summaryrefslogtreecommitdiffstats
path: root/src/video_core/renderer_vulkan/vk_rasterizer.cpp
blob: 1995335173919539bf2d0a7302627778cbf56c3d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <array>
#include <memory>
#include <mutex>
#include <vector>

#include <boost/container/static_vector.hpp>
#include <boost/functional/hash.hpp>

#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "core/core.h"
#include "core/memory.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/fixed_pipeline_state.h"
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/renderer_vulkan.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_compute_pass.h"
#include "video_core/renderer_vulkan/vk_compute_pipeline.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_graphics_pipeline.h"
#include "video_core/renderer_vulkan/vk_pipeline_cache.h"
#include "video_core/renderer_vulkan/vk_rasterizer.h"
#include "video_core/renderer_vulkan/vk_renderpass_cache.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
#include "video_core/renderer_vulkan/vk_sampler_cache.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_state_tracker.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h"

namespace Vulkan {

using Maxwell = Tegra::Engines::Maxwell3D::Regs;

MICROPROFILE_DEFINE(Vulkan_WaitForWorker, "Vulkan", "Wait for worker", MP_RGB(255, 192, 192));
MICROPROFILE_DEFINE(Vulkan_Drawing, "Vulkan", "Record drawing", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Compute, "Vulkan", "Record compute", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Clearing, "Vulkan", "Record clearing", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Geometry, "Vulkan", "Setup geometry", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_ConstBuffers, "Vulkan", "Setup constant buffers", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_GlobalBuffers, "Vulkan", "Setup global buffers", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_RenderTargets, "Vulkan", "Setup render targets", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Textures, "Vulkan", "Setup textures", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Images, "Vulkan", "Setup images", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_PipelineCache, "Vulkan", "Pipeline cache", MP_RGB(192, 128, 128));

namespace {

constexpr auto ComputeShaderIndex = static_cast<std::size_t>(Tegra::Engines::ShaderType::Compute);

vk::Viewport GetViewportState(const VKDevice& device, const Maxwell& regs, std::size_t index) {
    const auto& viewport = regs.viewport_transform[index];
    const float x = viewport.translate_x - viewport.scale_x;
    const float y = viewport.translate_y - viewport.scale_y;
    const float width = viewport.scale_x * 2.0f;
    const float height = viewport.scale_y * 2.0f;

    const float reduce_z = regs.depth_mode == Maxwell::DepthMode::MinusOneToOne;
    float near = viewport.translate_z - viewport.scale_z * reduce_z;
    float far = viewport.translate_z + viewport.scale_z;
    if (!device.IsExtDepthRangeUnrestrictedSupported()) {
        near = std::clamp(near, 0.0f, 1.0f);
        far = std::clamp(far, 0.0f, 1.0f);
    }

    return vk::Viewport(x, y, width != 0 ? width : 1.0f, height != 0 ? height : 1.0f, near, far);
}

constexpr vk::Rect2D GetScissorState(const Maxwell& regs, std::size_t index) {
    const auto& scissor = regs.scissor_test[index];
    if (!scissor.enable) {
        return {{0, 0}, {INT32_MAX, INT32_MAX}};
    }
    const u32 width = scissor.max_x - scissor.min_x;
    const u32 height = scissor.max_y - scissor.min_y;
    return {{static_cast<s32>(scissor.min_x), static_cast<s32>(scissor.min_y)}, {width, height}};
}

std::array<GPUVAddr, Maxwell::MaxShaderProgram> GetShaderAddresses(
    const std::array<Shader, Maxwell::MaxShaderProgram>& shaders) {
    std::array<GPUVAddr, Maxwell::MaxShaderProgram> addresses;
    for (std::size_t i = 0; i < std::size(addresses); ++i) {
        addresses[i] = shaders[i] ? shaders[i]->GetGpuAddr() : 0;
    }
    return addresses;
}

