summaryrefslogtreecommitdiffstats
path: root/src/video_core/renderer_vulkan/vk_stream_buffer.cpp
blob: a09fe084ee5fbe9cd9887627aecb80d5c6eafb38 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <limits>
#include <optional>
#include <tuple>
#include <vector>

#include "common/alignment.h"
#include "common/assert.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_stream_buffer.h"
#include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"

namespace Vulkan {

namespace {

constexpr VkBufferUsageFlags BUFFER_USAGE =
    VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
    VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;

constexpr u64 WATCHES_INITIAL_RESERVE = 0x4000;
constexpr u64 WATCHES_RESERVE_CHUNK = 0x1000;

constexpr u64 PREFERRED_STREAM_BUFFER_SIZE = 256 * 1024 * 1024;

/// Find a memory type with the passed requirements
std::optional<u32> FindMemoryType(const VkPhysicalDeviceMemoryProperties& properties,
                                  VkMemoryPropertyFlags wanted,
                                  u32 filter = std::numeric_limits<u32>::max()) {
    for (u32 i = 0; i < properties.memoryTypeCount; ++i) {
        const auto flags = properties.memoryTypes[i].propertyFlags;
        if ((flags & wanted) == wanted && (filter & (1U << i)) != 0) {
            return i;
        }
    }
    return std::nullopt;
}

/// Get the preferred host visible memory type.
u32 GetMemoryType(const VkPhysicalDeviceMemoryProperties& properties,
                  u32 filter = std::numeric_limits<u32>::max()) {
    // Prefer device local host visible allocations. Both AMD and Nvidia now provide one.
    // Otherwise search for a host visible allocation.
    static constexpr auto HOST_MEMORY =
        VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
    static constexpr auto DYNAMIC_MEMORY = HOST_MEMORY | VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;

    std::optional preferred_type = FindMemoryType(properties, DYNAMIC_MEMORY);
    if (!preferred_type) {
        preferred_type = FindMemoryType(properties, HOST_MEMORY);
        ASSERT_MSG(preferred_type, "No host visible and coherent memory type found");
    }
    return preferred_type.value_or(0);
}

} // Anonymous namespace

VKStreamBuffer::VKStreamBuffer(const Device& device_, VKScheduler& scheduler_)
    : device{device_}, scheduler{scheduler_} {
    CreateBuffers();
    ReserveWatches(current_watches, WATCHES_INITIAL_RESERVE);
    ReserveWatches(previous_watches, WATCHES_INITIAL_RESERVE);
}

VKStreamBuffer::~VKStreamBuffer() = default;

std::pair<u8*, u64> VKStreamBuffer::Map(u64 size, u64 alignment) {
    ASSERT(size <= stream_buffer_size);
    mapped_size = size;

    if (alignment > 0) {
        offset = Common::AlignUp(offset, alignment);
    }

    WaitPendingOperations(offset);

    if (offset + size > stream_buffer_size) {
        // The buffer would overflow, save the amount of used watches and reset the state.
        invalidation_mark = current_watch_cursor;
        current_watch_cursor = 0;
        offset = 0;

        // Swap watches and reset waiting cursors.
        std::swap(previous_watches, current_watches);
        wait_cursor = 0;
        wait_bound = 0;

        // Ensure that we don't wait for uncommitted fences.
        scheduler.Flush();
    }

    return std::make_pair(memory.Map(offset, size), offset);
}

void VKStreamBuffer::Unmap(u64 size) {
    ASSERT_MSG(size <= mapped_size, "Reserved size is too small");

    memory.Unmap();

    offset += size;

    if (current_watch_cursor + 1 >= current_watches.size()) {
        // Ensure that there are enough watches.
        ReserveWatches(current_watches, WATCHES_RESERVE_CHUNK);
    }
    auto& watch = current_watches[current_watch_cursor++];
    watch.upper_bound = offset;
    watch.tick = scheduler.CurrentTick();
}

void VKStreamBuffer::CreateBuffers() {
    const auto memory_properties = device.GetPhysical().GetMemoryProperties();
    const u32 preferred_type = GetMemoryType(memory_properties);
    const u32 preferred_heap = memory_properties.memoryTypes[preferred_type].heapIndex;

    // Substract from the preferred heap size some bytes to avoid getting out of memory.
    const VkDeviceSize heap_size = memory_properties.memoryHeaps[preferred_heap].size;
    // As per DXVK's example, using `heap_size / 2`
    const VkDeviceSize allocable_size = heap_size / 2;
    buffer = device.GetLogical().CreateBuffer({
        .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
        .pNext = nullptr,
        .flags = 0,
        .size = std::min(PREFERRED_STREAM_BUFFER_SIZE, allocable_size),
        .usage = BUFFER_USAGE,
        .sharingMode = VK_SHARING_MODE_EXCLUSIVE,
        .queueFamilyIndexCount = 0,
        .pQueueFamilyIndices = nullptr,
    });

    const auto requirements = device.GetLogical().GetBufferMemoryRequirements(*buffer);
    const u32 required_flags = requirements.memoryTypeBits;
    stream_buffer_size = static_cast<u64>(requirements.size);

    memory = device.GetLogical().AllocateMemory({
        .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
        .pNext = nullptr,
        .allocationSize = requirements.size,
        .memoryTypeIndex = GetMemoryType(memory_properties, required_flags),
    });
    buffer.BindMemory(*memory, 0);
}

void VKStreamBuffer::ReserveWatches(std::vector<Watch>& watches, std::size_t grow_size) {
    watches.resize(watches.size() + grow_size);
}

void VKStreamBuffer::WaitPendingOperations(u64 requested_upper_bound) {
    if (!invalidation_mark) {
        return;
    }
    while (requested_upper_bound < wait_bound && wait_cursor < *invalidation_mark) {
        auto& watch = previous_watches[wait_cursor];
        wait_bound = watch.upper_bound;
        scheduler.Wait(watch.tick);
        ++wait_cursor;
    }
}

} // namespace Vulkan