summaryrefslogtreecommitdiffstats
path: root/src/video_core/vertex_shader.cpp
blob: bc8c0041c37a49d9151bf595c5901eef102dc134 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <stack>

#include <boost/range/algorithm.hpp>

#include <common/file_util.h>

#include <core/mem_map.h>

#include <nihstro/shader_bytecode.h>


#include "pica.h"
#include "vertex_shader.h"
#include "debug_utils/debug_utils.h"

using nihstro::Instruction;
using nihstro::RegisterType;
using nihstro::SourceRegister;
using nihstro::SwizzlePattern;

namespace Pica {

namespace VertexShader {

static struct {
    Math::Vec4<float24> f[96];

    std::array<bool,16> b;

    std::array<Math::Vec4<u8>,4> i;
} shader_uniforms;

// TODO: Not sure where the shader binary and swizzle patterns are supposed to be loaded to!
// For now, we just keep these local arrays around.
static std::array<u32, 1024> shader_memory;
static std::array<u32, 1024> swizzle_data;

void SubmitShaderMemoryChange(u32 addr, u32 value) {
    shader_memory[addr] = value;
}

void SubmitSwizzleDataChange(u32 addr, u32 value) {
    swizzle_data[addr] = value;
}

Math::Vec4<float24>& GetFloatUniform(u32 index) {
    return shader_uniforms.f[index];
}

bool& GetBoolUniform(u32 index) {
    return shader_uniforms.b[index];
}

Math::Vec4<u8>& GetIntUniform(u32 index) {
    return shader_uniforms.i[index];
}

const std::array<u32, 1024>& GetShaderBinary() {
    return shader_memory;
}

const std::array<u32, 1024>& GetSwizzlePatterns() {
    return swizzle_data;
}

struct VertexShaderState {
    u32* program_counter;

    const float24* input_register_table[16];
    float24* output_register_table[7*4];

    Math::Vec4<float24> temporary_registers[16];
    bool conditional_code[2];

    // Two Address registers and one loop counter
    // TODO: How many bits do these actually have?
    s32 address_registers[3];

    enum {
        INVALID_ADDRESS = 0xFFFFFFFF
    };

    struct CallStackElement {
        u32 final_address;  // Address upon which we jump to return_address
        u32 return_address; // Where to jump when leaving scope
        u8 repeat_counter;  // How often to repeat until this call stack element is removed
        u8 loop_increment;  // Which value to add to the loop counter after an iteration
                            // TODO: Should this be a signed value? Does it even matter?
        u32 loop_address;   // The address where we'll return to after each loop iteration
    };

    // TODO: Is there a maximal size for this?
    std::stack<CallStackElement> call_stack;

    struct {
        u32 max_offset; // maximum program counter ever reached
        u32 max_opdesc_id; // maximum swizzle pattern index ever used
    } debug;
};

static void ProcessShaderCode(VertexShaderState& state) {

    // Placeholder for invalid inputs
    static float24 dummy_vec4_float24[4];

    while (true) {
        if (!state.call_stack.empty()) {
            auto& top = state.call_stack.top();
            if (state.program_counter - shader_memory.data() == top.final_address) {
                state.address_registers[2] += top.loop_increment;

                if (top.repeat_counter-- == 0) {
                    state.program_counter = &shader_memory[top.return_address];
                    state.call_stack.pop();
                } else {
                    state.program_counter = &shader_memory[top.loop_address];
                }

                // TODO: Is "trying again" accurate to hardware?
                continue;
            }
        }

        bool exit_loop = false;
        const Instruction& instr = *(const Instruction*)state.program_counter;
        const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id];

        static auto call = [](VertexShaderState& state, u32 offset, u32 num_instructions,
                              u32 return_offset, u8 repeat_count, u8 loop_increment) {
            state.program_counter = &shader_memory[offset] - 1; // -1 to make sure when incrementing the PC we end up at the correct offset
            state.call_stack.push({ offset + num_instructions, return_offset, repeat_count, loop_increment, offset });
        };
        u32 binary_offset = state.program_counter - shader_memory.data();

        state.debug.max_offset = std::max<u32>(state.debug.max_offset, 1 + binary_offset);