void TransitionImages(const std::vector<ImageView>& views, vk::PipelineStageFlags pipeline_stage,
                      vk::AccessFlags access) {
    for (auto& [view, layout] : views) {
        view->Transition(*layout, pipeline_stage, access);
    }
}

template <typename Engine, typename Entry>
Tegra::Texture::FullTextureInfo GetTextureInfo(const Engine& engine, const Entry& entry,
                                               std::size_t stage, std::size_t index = 0) {
    const auto stage_type = static_cast<Tegra::Engines::ShaderType>(stage);
    if (entry.IsBindless()) {
        const Tegra::Texture::TextureHandle tex_handle =
            engine.AccessConstBuffer32(stage_type, entry.GetBuffer(), entry.GetOffset());
        return engine.GetTextureInfo(tex_handle);
    }
    const auto& gpu_profile = engine.AccessGuestDriverProfile();
    const u32 entry_offset = static_cast<u32>(index * gpu_profile.GetTextureHandlerSize());
    const u32 offset = entry.GetOffset() + entry_offset;
    if constexpr (std::is_same_v<Engine, Tegra::Engines::Maxwell3D>) {
        return engine.GetStageTexture(stage_type, offset);
    } else {
        return engine.GetTexture(offset);
    }
}

} // Anonymous namespace

class BufferBindings final {
public:
    void AddVertexBinding(const vk::Buffer* buffer, vk::DeviceSize offset) {
        vertex.buffer_ptrs[vertex.num_buffers] = buffer;
        vertex.offsets[vertex.num_buffers] = offset;
        ++vertex.num_buffers;
    }

    void SetIndexBinding(const vk::Buffer* buffer, vk::DeviceSize offset, vk::IndexType type) {
        index.buffer = buffer;
        index.offset = offset;
        index.type = type;
    }

    void Bind(VKScheduler& scheduler) const {
        // Use this large switch case to avoid dispatching more memory in the record lambda than
        // what we need. It looks horrible, but it's the best we can do on standard C++.
        switch (vertex.num_buffers) {
        case 0:
            return BindStatic<0>(scheduler);
        case 1:
            return BindStatic<1>(scheduler);
        case 2:
            return BindStatic<2>(scheduler);
        case 3:
            return BindStatic<3>(scheduler);
        case 4:
            return BindStatic<4>(scheduler);
        case 5:
            return BindStatic<5>(scheduler);
        case 6:
            return BindStatic<6>(scheduler);
        case 7:
            return BindStatic<7>(scheduler);
        case 8:
            return BindStatic<8>(scheduler);
        case 9:
            return BindStatic<9>(scheduler);
        case 10:
            return BindStatic<10>(scheduler);
        case 11:
            return BindStatic<11>(scheduler);
        case 12:
            return BindStatic<12>(scheduler);
        case 13:
            return BindStatic<13>(scheduler);
        case 14:
            return BindStatic<14>(scheduler);
        case 15:
            return BindStatic<15>(scheduler);
        case 16:
            return BindStatic<16>(scheduler);
        case 17:
            return BindStatic<17>(scheduler);
        case 18:
            return BindStatic<18>(scheduler);
        case 19:
            return BindStatic<19>(scheduler);
        case 20:
            return BindStatic<20>(scheduler);
        case 21:
            return BindStatic<21>(scheduler);
        case 22:
            return BindStatic<22>(scheduler);
        case 23:
            return BindStatic<23>(scheduler);
        case 24:
            return BindStatic<24>(scheduler);
        case 25:
            return BindStatic<25>(scheduler);
        case 26:
            return BindStatic<26>(scheduler);
        case 27:
            return BindStatic<27>(scheduler);
        case 28:
            return BindStatic<28>(scheduler);
        case 29:
            return BindStatic<29>(scheduler);
        case 30:
            return BindStatic<30>(scheduler);
        case 31:
            return BindStatic<31>(scheduler);
        case 32:
            return BindStatic<32>(scheduler);
        }
        UNREACHABLE();
    }

