summaryrefslogtreecommitdiffstats
path: root/src/video_core/textures/decoders.cpp
blob: c010b9353a7d889210896bc3f7d080520a2e3138 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <array>
#include <cmath>
#include <cstring>
#include <span>
#include <utility>

#include "common/alignment.h"
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/div_ceil.h"
#include "video_core/gpu.h"
#include "video_core/textures/decoders.h"
#include "video_core/textures/texture.h"

namespace Tegra::Texture {
namespace {
template <bool TO_LINEAR, u32 BYTES_PER_PIXEL>
void SwizzleImpl(std::span<u8> output, std::span<const u8> input, u32 width, u32 height, u32 depth,
                 u32 block_height, u32 block_depth, u32 stride_alignment) {
    // The origin of the transformation can be configured here, leave it as zero as the current API
    // doesn't expose it.
    static constexpr u32 origin_x = 0;
    static constexpr u32 origin_y = 0;
    static constexpr u32 origin_z = 0;

    // We can configure here a custom pitch
    // As it's not exposed 'width * BYTES_PER_PIXEL' will be the expected pitch.
    const u32 pitch = width * BYTES_PER_PIXEL;
    const u32 stride = Common::AlignUpLog2(width, stride_alignment) * BYTES_PER_PIXEL;

    const u32 gobs_in_x = Common::DivCeilLog2(stride, GOB_SIZE_X_SHIFT);
    const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height + block_depth);
    const u32 slice_size =
        Common::DivCeilLog2(height, block_height + GOB_SIZE_Y_SHIFT) * block_size;

    const u32 block_height_mask = (1U << block_height) - 1;
    const u32 block_depth_mask = (1U << block_depth) - 1;
    const u32 x_shift = GOB_SIZE_SHIFT + block_height + block_depth;

    for (u32 slice = 0; slice < depth; ++slice) {
        const u32 z = slice + origin_z;
        const u32 offset_z = (z >> block_depth) * slice_size +
                             ((z & block_depth_mask) << (GOB_SIZE_SHIFT + block_height));
        for (u32 line = 0; line < height; ++line) {
            const u32 y = line + origin_y;
            const auto& table = SWIZZLE_TABLE[y % GOB_SIZE_Y];

            const u32 block_y = y >> GOB_SIZE_Y_SHIFT;
            const u32 offset_y = (block_y >> block_height) * block_size +
                                 ((block_y & block_height_mask) << GOB_SIZE_SHIFT);

            for (u32 column = 0; column < width; ++column) {
                const u32 x = (column + origin_x) * BYTES_PER_PIXEL;
                const u32 offset_x = (x >> GOB_SIZE_X_SHIFT) << x_shift;

                const u32 base_swizzled_offset = offset_z + offset_y + offset_x;
                const u32 swizzled_offset = base_swizzled_offset + table[x % GOB_SIZE_X];

                const u32 unswizzled_offset =
                    slice * pitch * height + line * pitch + column * BYTES_PER_PIXEL;

                if (const auto offset = (TO_LINEAR ? unswizzled_offset : swizzled_offset);
                    offset >= input.size()) {
                    // TODO(Rodrigo): This is an out of bounds access that should never happen. To
                    // avoid crashing the emulator, break.
                    ASSERT_MSG(false, "offset {} exceeds input size {}!", offset, input.size());
                    break;
                }

                u8* const dst = &output[TO_LINEAR ? swizzled_offset : unswizzled_offset];
                const u8* const src = &input[TO_LINEAR ? unswizzled_offset : swizzled_offset];

                std::memcpy(dst, src, BYTES_PER_PIXEL);
            }
        }
    }
}

template <bool TO_LINEAR>
void Swizzle(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel, u32 width,
             u32 height, u32 depth, u32 block_height, u32 block_depth, u32 stride_alignment) {
    switch (bytes_per_pixel) {
#define BPP_CASE(x)                                                                                \
    case x:                                                                                        \
        return SwizzleImpl<TO_LINEAR, x>(output, input, width, height, depth, block_height,        \
                                         block_depth, stride_alignment);
        BPP_CASE(1)
        BPP_CASE(2)
        BPP_CASE(3)
        BPP_CASE(4)
        BPP_CASE(6)
        BPP_CASE(8)
        BPP_CASE(12)
        BPP_CASE(16)
#undef BPP_CASE
    default:
        UNREACHABLE_MSG("Invalid bytes_per_pixel={}", bytes_per_pixel);
    }
}