        auto LookupSourceRegister = [&](const SourceRegister& source_reg) -> const float24* {
            switch (source_reg.GetRegisterType()) {
            case RegisterType::Input:
                return state.input_register_table[source_reg.GetIndex()];

            case RegisterType::Temporary:
                return &state.temporary_registers[source_reg.GetIndex()].x;

            case RegisterType::FloatUniform:
                return &shader_uniforms.f[source_reg.GetIndex()].x;

            default:
                return dummy_vec4_float24;
            }
        };

        switch (instr.opcode.GetInfo().type) {
        case Instruction::OpCodeType::Arithmetic:
        {
            bool is_inverted = 0 != (instr.opcode.GetInfo().subtype & Instruction::OpCodeInfo::SrcInversed);
            // TODO: We don't really support this properly: For instance, the address register
            //       offset needs to be applied to SRC2 instead, etc.
            //       For now, we just abort in this situation.
            ASSERT_MSG(!is_inverted, "Bad condition...");

            const int address_offset = (instr.common.address_register_index == 0)
                                       ? 0 : state.address_registers[instr.common.address_register_index - 1];

            const float24* src1_ = LookupSourceRegister(instr.common.GetSrc1(is_inverted) + address_offset);
            const float24* src2_ = LookupSourceRegister(instr.common.GetSrc2(is_inverted));

            const bool negate_src1 = ((bool)swizzle.negate_src1 != false);
            const bool negate_src2 = ((bool)swizzle.negate_src2 != false);

            float24 src1[4] = {
                src1_[(int)swizzle.GetSelectorSrc1(0)],
                src1_[(int)swizzle.GetSelectorSrc1(1)],
                src1_[(int)swizzle.GetSelectorSrc1(2)],
                src1_[(int)swizzle.GetSelectorSrc1(3)],
            };
            if (negate_src1) {
                src1[0] = src1[0] * float24::FromFloat32(-1);
                src1[1] = src1[1] * float24::FromFloat32(-1);
                src1[2] = src1[2] * float24::FromFloat32(-1);
                src1[3] = src1[3] * float24::FromFloat32(-1);
            }
            float24 src2[4] = {
                src2_[(int)swizzle.GetSelectorSrc2(0)],
                src2_[(int)swizzle.GetSelectorSrc2(1)],
                src2_[(int)swizzle.GetSelectorSrc2(2)],
                src2_[(int)swizzle.GetSelectorSrc2(3)],
            };
            if (negate_src2) {
                src2[0] = src2[0] * float24::FromFloat32(-1);
                src2[1] = src2[1] * float24::FromFloat32(-1);
                src2[2] = src2[2] * float24::FromFloat32(-1);
                src2[3] = src2[3] * float24::FromFloat32(-1);
            }

            float24* dest = (instr.common.dest < 0x08) ? state.output_register_table[4*instr.common.dest.GetIndex()]
                        : (instr.common.dest < 0x10) ? dummy_vec4_float24
                        : (instr.common.dest < 0x20) ? &state.temporary_registers[instr.common.dest.GetIndex()][0]
                        : dummy_vec4_float24;

            state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);

            switch (instr.opcode.EffectiveOpCode()) {
            case Instruction::OpCode::ADD:
            {
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    dest[i] = src1[i] + src2[i];
                }

                break;
            }

            case Instruction::OpCode::MUL:
            {
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    dest[i] = src1[i] * src2[i];
                }

                break;
            }

            case Instruction::OpCode::MAX:
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    dest[i] = std::max(src1[i], src2[i]);
                }
                break;

            case Instruction::OpCode::DP3:
            case Instruction::OpCode::DP4:
            {
                float24 dot = float24::FromFloat32(0.f);
                int num_components = (instr.opcode == Instruction::OpCode::DP3) ? 3 : 4;
                for (int i = 0; i < num_components; ++i)
                    dot = dot + src1[i] * src2[i];

                for (int i = 0; i < num_components; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    dest[i] = dot;
                }
                break;
            }