private:
    // Some of these fields are intentionally left uninitialized to avoid initializing them twice.
    struct {
        std::size_t num_buffers = 0;
        std::array<const vk::Buffer*, Maxwell::NumVertexArrays> buffer_ptrs;
        std::array<vk::DeviceSize, Maxwell::NumVertexArrays> offsets;
    } vertex;

    struct {
        const vk::Buffer* buffer = nullptr;
        vk::DeviceSize offset;
        vk::IndexType type;
    } index;

    template <std::size_t N>
    void BindStatic(VKScheduler& scheduler) const {
        if (index.buffer != nullptr) {
            BindStatic<N, true>(scheduler);
        } else {
            BindStatic<N, false>(scheduler);
        }
    }

    template <std::size_t N, bool is_indexed>
    void BindStatic(VKScheduler& scheduler) const {
        static_assert(N <= Maxwell::NumVertexArrays);
        if constexpr (N == 0) {
            return;
        }

        std::array<vk::Buffer, N> buffers;
        std::transform(vertex.buffer_ptrs.begin(), vertex.buffer_ptrs.begin() + N, buffers.begin(),
                       [](const auto ptr) { return *ptr; });

        std::array<vk::DeviceSize, N> offsets;
        std::copy(vertex.offsets.begin(), vertex.offsets.begin() + N, offsets.begin());

        if constexpr (is_indexed) {
            // Indexed draw
            scheduler.Record([buffers, offsets, index_buffer = *index.buffer,
                              index_offset = index.offset,
                              index_type = index.type](auto cmdbuf, auto& dld) {
                cmdbuf.bindIndexBuffer(index_buffer, index_offset, index_type, dld);
                cmdbuf.bindVertexBuffers(0, static_cast<u32>(N), buffers.data(), offsets.data(),
                                         dld);
            });
        } else {
            // Array draw
            scheduler.Record([buffers, offsets](auto cmdbuf, auto& dld) {
                cmdbuf.bindVertexBuffers(0, static_cast<u32>(N), buffers.data(), offsets.data(),
                                         dld);
            });
        }
    }
};

void RasterizerVulkan::DrawParameters::Draw(vk::CommandBuffer cmdbuf,
                                            const vk::DispatchLoaderDynamic& dld) const {
    if (is_indexed) {
        cmdbuf.drawIndexed(num_vertices, num_instances, 0, base_vertex, base_instance, dld);
    } else {
        cmdbuf.draw(num_vertices, num_instances, base_vertex, base_instance, dld);
    }
}

RasterizerVulkan::RasterizerVulkan(Core::System& system, Core::Frontend::EmuWindow& renderer,
                                   VKScreenInfo& screen_info, const VKDevice& device,
                                   VKResourceManager& resource_manager,
                                   VKMemoryManager& memory_manager, StateTracker& state_tracker,
                                   VKScheduler& scheduler)
    : RasterizerAccelerated{system.Memory()}, system{system}, render_window{renderer},
      screen_info{screen_info}, device{device}, resource_manager{resource_manager},
      memory_manager{memory_manager}, state_tracker{state_tracker}, scheduler{scheduler},
      staging_pool(device, memory_manager, scheduler), descriptor_pool(device),
      update_descriptor_queue(device, scheduler), renderpass_cache(device),
      quad_array_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue),
      uint8_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue),
      texture_cache(system, *this, device, resource_manager, memory_manager, scheduler,
                    staging_pool),
      pipeline_cache(system, *this, device, scheduler, descriptor_pool, update_descriptor_queue,
                     renderpass_cache),
      buffer_cache(*this, system, device, memory_manager, scheduler, staging_pool),
      sampler_cache(device), query_cache(system, *this, device, scheduler) {
    scheduler.SetQueryCache(query_cache);
}

RasterizerVulkan::~RasterizerVulkan() = default;

void RasterizerVulkan::Draw(bool is_indexed, bool is_instanced) {
    MICROPROFILE_SCOPE(Vulkan_Drawing);

