s kvantifikatorji
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{align*}
\end_layout

\begin_layout Plain Layout

&& 
\backslash
exists x:P
\backslash
left(x
\backslash
right) 
\backslash
longrightarrow& x_0
\backslash
coloneqq x, P
\backslash
left(x
\backslash
right) && 
\backslash
text{eksistenčna specifikacija}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& P
\backslash
left(x_0
\backslash
right)
\backslash
longrightarrow&
\backslash
exists x:P
\backslash
left(x
\backslash
right)&&
\backslash
text{eksistenčna generalizacija}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& 
\backslash
forall x:P
\backslash
left(x
\backslash
right)
\backslash
longrightarrow& x_0
\backslash
coloneqq x, P
\backslash
left(x
\backslash
right)&&
\backslash
text{univerzalna specifikacija}
\backslash

\backslash

\end_layout

\begin_layout Plain Layout

&& 
\backslash
text{poljub.
 } x_0, P
\backslash
left(x_0
\backslash
right)
\backslash
longrightarrow& 
\backslash
forall x:P
\backslash
left(x
\backslash
right)&&
\backslash
text{univerzalna generalizacija}
\end_layout

\begin_layout Plain Layout


\backslash
end{align*}
\end_layout

\end_inset


\begin_inset Formula $R\subseteq A\times B:aR\oplus Sb\sim\left(a,b\right)\in R\backslash S\vee\left(a,b\right)\in S\backslash R\sim aRb\oplus aSb$
\end_inset


\begin_inset Newline newline
\end_inset


\begin_inset Formula $R^{-1}\coloneqq\left\{ \left(b,a\right);\left(a,b\right)\in R\right\} :\quad aRb\sim bR^{-1}a$
\end_inset


\begin_inset Newline newline
\end_inset


\begin_inset Formula $R*S\coloneqq\left\{ \left(a,c\right);\exists b:\left(aRb\wedge bSc\right)\right\} :R^{2}\coloneqq R*R,R^{n+1}\coloneqq R^{n}*R$
\end_inset


\begin_inset Newline newline
\end_inset


\begin_inset Formula $\left(R^{-1}\right)^{-1}=R,\left(R\cup S\right)^{-1}=R^{-1}\cup S^{-1},\left(R\cap S\right)^{-1}=R^{-1}\cap S^{-1}$
\end_inset


\begin_inset Newline newline
\end_inset


\begin_inset Formula $\left(R*S\right)=R^{-1}*S^{-1}$
\end_inset

.
 
\begin_inset Formula $*\cup$
\end_inset

 in 
\begin_inset Formula $\cup*$
\end_inset

 sta distributivni.
\end_layout

\begin_layout Standard
\begin_inset Formula $R^{+}=R\cup R^{2}\cup R^{3}\cup\dots,\quad R^{*}=I\cup R^{+}$
\end_inset


\begin_inset Newline newline
\end_inset

Ovojnica 
\begin_inset Formula $R^{L}\supseteq R$
\end_inset

 je najmanjša razširitev 
\begin_inset Formula $R$
\end_inset

, ki ima lastnost 
\begin_inset Formula $L$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset Formula $R^{\text{ref}}\coloneqq I\cup R,R^{\text{sim}}\coloneqq R\cup R^{-1},R^{\text{tranz}}=R^{+},R^{\text{tranz+ref}}=R^{*}$
\end_inset


\end_layout

\begin_layout Standard
Ekvivalenčna rel.
 je simetrična, tranzitivna in refleksivna.
\end_layout

\begin_layout Standard
Ekvivalenčni razred: 
\begin_inset Formula $R\left[x\right]\coloneqq\left\{ y;xRy\right\} $
\end_inset


\end_layout

\begin_layout Standard
Faktorska množica: 
\begin_inset Formula $A/R\coloneqq\left\{ R\left[x\right];x\in A\right\} $
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\vec{\mathcal{B}}\text{ razbitje}A\Longleftrightarrow\bigcup_{i}\mathcal{B}_{i}=A\wedge\forall i\mathcal{B}_{i}\not=\emptyset\wedge\mathcal{B}_{i}\cap\mathcal{B}_{j}=\emptyset,i\not=j$
\end_inset


\end_layout

\begin_layout Paragraph
Urejenosti
\end_layout

\begin_layout Standard
\begin_inset Formula $\left(M,\preccurlyeq\right)$
\end_inset


\end_layout

\begin_layout Standard
Delna: refl., antisim.
 in tranz.
 Linearna: delna, sovisna
\end_layout

\begin_layout Standard
def.: 
\begin_inset Formula $x\prec y\Longleftrightarrow x\preccurlyeq y\wedge x\not=y$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $x\text{ je nepo. predh. }y\Longleftrightarrow x\prec y\wedge\neg\exists z\in M:\left(x\prec z\wedge z\prec y\right)$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $a\in M\text{ je minimalen}\Longleftrightarrow\forall x\in M\left(x\preccurlyeq a\Rightarrow x=a\right)$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $a\in M\text{ je maksimalen}\Longleftrightarrow\forall x\in M\left(a\preccurlyeq x\Rightarrow x=a\right)$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $a\in M\text{ je prvi}\Longleftrightarrow\forall x\in M:\left(a\preccurlyeq x\right)$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $a\in M\text{ je zadnji}\Longleftrightarrow\forall x\in M:\left(x\preccurlyeq a\right)$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $M_{1}\times M_{2}$
\end_inset

: 
\begin_inset Formula $\left(a_{1},b_{1}\right)\preccurlyeq\left(a_{2},b_{2}\right)\coloneqq a_{1}\preccurlyeq a_{2}\wedge b_{1}\preccurlyeq b_{2}$
\end_inset


\end_layout

\begin_layout Standard
Srečno!
\end_layout

\begin_layout Paragraph
Funkcijska polnost
\end_layout

\begin_layout Standard
\begin_inset Formula $T_{0},$
\end_inset


\begin_inset Formula $T_{1}$
\end_inset

, 
\begin_inset Formula $S$
\end_inset

 – 
\begin_inset Formula $f\left(\vec{x}\right)=\neg f\left(\vec{x}\oplus\vec{1}\right)$
\end_inset

, 
\begin_inset Formula $L$
\end_inset

, 
\begin_inset Formula $M$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $L$
\end_inset

 – 
\begin_inset Formula $f\left(\vec{x}\right)=\left[\begin{array}{ccc}
a_{0} & \dots & a_{n}\end{array}\right]^{T}\oplus\wedge\left[\begin{array}{cccc}
1 & x_{1} & \dots & x_{n}\end{array}\right]$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $M$
\end_inset

 – 
\begin_inset Formula $\forall i,j:\vec{w_{i}}<\vec{w_{j}}\Rightarrow f\left(\vec{w_{i}}\right)\leq f\left(\vec{w_{j}}\right)$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
end{multicols}
\end_layout

\end_inset


\end_layout

\end_body
\end_document