summaryrefslogtreecommitdiffstats
path: root/src/video_core/shader/async_shaders.cpp
blob: 02adcf9c7971dc3729536bc6c3aeb9f0ff15aec3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <condition_variable>
#include <mutex>
#include <thread>
#include <vector>
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_base.h"
#include "video_core/renderer_opengl/gl_shader_cache.h"
#include "video_core/shader/async_shaders.h"

namespace VideoCommon::Shader {

AsyncShaders::AsyncShaders(Core::Frontend::EmuWindow& emu_window_) : emu_window(emu_window_) {}

AsyncShaders::~AsyncShaders() {
    KillWorkers();
}

void AsyncShaders::AllocateWorkers() {
    // Use at least one thread
    u32 num_workers = 1;

    // Deduce how many more threads we can use
    const u32 thread_count = std::thread::hardware_concurrency();
    if (thread_count >= 8) {
        // Increase async workers by 1 for every 2 threads >= 8
        num_workers += 1 + (thread_count - 8) / 2;
    }

    // If we already have workers queued, ignore
    if (num_workers == worker_threads.size()) {
        return;
    }

    // If workers already exist, clear them
    if (!worker_threads.empty()) {
        FreeWorkers();
    }

    // Create workers
    for (std::size_t i = 0; i < num_workers; i++) {
        context_list.push_back(emu_window.CreateSharedContext());
        worker_threads.emplace_back(&AsyncShaders::ShaderCompilerThread, this,
                                    context_list[i].get());
    }
}

void AsyncShaders::FreeWorkers() {
    // Mark all threads to quit
    is_thread_exiting.store(true);
    cv.notify_all();
    for (auto& thread : worker_threads) {
        thread.join();
    }
    // Clear our shared contexts
    context_list.clear();

    // Clear our worker threads
    worker_threads.clear();
}

void AsyncShaders::KillWorkers() {
    is_thread_exiting.store(true);
    cv.notify_all();
    for (auto& thread : worker_threads) {
        thread.detach();
    }
    // Clear our shared contexts
    context_list.clear();

    // Clear our worker threads
    worker_threads.clear();
}

bool AsyncShaders::HasWorkQueued() const {
    return !pending_queue.empty();
}

bool AsyncShaders::HasCompletedWork() const {
    std::shared_lock lock{completed_mutex};
    return !finished_work.empty();
}

bool AsyncShaders::IsShaderAsync(const Tegra::GPU& gpu) const {
    const auto& regs = gpu.Maxwell3D().regs;

    // If something is using depth, we can assume that games are not rendering anything which will
    // be used one time.
    if (regs.zeta_enable) {
        return true;
    }

    // If games are using a small index count, we can assume these are full screen quads. Usually
    // these shaders are only used once for building textures so we can assume they can't be built
    // async
    if (regs.index_array.count <= 6 || regs.vertex_buffer.count <= 6) {
        return false;
    }

    return true;
}

std::vector<AsyncShaders::Result> AsyncShaders::GetCompletedWork() {
    std::vector<Result> results;
    {
        std::unique_lock lock{completed_mutex};
        results = std::move(finished_work);
        finished_work.clear();
    }
    return results;
}

void AsyncShaders::QueueOpenGLShader(const OpenGL::Device& device,
                                     Tegra::Engines::ShaderType shader_type, u64 uid,
                                     std::vector<u64> code, std::vector<u64> code_b,
                                     u32 main_offset, CompilerSettings compiler_settings,
                                     const Registry& registry, VAddr cpu_addr) {
    std::unique_lock lock(queue_mutex);
    pending_queue.push({
        .backend = device.UseAssemblyShaders() ? Backend::GLASM : Backend::OpenGL,
        .device = &device,
        .shader_type = shader_type,
        .uid = uid,
        .code = std::move(code),
        .code_b = std::move(code_b),
        .main_offset = main_offset,
        .compiler_settings = compiler_settings,
        .registry = registry,
        .cpu_address = cpu_addr,
        .pp_cache = nullptr,
        .vk_device = nullptr,
        .scheduler = nullptr,
        .descriptor_pool = nullptr,
        .update_descriptor_queue = nullptr,
        .bindings{},
        .program{},
        .key{},
        .num_color_buffers = 0,
    });
    cv.notify_one();
}

void AsyncShaders::QueueVulkanShader(Vulkan::VKPipelineCache* pp_cache,
                                     const Vulkan::Device& device, Vulkan::VKScheduler& scheduler,
                                     Vulkan::VKDescriptorPool& descriptor_pool,
                                     Vulkan::VKUpdateDescriptorQueue& update_descriptor_queue,
                                     std::vector<VkDescriptorSetLayoutBinding> bindings,
                                     Vulkan::SPIRVProgram program,
                                     Vulkan::GraphicsPipelineCacheKey key, u32 num_color_buffers) {
    std::unique_lock lock(queue_mutex);
    pending_queue.push({
        .backend = Backend::Vulkan,
        .device = nullptr,
        .shader_type{},
        .uid = 0,
        .code{},
        .code_b{},
        .main_offset = 0,
        .compiler_settings{},
        .registry{},
        .cpu_address = 0,
        .pp_cache = pp_cache,
        .vk_device = &device,
        .scheduler = &scheduler,
        .descriptor_pool = &descriptor_pool,
        .update_descriptor_queue = &update_descriptor_queue,
        .bindings = std::move(bindings),
        .program = std::move(program),
        .key = key,
        .num_color_buffers = num_color_buffers,
    });
    cv.notify_one();
}

void AsyncShaders::ShaderCompilerThread(Core::Frontend::GraphicsContext* context) {
    while (!is_thread_exiting.load(std::memory_order_relaxed)) {
        std::unique_lock lock{queue_mutex};
        cv.wait(lock, [this] { return HasWorkQueued() || is_thread_exiting; });
        if (is_thread_exiting) {
            return;
        }

        // Partial lock to allow all threads to read at the same time
        if (!HasWorkQueued()) {
            continue;
        }
        // Another thread beat us, just unlock and wait for the next load
        if (pending_queue.empty()) {
            continue;
        }

        // Pull work from queue
        WorkerParams work = std::move(pending_queue.front());
        pending_queue.pop();
        lock.unlock();

        if (work.backend == Backend::OpenGL || work.backend == Backend::GLASM) {
            const ShaderIR ir(work.code, work.main_offset, work.compiler_settings, *work.registry);
            const auto scope = context->Acquire();
            auto program =
                OpenGL::BuildShader(*work.device, work.shader_type, work.uid, ir, *work.registry);
            Result result{};
            result.backend = work.backend;
            result.cpu_address = work.cpu_address;
            result.uid = work.uid;
            result.code = std::move(work.code);
            result.code_b = std::move(work.code_b);
            result.shader_type = work.shader_type;

            if (work.backend == Backend::OpenGL) {
                result.program.opengl = std::move(program->source_program);
            } else if (work.backend == Backend::GLASM) {
                result.program.glasm = std::move(program->assembly_program);
            }

            {
                std::unique_lock complete_lock(completed_mutex);
                finished_work.push_back(std::move(result));
            }
        } else if (work.backend == Backend::Vulkan) {
            auto pipeline = std::make_unique<Vulkan::VKGraphicsPipeline>(
                *work.vk_device, *work.scheduler, *work.descriptor_pool,
                *work.update_descriptor_queue, work.key, work.bindings, work.program,
                work.num_color_buffers);

            work.pp_cache->EmplacePipeline(std::move(pipeline));
        }
    }
}

} // namespace VideoCommon::Shader