            // Reciprocal
            case Instruction::OpCode::RCP:
            {
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    // TODO: Be stable against division by zero!
                    // TODO: I think this might be wrong... we should only use one component here
                    dest[i] = float24::FromFloat32(1.0f / src1[i].ToFloat32());
                }

                break;
            }

            // Reciprocal Square Root
            case Instruction::OpCode::RSQ:
            {
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    // TODO: Be stable against division by zero!
                    // TODO: I think this might be wrong... we should only use one component here
                    dest[i] = float24::FromFloat32(1.0f / sqrt(src1[i].ToFloat32()));
                }

                break;
            }

            case Instruction::OpCode::MOVA:
            {
                for (int i = 0; i < 2; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    // TODO: Figure out how the rounding is done on hardware
                    state.address_registers[i] = static_cast<s32>(src1[i].ToFloat32());
                }

                break;
            }

            case Instruction::OpCode::MOV:
            {
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    dest[i] = src1[i];
                }
                break;
            }

            case Instruction::OpCode::CMP:
                for (int i = 0; i < 2; ++i) {
                    // TODO: Can you restrict to one compare via dest masking?

                    auto compare_op = instr.common.compare_op;
                    auto op = (i == 0) ? compare_op.x.Value() : compare_op.y.Value();

                    switch (op) {
                        case compare_op.Equal:
                            state.conditional_code[i] = (src1[i] == src2[i]);
                            break;

                        case compare_op.NotEqual:
                            state.conditional_code[i] = (src1[i] != src2[i]);
                            break;

                        case compare_op.LessThan:
                            state.conditional_code[i] = (src1[i] <  src2[i]);
                            break;

                        case compare_op.LessEqual:
                            state.conditional_code[i] = (src1[i] <= src2[i]);
                            break;

                        case compare_op.GreaterThan:
                            state.conditional_code[i] = (src1[i] >  src2[i]);
                            break;

                        case compare_op.GreaterEqual:
                            state.conditional_code[i] = (src1[i] >= src2[i]);
                            break;

                        default:
                            LOG_ERROR(HW_GPU, "Unknown compare mode %x", static_cast<int>(op));
                            break;
                    }
                }
                break;

            default:
                LOG_ERROR(HW_GPU, "Unhandled arithmetic instruction: 0x%02x (%s): 0x%08x",
                          (int)instr.opcode.Value(), instr.opcode.GetInfo().name, instr.hex);
                DEBUG_ASSERT(false);
                break;
            }

            break;
        }

        case Instruction::OpCodeType::MultiplyAdd:
        {
            if (instr.opcode.EffectiveOpCode() == Instruction::OpCode::MAD) {
                const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.mad.operand_desc_id];

                const float24* src1_ = LookupSourceRegister(instr.mad.src1);
                const float24* src2_ = LookupSourceRegister(instr.mad.src2);
                const float24* src3_ = LookupSourceRegister(instr.mad.src3);

                const bool negate_src1 = ((bool)swizzle.negate_src1 != false);
                const bool negate_src2 = ((bool)swizzle.negate_src2 != false);
                const bool negate_src3 = ((bool)swizzle.negate_src3 != false);

                float24 src1[4] = {
                    src1_[(int)swizzle.GetSelectorSrc1(0)],
                    src1_[(int)swizzle.GetSelectorSrc1(1)],
                    src1_[(int)swizzle.GetSelectorSrc1(2)],
                    src1_[(int)swizzle.GetSelectorSrc1(3)],
                };
                if (negate_src1) {
                    src1[0] = src1[0] * float24::FromFloat32(-1);
                    src1[1] = src1[1] * float24::FromFloat32(-1);
                    src1[2] = src1[2] * float24::FromFloat32(-1);
                    src1[3] = src1[3] * float24::FromFloat32(-1);
                }
                float24 src2[4] = {
                    src2_[(int)swizzle.GetSelectorSrc2(0)],
                    src2_[(int)swizzle.GetSelectorSrc2(1)],
                    src2_[(int)swizzle.GetSelectorSrc2(2)],
                    src2_[(int)swizzle.GetSelectorSrc2(3)],
                };
                if (negate_src2) {
                    src2[0] = src2[0] * float24::FromFloat32(-1);
                    src2[1] = src2[1] * float24::FromFloat32(-1);
                    src2[2] = src2[2] * float24::FromFloat32(-1);
                    src2[3] = src2[3] * float24::FromFloat32(-1);
                }
                float24 src3[4] = {
                    src3_[(int)swizzle.GetSelectorSrc3(0)],
                    src3_[(int)swizzle.GetSelectorSrc3(1)],
                    src3_[(int)swizzle.GetSelectorSrc3(2)],
                    src3_[(int)swizzle.GetSelectorSrc3(3)],
                };
                if (negate_src3) {
                    src3[0] = src3[0] * float24::FromFloat32(-1);
                    src3[1] = src3[1] * float24::FromFloat32(-1);
                    src3[2] = src3[2] * float24::FromFloat32(-1);
                    src3[3] = src3[3] * float24::FromFloat32(-1);
                }

