summaryrefslogtreecommitdiffstats
path: root/src/video_core/swrasterizer/clipper.cpp
blob: a52129eb7630ab26445e5df85f2a752967acd9d5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <array>
#include <cstddef>
#include <boost/container/static_vector.hpp>
#include <boost/container/vector.hpp>
#include "common/bit_field.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/vector_math.h"
#include "video_core/pica_state.h"
#include "video_core/pica_types.h"
#include "video_core/shader/shader.h"
#include "video_core/swrasterizer/clipper.h"
#include "video_core/swrasterizer/rasterizer.h"

using Pica::Rasterizer::Vertex;

namespace Pica {

namespace Clipper {

struct ClippingEdge {
public:
    ClippingEdge(Math::Vec4<float24> coeffs, Math::Vec4<float24> bias = Math::Vec4<float24>(
                                                 float24::FromFloat32(0), float24::FromFloat32(0),
                                                 float24::FromFloat32(0), float24::FromFloat32(0)))
        : coeffs(coeffs), bias(bias) {}

    bool IsInside(const Vertex& vertex) const {
        return Math::Dot(vertex.pos + bias, coeffs) >= float24::FromFloat32(0);
    }

    bool IsOutSide(const Vertex& vertex) const {
        return !IsInside(vertex);
    }

    Vertex GetIntersection(const Vertex& v0, const Vertex& v1) const {
        float24 dp = Math::Dot(v0.pos + bias, coeffs);
        float24 dp_prev = Math::Dot(v1.pos + bias, coeffs);
        float24 factor = dp_prev / (dp_prev - dp);

        return Vertex::Lerp(factor, v0, v1);
    }

private:
    float24 pos;
    Math::Vec4<float24> coeffs;
    Math::Vec4<float24> bias;
};

static void InitScreenCoordinates(Vertex& vtx) {
    struct {
        float24 halfsize_x;
        float24 offset_x;
        float24 halfsize_y;
        float24 offset_y;
        float24 zscale;
        float24 offset_z;
    } viewport;

    const auto& regs = g_state.regs;
    viewport.halfsize_x = float24::FromRaw(regs.rasterizer.viewport_size_x);
    viewport.halfsize_y = float24::FromRaw(regs.rasterizer.viewport_size_y);
    viewport.offset_x = float24::FromFloat32(static_cast<float>(regs.rasterizer.viewport_corner.x));
    viewport.offset_y = float24::FromFloat32(static_cast<float>(regs.rasterizer.viewport_corner.y));

    float24 inv_w = float24::FromFloat32(1.f) / vtx.pos.w;
    vtx.pos.w = inv_w;
    vtx.quat *= inv_w;
    vtx.color *= inv_w;
    vtx.tc0 *= inv_w;
    vtx.tc1 *= inv_w;
    vtx.tc0_w *= inv_w;
    vtx.view *= inv_w;
    vtx.tc2 *= inv_w;

    vtx.screenpos[0] =
        (vtx.pos.x * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x;
    vtx.screenpos[1] =
        (vtx.pos.y * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y;
    vtx.screenpos[2] = vtx.pos.z * inv_w;
}

void ProcessTriangle(const OutputVertex& v0, const OutputVertex& v1, const OutputVertex& v2) {
    using boost::container::static_vector;

    // Clipping a planar n-gon against a plane will remove at least 1 vertex and introduces 2 at
    // the new edge (or less in degenerate cases). As such, we can say that each clipping plane
    // introduces at most 1 new vertex to the polygon. Since we start with a triangle and have a
    // fixed 6 clipping planes, the maximum number of vertices of the clipped polygon is 3 + 6 = 9.
    static const size_t MAX_VERTICES = 9;
    static_vector<Vertex, MAX_VERTICES> buffer_a = {v0, v1, v2};
    static_vector<Vertex, MAX_VERTICES> buffer_b;

    auto FlipQuaternionIfOpposite = [](auto& a, const auto& b) {
        if (Math::Dot(a, b) < float24::Zero())
            a = -a;
    };

    // Flip the quaternions if they are opposite to prevent interpolating them over the wrong
    // direction.
    FlipQuaternionIfOpposite(buffer_a[1].quat, buffer_a[0].quat);
    FlipQuaternionIfOpposite(buffer_a[2].quat, buffer_a[0].quat);

    auto* output_list = &buffer_a;
    auto* input_list = &buffer_b;