    FlushWork();

    query_cache.UpdateCounters();

    const auto& gpu = system.GPU().Maxwell3D();
    GraphicsPipelineCacheKey key{GetFixedPipelineState(gpu.regs)};

    buffer_cache.Map(CalculateGraphicsStreamBufferSize(is_indexed));

    BufferBindings buffer_bindings;
    const DrawParameters draw_params =
        SetupGeometry(key.fixed_state, buffer_bindings, is_indexed, is_instanced);

    update_descriptor_queue.Acquire();
    sampled_views.clear();
    image_views.clear();

    const auto shaders = pipeline_cache.GetShaders();
    key.shaders = GetShaderAddresses(shaders);
    SetupShaderDescriptors(shaders);

    buffer_cache.Unmap();

    const auto texceptions = UpdateAttachments();
    SetupImageTransitions(texceptions, color_attachments, zeta_attachment);

    key.renderpass_params = GetRenderPassParams(texceptions);

    auto& pipeline = pipeline_cache.GetGraphicsPipeline(key);
    scheduler.BindGraphicsPipeline(pipeline.GetHandle());

    const auto renderpass = pipeline.GetRenderPass();
    const auto [framebuffer, render_area] = ConfigureFramebuffers(renderpass);
    scheduler.RequestRenderpass({renderpass, framebuffer, {{0, 0}, render_area}, 0, nullptr});

    UpdateDynamicStates();

    buffer_bindings.Bind(scheduler);

    if (device.IsNvDeviceDiagnosticCheckpoints()) {
        scheduler.Record(
            [&pipeline](auto cmdbuf, auto& dld) { cmdbuf.setCheckpointNV(&pipeline, dld); });
    }

    BeginTransformFeedback();

    const auto pipeline_layout = pipeline.GetLayout();
    const auto descriptor_set = pipeline.CommitDescriptorSet();
    scheduler.Record([pipeline_layout, descriptor_set, draw_params](auto cmdbuf, auto& dld) {
        if (descriptor_set) {
            cmdbuf.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipeline_layout,
                                      DESCRIPTOR_SET, 1, &descriptor_set, 0, nullptr, dld);
        }
        draw_params.Draw(cmdbuf, dld);
    });

    EndTransformFeedback();
}

void RasterizerVulkan::Clear() {
    MICROPROFILE_SCOPE(Vulkan_Clearing);

    const auto& gpu = system.GPU().Maxwell3D();
    if (!system.GPU().Maxwell3D().ShouldExecute()) {
        return;
    }

    sampled_views.clear();
    image_views.clear();

    query_cache.UpdateCounters();

    const auto& regs = gpu.regs;
    const bool use_color = regs.clear_buffers.R || regs.clear_buffers.G || regs.clear_buffers.B ||
                           regs.clear_buffers.A;
    const bool use_depth = regs.clear_buffers.Z;
    const bool use_stencil = regs.clear_buffers.S;
    if (!use_color && !use_depth && !use_stencil) {
        return;
    }

    [[maybe_unused]] const auto texceptions = UpdateAttachments();
    DEBUG_ASSERT(texceptions.none());
    SetupImageTransitions(0, color_attachments, zeta_attachment);

    const vk::RenderPass renderpass = renderpass_cache.GetRenderPass(GetRenderPassParams(0));
    const auto [framebuffer, render_area] = ConfigureFramebuffers(renderpass);
    scheduler.RequestRenderpass({renderpass, framebuffer, {{0, 0}, render_area}, 0, nullptr});

    const auto& scissor = regs.scissor_test[0];
    const vk::Offset2D scissor_offset(scissor.min_x, scissor.min_y);
    vk::Extent2D scissor_extent{scissor.max_x - scissor.min_x, scissor.max_y - scissor.min_y};
    scissor_extent.width = std::min(scissor_extent.width, render_area.width);
    scissor_extent.height = std::min(scissor_extent.height, render_area.height);

    const u32 layer = regs.clear_buffers.layer;
    const vk::ClearRect clear_rect({scissor_offset, scissor_extent}, layer, 1);