                float24* dest = (instr.mad.dest < 0x08) ? state.output_register_table[4*instr.mad.dest.GetIndex()]
                            : (instr.mad.dest < 0x10) ? dummy_vec4_float24
                            : (instr.mad.dest < 0x20) ? &state.temporary_registers[instr.mad.dest.GetIndex()][0]
                            : dummy_vec4_float24;

                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    dest[i] = src1[i] * src2[i] + src3[i];
                }
            } else {
                LOG_ERROR(HW_GPU, "Unhandled multiply-add instruction: 0x%02x (%s): 0x%08x",
                          (int)instr.opcode.Value(), instr.opcode.GetInfo().name, instr.hex);
            }
            break;
        }

        default:
        {
            static auto evaluate_condition = [](const VertexShaderState& state, bool refx, bool refy, Instruction::FlowControlType flow_control) {
                bool results[2] = { refx == state.conditional_code[0],
                                    refy == state.conditional_code[1] };

                switch (flow_control.op) {
                case flow_control.Or:
                    return results[0] || results[1];

                case flow_control.And:
                    return results[0] && results[1];

                case flow_control.JustX:
                    return results[0];

                case flow_control.JustY:
                    return results[1];
                }
            };

            // Handle each instruction on its own
            switch (instr.opcode) {
            case Instruction::OpCode::END:
                exit_loop = true;
                break;

            case Instruction::OpCode::JMPC:
                if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) {
                    state.program_counter = &shader_memory[instr.flow_control.dest_offset] - 1;
                }
                break;

            case Instruction::OpCode::JMPU:
                if (shader_uniforms.b[instr.flow_control.bool_uniform_id]) {
                    state.program_counter = &shader_memory[instr.flow_control.dest_offset] - 1;
                }
                break;

            case Instruction::OpCode::CALL:
                call(state,
                     instr.flow_control.dest_offset,
                     instr.flow_control.num_instructions,
                     binary_offset + 1, 0, 0);
                break;

            case Instruction::OpCode::CALLU:
                if (shader_uniforms.b[instr.flow_control.bool_uniform_id]) {
                    call(state,
                        instr.flow_control.dest_offset,
                        instr.flow_control.num_instructions,
                        binary_offset + 1, 0, 0);
                }
                break;

            case Instruction::OpCode::CALLC:
                if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) {
                    call(state,
                        instr.flow_control.dest_offset,
                        instr.flow_control.num_instructions,
                        binary_offset + 1, 0, 0);
                }
                break;

            case Instruction::OpCode::NOP:
                break;

            case Instruction::OpCode::IFU:
                if (shader_uniforms.b[instr.flow_control.bool_uniform_id]) {
                    call(state,
                         binary_offset + 1,
                         instr.flow_control.dest_offset - binary_offset - 1,
                         instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
                } else {
                    call(state,
                         instr.flow_control.dest_offset,
                         instr.flow_control.num_instructions,
                         instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
                }

                break;

            case Instruction::OpCode::IFC:
            {
                // TODO: Do we need to consider swizzlers here?