template <u32 BYTES_PER_PIXEL>
void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width,
                    u8* swizzled_data, const u8* unswizzled_data, u32 block_height_bit,
                    u32 offset_x, u32 offset_y) {
    const u32 block_height = 1U << block_height_bit;
    const u32 image_width_in_gobs =
        (swizzled_width * BYTES_PER_PIXEL + (GOB_SIZE_X - 1)) / GOB_SIZE_X;
    for (u32 line = 0; line < subrect_height; ++line) {
        const u32 dst_y = line + offset_y;
        const u32 gob_address_y =
            (dst_y / (GOB_SIZE_Y * block_height)) * GOB_SIZE * block_height * image_width_in_gobs +
            ((dst_y % (GOB_SIZE_Y * block_height)) / GOB_SIZE_Y) * GOB_SIZE;
        const auto& table = SWIZZLE_TABLE[dst_y % GOB_SIZE_Y];
        for (u32 x = 0; x < subrect_width; ++x) {
            const u32 dst_x = x + offset_x;
            const u32 gob_address =
                gob_address_y + (dst_x * BYTES_PER_PIXEL / GOB_SIZE_X) * GOB_SIZE * block_height;
            const u32 swizzled_offset = gob_address + table[(dst_x * BYTES_PER_PIXEL) % GOB_SIZE_X];
            const u32 unswizzled_offset = line * source_pitch + x * BYTES_PER_PIXEL;

            const u8* const source_line = unswizzled_data + unswizzled_offset;
            u8* const dest_addr = swizzled_data + swizzled_offset;
            std::memcpy(dest_addr, source_line, BYTES_PER_PIXEL);
        }
    }
}

template <u32 BYTES_PER_PIXEL>
void UnswizzleSubrect(u32 line_length_in, u32 line_count, u32 pitch, u32 width, u32 block_height,
                      u32 origin_x, u32 origin_y, u8* output, const u8* input) {
    const u32 stride = width * BYTES_PER_PIXEL;
    const u32 gobs_in_x = (stride + GOB_SIZE_X - 1) / GOB_SIZE_X;
    const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height);

    const u32 block_height_mask = (1U << block_height) - 1;
    const u32 x_shift = GOB_SIZE_SHIFT + block_height;

    for (u32 line = 0; line < line_count; ++line) {
        const u32 src_y = line + origin_y;
        const auto& table = SWIZZLE_TABLE[src_y % GOB_SIZE_Y];

        const u32 block_y = src_y >> GOB_SIZE_Y_SHIFT;
        const u32 src_offset_y = (block_y >> block_height) * block_size +
                                 ((block_y & block_height_mask) << GOB_SIZE_SHIFT);
        for (u32 column = 0; column < line_length_in; ++column) {
            const u32 src_x = (column + origin_x) * BYTES_PER_PIXEL;
            const u32 src_offset_x = (src_x >> GOB_SIZE_X_SHIFT) << x_shift;

            const u32 swizzled_offset = src_offset_y + src_offset_x + table[src_x % GOB_SIZE_X];
            const u32 unswizzled_offset = line * pitch + column * BYTES_PER_PIXEL;

            std::memcpy(output + unswizzled_offset, input + swizzled_offset, BYTES_PER_PIXEL);
        }
    }
}

template <u32 BYTES_PER_PIXEL>
void SwizzleSliceToVoxel(u32 line_length_in, u32 line_count, u32 pitch, u32 width, u32 height,
                         u32 block_height, u32 block_depth, u32 origin_x, u32 origin_y, u8* output,
                         const u8* input) {
    UNIMPLEMENTED_IF(origin_x > 0);
    UNIMPLEMENTED_IF(origin_y > 0);

    const u32 stride = width * BYTES_PER_PIXEL;
    const u32 gobs_in_x = (stride + GOB_SIZE_X - 1) / GOB_SIZE_X;
    const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height + block_depth);

    const u32 block_height_mask = (1U << block_height) - 1;
    const u32 x_shift = static_cast<u32>(GOB_SIZE_SHIFT) + block_height + block_depth;

    for (u32 line = 0; line < line_count; ++line) {
        const auto& table = SWIZZLE_TABLE[line % GOB_SIZE_Y];
        const u32 block_y = line / GOB_SIZE_Y;
        const u32 dst_offset_y =
            (block_y >> block_height) * block_size + (block_y & block_height_mask) * GOB_SIZE;
        for (u32 x = 0; x < line_length_in; ++x) {
            const u32 dst_offset =
                ((x / GOB_SIZE_X) << x_shift) + dst_offset_y + table[x % GOB_SIZE_X];
            const u32 src_offset = x * BYTES_PER_PIXEL + line * pitch;
            std::memcpy(output + dst_offset, input + src_offset, BYTES_PER_PIXEL);
        }
    }
}
} // Anonymous namespace

void UnswizzleTexture(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel,
                      u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth,
                      u32 stride_alignment) {
    Swizzle<false>(output, input, bytes_per_pixel, width, height, depth, block_height, block_depth,
                   stride_alignment);
}

void SwizzleTexture(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel, u32 width,
                    u32 height, u32 depth, u32 block_height, u32 block_depth,
                    u32 stride_alignment) {
    Swizzle<true>(output, input, bytes_per_pixel, width, height, depth, block_height, block_depth,
                  stride_alignment);
}

void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width,
                    u32 bytes_per_pixel, u8* swizzled_data, const u8* unswizzled_data,
                    u32 block_height_bit, u32 offset_x, u32 offset_y) {
    switch (bytes_per_pixel) {
#define BPP_CASE(x)                                                                                \
    case x:                                                                                        \
        return SwizzleSubrect<x>(subrect_width, subrect_height, source_pitch, swizzled_width,      \
                                 swizzled_data, unswizzled_data, block_height_bit, offset_x,       \
                                 offset_y);
        BPP_CASE(1)
        BPP_CASE(2)
        BPP_CASE(3)
        BPP_CASE(4)
        BPP_CASE(6)
        BPP_CASE(8)
        BPP_CASE(12)
        BPP_CASE(16)
#undef BPP_CASE
    default:
        UNREACHABLE_MSG("Invalid bytes_per_pixel={}", bytes_per_pixel);
    }
}