    if (use_color) {
        const std::array clear_color = {regs.clear_color[0], regs.clear_color[1],
                                        regs.clear_color[2], regs.clear_color[3]};
        const vk::ClearValue clear_value{clear_color};
        const u32 color_attachment = regs.clear_buffers.RT;
        scheduler.Record([color_attachment, clear_value, clear_rect](auto cmdbuf, auto& dld) {
            const vk::ClearAttachment attachment(vk::ImageAspectFlagBits::eColor, color_attachment,
                                                 clear_value);
            cmdbuf.clearAttachments(1, &attachment, 1, &clear_rect, dld);
        });
    }

    if (!use_depth && !use_stencil) {
        return;
    }
    vk::ImageAspectFlags aspect_flags;
    if (use_depth) {
        aspect_flags |= vk::ImageAspectFlagBits::eDepth;
    }
    if (use_stencil) {
        aspect_flags |= vk::ImageAspectFlagBits::eStencil;
    }

    scheduler.Record([clear_depth = regs.clear_depth, clear_stencil = regs.clear_stencil,
                      clear_rect, aspect_flags](auto cmdbuf, auto& dld) {
        const vk::ClearDepthStencilValue clear_zeta(clear_depth, clear_stencil);
        const vk::ClearValue clear_value{clear_zeta};
        const vk::ClearAttachment attachment(aspect_flags, 0, clear_value);
        cmdbuf.clearAttachments(1, &attachment, 1, &clear_rect, dld);
    });
}

void RasterizerVulkan::DispatchCompute(GPUVAddr code_addr) {
    MICROPROFILE_SCOPE(Vulkan_Compute);
    update_descriptor_queue.Acquire();
    sampled_views.clear();
    image_views.clear();

    query_cache.UpdateCounters();

    const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
    const ComputePipelineCacheKey key{
        code_addr,
        launch_desc.shared_alloc,
        {launch_desc.block_dim_x, launch_desc.block_dim_y, launch_desc.block_dim_z}};
    auto& pipeline = pipeline_cache.GetComputePipeline(key);

    // Compute dispatches can't be executed inside a renderpass
    scheduler.RequestOutsideRenderPassOperationContext();

    buffer_cache.Map(CalculateComputeStreamBufferSize());

    const auto& entries = pipeline.GetEntries();
    SetupComputeConstBuffers(entries);
    SetupComputeGlobalBuffers(entries);
    SetupComputeTexelBuffers(entries);
    SetupComputeTextures(entries);
    SetupComputeImages(entries);

    buffer_cache.Unmap();

    TransitionImages(sampled_views, vk::PipelineStageFlagBits::eComputeShader,
                     vk::AccessFlagBits::eShaderRead);
    TransitionImages(image_views, vk::PipelineStageFlagBits::eComputeShader,
                     vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite);

    if (device.IsNvDeviceDiagnosticCheckpoints()) {
        scheduler.Record(
            [&pipeline](auto cmdbuf, auto& dld) { cmdbuf.setCheckpointNV(nullptr, dld); });
    }

    scheduler.Record([grid_x = launch_desc.grid_dim_x, grid_y = launch_desc.grid_dim_y,
                      grid_z = launch_desc.grid_dim_z, pipeline_handle = pipeline.GetHandle(),
                      layout = pipeline.GetLayout(),
                      descriptor_set = pipeline.CommitDescriptorSet()](auto cmdbuf, auto& dld) {
        cmdbuf.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline_handle, dld);
        cmdbuf.bindDescriptorSets(vk::PipelineBindPoint::eCompute, layout, DESCRIPTOR_SET, 1,
                                  &descriptor_set, 0, nullptr, dld);
        cmdbuf.dispatch(grid_x, grid_y, grid_z, dld);
    });
}

void RasterizerVulkan::ResetCounter(VideoCore::QueryType type) {
    query_cache.ResetCounter(type);
}