                if (evaluate_condition(state, instr.flow_control.refx, instr.flow_control.refy, instr.flow_control)) {
                    call(state,
                         binary_offset + 1,
                         instr.flow_control.dest_offset - binary_offset - 1,
                         instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
                } else {
                    call(state,
                         instr.flow_control.dest_offset,
                         instr.flow_control.num_instructions,
                         instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
                }

                break;
            }

            case Instruction::OpCode::LOOP:
            {
                state.address_registers[2] = shader_uniforms.i[instr.flow_control.int_uniform_id].y;

                call(state,
                     binary_offset + 1,
                     instr.flow_control.dest_offset - binary_offset + 1,
                     instr.flow_control.dest_offset + 1,
                     shader_uniforms.i[instr.flow_control.int_uniform_id].x,
                     shader_uniforms.i[instr.flow_control.int_uniform_id].z);
                break;
            }

            default:
                LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x",
                          (int)instr.opcode.Value(), instr.opcode.GetInfo().name, instr.hex);
                break;
            }

            break;
        }
        }

        ++state.program_counter;

        if (exit_loop)
            break;
    }
}

OutputVertex RunShader(const InputVertex& input, int num_attributes) {
    VertexShaderState state;

    const u32* main = &shader_memory[registers.vs_main_offset];
    state.program_counter = (u32*)main;
    state.debug.max_offset = 0;
    state.debug.max_opdesc_id = 0;

    // Setup input register table
    const auto& attribute_register_map = registers.vs_input_register_map;
    float24 dummy_register;
    boost::fill(state.input_register_table, &dummy_register);
    if(num_attributes > 0) state.input_register_table[attribute_register_map.attribute0_register] = &input.attr[0].x;
    if(num_attributes > 1) state.input_register_table[attribute_register_map.attribute1_register] = &input.attr[1].x;
    if(num_attributes > 2) state.input_register_table[attribute_register_map.attribute2_register] = &input.attr[2].x;
    if(num_attributes > 3) state.input_register_table[attribute_register_map.attribute3_register] = &input.attr[3].x;
    if(num_attributes > 4) state.input_register_table[attribute_register_map.attribute4_register] = &input.attr[4].x;
    if(num_attributes > 5) state.input_register_table[attribute_register_map.attribute5_register] = &input.attr[5].x;
    if(num_attributes > 6) state.input_register_table[attribute_register_map.attribute6_register] = &input.attr[6].x;
    if(num_attributes > 7) state.input_register_table[attribute_register_map.attribute7_register] = &input.attr[7].x;
    if(num_attributes > 8) state.input_register_table[attribute_register_map.attribute8_register] = &input.attr[8].x;
    if(num_attributes > 9) state.input_register_table[attribute_register_map.attribute9_register] = &input.attr[9].x;
    if(num_attributes > 10) state.input_register_table[attribute_register_map.attribute10_register] = &input.attr[10].x;
    if(num_attributes > 11) state.input_register_table[attribute_register_map.attribute11_register] = &input.attr[11].x;
    if(num_attributes > 12) state.input_register_table[attribute_register_map.attribute12_register] = &input.attr[12].x;
    if(num_attributes > 13) state.input_register_table[attribute_register_map.attribute13_register] = &input.attr[13].x;
    if(num_attributes > 14) state.input_register_table[attribute_register_map.attribute14_register] = &input.attr[14].x;
    if(num_attributes > 15) state.input_register_table[attribute_register_map.attribute15_register] = &input.attr[15].x;

    // Setup output register table
    OutputVertex ret;
    // Zero output so that attributes which aren't output won't have denormals in them, which will
    // slow us down later.
    memset(&ret, 0, sizeof(ret));

    for (int i = 0; i < 7; ++i) {
        const auto& output_register_map = registers.vs_output_attributes[i];

        u32 semantics[4] = {
            output_register_map.map_x, output_register_map.map_y,
            output_register_map.map_z, output_register_map.map_w
        };

        for (int comp = 0; comp < 4; ++comp)
            state.output_register_table[4*i+comp] = ((float24*)&ret) + semantics[comp];
    }

    state.conditional_code[0] = false;
    state.conditional_code[1] = false;

    ProcessShaderCode(state);
    DebugUtils::DumpShader(shader_memory.data(), state.debug.max_offset, swizzle_data.data(),
                           state.debug.max_opdesc_id, registers.vs_main_offset,
                           registers.vs_output_attributes);

    LOG_TRACE(Render_Software, "Output vertex: pos (%.2f, %.2f, %.2f, %.2f), col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f)",
        ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(),
        ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(),
        ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32());

    return ret;
}


} // namespace

} // namespace