void UnswizzleSubrect(u32 line_length_in, u32 line_count, u32 pitch, u32 width, u32 bytes_per_pixel,
                      u32 block_height, u32 origin_x, u32 origin_y, u8* output, const u8* input) {
    switch (bytes_per_pixel) {
#define BPP_CASE(x)                                                                                \
    case x:                                                                                        \
        return UnswizzleSubrect<x>(line_length_in, line_count, pitch, width, block_height,         \
                                   origin_x, origin_y, output, input);
        BPP_CASE(1)
        BPP_CASE(2)
        BPP_CASE(3)
        BPP_CASE(4)
        BPP_CASE(6)
        BPP_CASE(8)
        BPP_CASE(12)
        BPP_CASE(16)
#undef BPP_CASE
    default:
        UNREACHABLE_MSG("Invalid bytes_per_pixel={}", bytes_per_pixel);
    }
}

void SwizzleSliceToVoxel(u32 line_length_in, u32 line_count, u32 pitch, u32 width, u32 height,
                         u32 bytes_per_pixel, u32 block_height, u32 block_depth, u32 origin_x,
                         u32 origin_y, u8* output, const u8* input) {
    switch (bytes_per_pixel) {
#define BPP_CASE(x)                                                                                \
    case x:                                                                                        \
        return SwizzleSliceToVoxel<x>(line_length_in, line_count, pitch, width, height,            \
                                      block_height, block_depth, origin_x, origin_y, output,       \
                                      input);
        BPP_CASE(1)
        BPP_CASE(2)
        BPP_CASE(3)
        BPP_CASE(4)
        BPP_CASE(6)
        BPP_CASE(8)
        BPP_CASE(12)
        BPP_CASE(16)
#undef BPP_CASE
    default:
        UNREACHABLE_MSG("Invalid bytes_per_pixel={}", bytes_per_pixel);
    }
}

void SwizzleKepler(const u32 width, const u32 height, const u32 dst_x, const u32 dst_y,
                   const u32 block_height_bit, const std::size_t copy_size, const u8* source_data,
                   u8* swizzle_data) {
    const u32 block_height = 1U << block_height_bit;
    const u32 image_width_in_gobs{(width + GOB_SIZE_X - 1) / GOB_SIZE_X};
    std::size_t count = 0;
    for (std::size_t y = dst_y; y < height && count < copy_size; ++y) {
        const std::size_t gob_address_y =
            (y / (GOB_SIZE_Y * block_height)) * GOB_SIZE * block_height * image_width_in_gobs +
            ((y % (GOB_SIZE_Y * block_height)) / GOB_SIZE_Y) * GOB_SIZE;
        const auto& table = SWIZZLE_TABLE[y % GOB_SIZE_Y];
        for (std::size_t x = dst_x; x < width && count < copy_size; ++x) {
            const std::size_t gob_address =
                gob_address_y + (x / GOB_SIZE_X) * GOB_SIZE * block_height;
            const std::size_t swizzled_offset = gob_address + table[x % GOB_SIZE_X];
            const u8* source_line = source_data + count;
            u8* dest_addr = swizzle_data + swizzled_offset;
            count++;

            *dest_addr = *source_line;
        }
    }
}

std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth,
                          u32 block_height, u32 block_depth) {
    if (tiled) {
        const u32 aligned_width = Common::AlignUpLog2(width * bytes_per_pixel, GOB_SIZE_X_SHIFT);
        const u32 aligned_height = Common::AlignUpLog2(height, GOB_SIZE_Y_SHIFT + block_height);
        const u32 aligned_depth = Common::AlignUpLog2(depth, GOB_SIZE_Z_SHIFT + block_depth);
        return aligned_width * aligned_height * aligned_depth;
    } else {
        return width * height * depth * bytes_per_pixel;
    }
}

u64 GetGOBOffset(u32 width, u32 height, u32 dst_x, u32 dst_y, u32 block_height,
                 u32 bytes_per_pixel) {
    auto div_ceil = [](const u32 x, const u32 y) { return ((x + y - 1) / y); };
    const u32 gobs_in_block = 1 << block_height;
    const u32 y_blocks = GOB_SIZE_Y << block_height;
    const u32 x_per_gob = GOB_SIZE_X / bytes_per_pixel;
    const u32 x_blocks = div_ceil(width, x_per_gob);
    const u32 block_size = GOB_SIZE * gobs_in_block;
    const u32 stride = block_size * x_blocks;
    const u32 base = (dst_y / y_blocks) * stride + (dst_x / x_per_gob) * block_size;
    const u32 relative_y = dst_y % y_blocks;
    return base + (relative_y / GOB_SIZE_Y) * GOB_SIZE;
}

} // namespace Tegra::Texture