void RasterizerVulkan::Query(GPUVAddr gpu_addr, VideoCore::QueryType type,
                             std::optional<u64> timestamp) {
    query_cache.Query(gpu_addr, type, timestamp);
}

void RasterizerVulkan::FlushAll() {}

void RasterizerVulkan::FlushRegion(VAddr addr, u64 size) {
    if (!addr || !size) {
        return;
    }
    CacheAddr cache_addr = ToCacheAddr(system.Memory().GetPointer(addr));
    texture_cache.FlushRegion(addr, size);
    buffer_cache.FlushRegion(addr, size);
    query_cache.FlushRegion(addr, size);
}

void RasterizerVulkan::InvalidateRegion(VAddr addr, u64 size) {
    if (!addr || !size) {
        return;
    }
    CacheAddr cache_addr = ToCacheAddr(system.Memory().GetPointer(addr));
    texture_cache.InvalidateRegion(addr, size);
    pipeline_cache.InvalidateRegion(cache_addr, size);
    buffer_cache.InvalidateRegion(addr, size);
    query_cache.InvalidateRegion(addr, size);
}

void RasterizerVulkan::FlushAndInvalidateRegion(VAddr addr, u64 size) {
    FlushRegion(addr, size);
    InvalidateRegion(addr, size);
}

void RasterizerVulkan::FlushCommands() {
    if (draw_counter > 0) {
        draw_counter = 0;
        scheduler.Flush();
    }
}

void RasterizerVulkan::TickFrame() {
    draw_counter = 0;
    update_descriptor_queue.TickFrame();
    buffer_cache.TickFrame();
    staging_pool.TickFrame();
}

bool RasterizerVulkan::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
                                             const Tegra::Engines::Fermi2D::Regs::Surface& dst,
                                             const Tegra::Engines::Fermi2D::Config& copy_config) {
    texture_cache.DoFermiCopy(src, dst, copy_config);
    return true;
}

bool RasterizerVulkan::AccelerateDisplay(const Tegra::FramebufferConfig& config,
                                         VAddr framebuffer_addr, u32 pixel_stride) {
    if (!framebuffer_addr) {
        return false;
    }

    const auto surface{texture_cache.TryFindFramebufferSurface(framebuffer_addr)};
    if (!surface) {
        return false;
    }

    // Verify that the cached surface is the same size and format as the requested framebuffer
    const auto& params{surface->GetSurfaceParams()};
    ASSERT_MSG(params.width == config.width, "Framebuffer width is different");
    ASSERT_MSG(params.height == config.height, "Framebuffer height is different");

    screen_info.image = &surface->GetImage();
    screen_info.width = params.width;
    screen_info.height = params.height;
    screen_info.is_srgb = surface->GetSurfaceParams().srgb_conversion;
    return true;
}

void RasterizerVulkan::SetupDirtyFlags() {
    state_tracker.Initialize();
}

void RasterizerVulkan::FlushWork() {
    static constexpr u32 DRAWS_TO_DISPATCH = 4096;

    // Only check multiples of 8 draws
    static_assert(DRAWS_TO_DISPATCH % 8 == 0);
    if ((++draw_counter & 7) != 7) {
        return;
    }

    if (draw_counter < DRAWS_TO_DISPATCH) {
        // Send recorded tasks to the worker thread
        scheduler.DispatchWork();
        return;
    }

    // Otherwise (every certain number of draws) flush execution.
    // This submits commands to the Vulkan driver.
    scheduler.Flush();
    draw_counter = 0;
}

RasterizerVulkan::Texceptions RasterizerVulkan::UpdateAttachments() {
    MICROPROFILE_SCOPE(Vulkan_RenderTargets);
    auto& dirty = system.GPU().Maxwell3D().dirty.flags;
    const bool update_rendertargets = dirty[VideoCommon::Dirty::RenderTargets];
    dirty[VideoCommon::Dirty::RenderTargets] = false;

    texture_cache.GuardRenderTargets(true);

