summaryrefslogtreecommitdiffstats
path: root/src/video_core/renderer_vulkan/vk_stream_buffer.cpp
blob: d48d3b44ca440cfea55be3c3559dc1273acd3976 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <optional>
#include <tuple>
#include <vector>

#include "common/alignment.h"
#include "common/assert.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_stream_buffer.h"

namespace Vulkan {

namespace {

constexpr u64 WATCHES_INITIAL_RESERVE = 0x4000;
constexpr u64 WATCHES_RESERVE_CHUNK = 0x1000;

constexpr u64 STREAM_BUFFER_SIZE = 256 * 1024 * 1024;

std::optional<u32> FindMemoryType(const VKDevice& device, u32 filter,
                                  vk::MemoryPropertyFlags wanted) {
    const auto properties = device.GetPhysical().getMemoryProperties(device.GetDispatchLoader());
    for (u32 i = 0; i < properties.memoryTypeCount; i++) {
        if (!(filter & (1 << i))) {
            continue;
        }
        if ((properties.memoryTypes[i].propertyFlags & wanted) == wanted) {
            return i;
        }
    }
    return {};
}

} // Anonymous namespace

VKStreamBuffer::VKStreamBuffer(const VKDevice& device, VKScheduler& scheduler,
                               vk::BufferUsageFlags usage)
    : device{device}, scheduler{scheduler} {
    CreateBuffers(usage);
    ReserveWatches(current_watches, WATCHES_INITIAL_RESERVE);
    ReserveWatches(previous_watches, WATCHES_INITIAL_RESERVE);
}

VKStreamBuffer::~VKStreamBuffer() = default;

std::tuple<u8*, u64, bool> VKStreamBuffer::Map(u64 size, u64 alignment) {
    ASSERT(size <= STREAM_BUFFER_SIZE);
    mapped_size = size;

    if (alignment > 0) {
        offset = Common::AlignUp(offset, alignment);
    }

    WaitPendingOperations(offset);

    bool invalidated = false;
    if (offset + size > STREAM_BUFFER_SIZE) {
        // The buffer would overflow, save the amount of used watches and reset the state.
        invalidation_mark = current_watch_cursor;
        current_watch_cursor = 0;
        offset = 0;

        // Swap watches and reset waiting cursors.
        std::swap(previous_watches, current_watches);
        wait_cursor = 0;
        wait_bound = 0;

        // Ensure that we don't wait for uncommitted fences.
        scheduler.Flush();

        invalidated = true;
    }

    const auto dev = device.GetLogical();
    const auto& dld = device.GetDispatchLoader();
    const auto pointer = reinterpret_cast<u8*>(dev.mapMemory(*memory, offset, size, {}, dld));
    return {pointer, offset, invalidated};
}

void VKStreamBuffer::Unmap(u64 size) {
    ASSERT_MSG(size <= mapped_size, "Reserved size is too small");

    const auto dev = device.GetLogical();
    dev.unmapMemory(*memory, device.GetDispatchLoader());

    offset += size;

    if (current_watch_cursor + 1 >= current_watches.size()) {
        // Ensure that there are enough watches.
        ReserveWatches(current_watches, WATCHES_RESERVE_CHUNK);
    }
    auto& watch = current_watches[current_watch_cursor++];
    watch.upper_bound = offset;
    watch.fence.Watch(scheduler.GetFence());
}

void VKStreamBuffer::CreateBuffers(vk::BufferUsageFlags usage) {
    const vk::BufferCreateInfo buffer_ci({}, STREAM_BUFFER_SIZE, usage, vk::SharingMode::eExclusive,
                                         0, nullptr);
    const auto dev = device.GetLogical();
    const auto& dld = device.GetDispatchLoader();
    buffer = dev.createBufferUnique(buffer_ci, nullptr, dld);

    const auto requirements = dev.getBufferMemoryRequirements(*buffer, dld);
    // Prefer device local host visible allocations (this should hit AMD's pinned memory).
    auto type = FindMemoryType(device, requirements.memoryTypeBits,
                               vk::MemoryPropertyFlagBits::eHostVisible |
                                   vk::MemoryPropertyFlagBits::eHostCoherent |
                                   vk::MemoryPropertyFlagBits::eDeviceLocal);
    if (!type) {
        // Otherwise search for a host visible allocation.
        type = FindMemoryType(device, requirements.memoryTypeBits,
                              vk::MemoryPropertyFlagBits::eHostVisible |
                                  vk::MemoryPropertyFlagBits::eHostCoherent);
        ASSERT_MSG(type, "No host visible and coherent memory type found");
    }
    const vk::MemoryAllocateInfo alloc_ci(requirements.size, *type);
    memory = dev.allocateMemoryUnique(alloc_ci, nullptr, dld);

    dev.bindBufferMemory(*buffer, *memory, 0, dld);
}

void VKStreamBuffer::ReserveWatches(std::vector<Watch>& watches, std::size_t grow_size) {
    watches.resize(watches.size() + grow_size);
}

void VKStreamBuffer::WaitPendingOperations(u64 requested_upper_bound) {
    if (!invalidation_mark) {
        return;
    }
    while (requested_upper_bound < wait_bound && wait_cursor < *invalidation_mark) {
        auto& watch = previous_watches[wait_cursor];
        wait_bound = watch.upper_bound;
        watch.fence.Wait();
        ++wait_cursor;
    }
}

} // namespace Vulkan