    // NOTE: We clip against a w=epsilon plane to guarantee that the output has a positive w value.
    // TODO: Not sure if this is a valid approach. Also should probably instead use the smallest
    //       epsilon possible within float24 accuracy.
    static const float24 EPSILON = float24::FromFloat32(0.00001f);
    static const float24 f0 = float24::FromFloat32(0.0);
    static const float24 f1 = float24::FromFloat32(1.0);
    static const std::array<ClippingEdge, 7> clipping_edges = {{
        {Math::MakeVec(-f1, f0, f0, f1)},                                          // x = +w
        {Math::MakeVec(f1, f0, f0, f1)},                                           // x = -w
        {Math::MakeVec(f0, -f1, f0, f1)},                                          // y = +w
        {Math::MakeVec(f0, f1, f0, f1)},                                           // y = -w
        {Math::MakeVec(f0, f0, -f1, f0)},                                          // z =  0
        {Math::MakeVec(f0, f0, f1, f1)},                                           // z = -w
        {Math::MakeVec(f0, f0, f0, f1), Math::Vec4<float24>(f0, f0, f0, EPSILON)}, // w = EPSILON
    }};

    // Simple implementation of the Sutherland-Hodgman clipping algorithm.
    // TODO: Make this less inefficient (currently lots of useless buffering overhead happens here)
    auto Clip = [&](const ClippingEdge& edge) {
        std::swap(input_list, output_list);
        output_list->clear();

        const Vertex* reference_vertex = &input_list->back();

        for (const auto& vertex : *input_list) {
            // NOTE: This algorithm changes vertex order in some cases!
            if (edge.IsInside(vertex)) {
                if (edge.IsOutSide(*reference_vertex)) {
                    output_list->push_back(edge.GetIntersection(vertex, *reference_vertex));
                }

                output_list->push_back(vertex);
            } else if (edge.IsInside(*reference_vertex)) {
                output_list->push_back(edge.GetIntersection(vertex, *reference_vertex));
            }
            reference_vertex = &vertex;
        }
    };

    for (auto edge : clipping_edges) {
        Clip(edge);

        // Need to have at least a full triangle to continue...
        if (output_list->size() < 3)
            return;
    }

    if (g_state.regs.rasterizer.clip_enable) {
        ClippingEdge custom_edge{g_state.regs.rasterizer.GetClipCoef()};
        Clip(custom_edge);

        if (output_list->size() < 3)
            return;
    }

    InitScreenCoordinates((*output_list)[0]);
    InitScreenCoordinates((*output_list)[1]);

    for (size_t i = 0; i < output_list->size() - 2; i++) {
        Vertex& vtx0 = (*output_list)[0];
        Vertex& vtx1 = (*output_list)[i + 1];
        Vertex& vtx2 = (*output_list)[i + 2];

        InitScreenCoordinates(vtx2);

        LOG_TRACE(Render_Software,
                  "Triangle %lu/%lu at position (%.3f, %.3f, %.3f, %.3f), "
                  "(%.3f, %.3f, %.3f, %.3f), (%.3f, %.3f, %.3f, %.3f) and "
                  "screen position (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f), (%.2f, %.2f, %.2f)",
                  i + 1, output_list->size() - 2, vtx0.pos.x.ToFloat32(), vtx0.pos.y.ToFloat32(),
                  vtx0.pos.z.ToFloat32(), vtx0.pos.w.ToFloat32(), vtx1.pos.x.ToFloat32(),
                  vtx1.pos.y.ToFloat32(), vtx1.pos.z.ToFloat32(), vtx1.pos.w.ToFloat32(),
                  vtx2.pos.x.ToFloat32(), vtx2.pos.y.ToFloat32(), vtx2.pos.z.ToFloat32(),
                  vtx2.pos.w.ToFloat32(), vtx0.screenpos.x.ToFloat32(),
                  vtx0.screenpos.y.ToFloat32(), vtx0.screenpos.z.ToFloat32(),
                  vtx1.screenpos.x.ToFloat32(), vtx1.screenpos.y.ToFloat32(),
                  vtx1.screenpos.z.ToFloat32(), vtx2.screenpos.x.ToFloat32(),
                  vtx2.screenpos.y.ToFloat32(), vtx2.screenpos.z.ToFloat32());

        Rasterizer::ProcessTriangle(vtx0, vtx1, vtx2);
    }
}

} // namespace

} // namespace