    Texceptions texceptions;
    for (std::size_t rt = 0; rt < Maxwell::NumRenderTargets; ++rt) {
        if (update_rendertargets) {
            color_attachments[rt] = texture_cache.GetColorBufferSurface(rt, true);
        }
        if (color_attachments[rt] && WalkAttachmentOverlaps(*color_attachments[rt])) {
            texceptions[rt] = true;
        }
    }

    if (update_rendertargets) {
        zeta_attachment = texture_cache.GetDepthBufferSurface(true);
    }
    if (zeta_attachment && WalkAttachmentOverlaps(*zeta_attachment)) {
        texceptions[ZETA_TEXCEPTION_INDEX] = true;
    }

    texture_cache.GuardRenderTargets(false);

    return texceptions;
}

bool RasterizerVulkan::WalkAttachmentOverlaps(const CachedSurfaceView& attachment) {
    bool overlap = false;
    for (auto& [view, layout] : sampled_views) {
        if (!attachment.IsSameSurface(*view)) {
            continue;
        }
        overlap = true;
        *layout = vk::ImageLayout::eGeneral;
    }
    return overlap;
}

std::tuple<vk::Framebuffer, vk::Extent2D> RasterizerVulkan::ConfigureFramebuffers(
    vk::RenderPass renderpass) {
    FramebufferCacheKey key{renderpass, std::numeric_limits<u32>::max(),
                            std::numeric_limits<u32>::max(), std::numeric_limits<u32>::max()};

    const auto try_push = [&](const View& view) {
        if (!view) {
            return false;
        }
        key.views.push_back(view->GetHandle());
        key.width = std::min(key.width, view->GetWidth());
        key.height = std::min(key.height, view->GetHeight());
        key.layers = std::min(key.layers, view->GetNumLayers());
        return true;
    };

    for (std::size_t index = 0; index < std::size(color_attachments); ++index) {
        if (try_push(color_attachments[index])) {
            texture_cache.MarkColorBufferInUse(index);
        }
    }
    if (try_push(zeta_attachment)) {
        texture_cache.MarkDepthBufferInUse();
    }

    const auto [fbentry, is_cache_miss] = framebuffer_cache.try_emplace(key);
    auto& framebuffer = fbentry->second;
    if (is_cache_miss) {
        const vk::FramebufferCreateInfo framebuffer_ci(
            {}, key.renderpass, static_cast<u32>(key.views.size()), key.views.data(), key.width,
            key.height, key.layers);
        const auto dev = device.GetLogical();
        const auto& dld = device.GetDispatchLoader();
        framebuffer = dev.createFramebufferUnique(framebuffer_ci, nullptr, dld);
    }

    return {*framebuffer, vk::Extent2D{key.width, key.height}};
}

RasterizerVulkan::DrawParameters RasterizerVulkan::SetupGeometry(FixedPipelineState& fixed_state,
                                                                 BufferBindings& buffer_bindings,
                                                                 bool is_indexed,
                                                                 bool is_instanced) {
    MICROPROFILE_SCOPE(Vulkan_Geometry);

    const auto& gpu = system.GPU().Maxwell3D();
    const auto& regs = gpu.regs;

    SetupVertexArrays(fixed_state.vertex_input, buffer_bindings);

    const u32 base_instance = regs.vb_base_instance;
    const u32 num_instances = is_instanced ? gpu.mme_draw.instance_count : 1;
    const u32 base_vertex = is_indexed ? regs.vb_element_base : regs.vertex_buffer.first;
    const u32 num_vertices = is_indexed ? regs.index_array.count : regs.vertex_buffer.count;

    DrawParameters params{base_instance, num_instances, base_vertex, num_vertices, is_indexed};
    SetupIndexBuffer(buffer_bindings, params, is_indexed);

    return params;
}

void RasterizerVulkan::SetupShaderDescriptors(
    const std::array<Shader, Maxwell::MaxShaderProgram>& shaders) {
    texture_cache.GuardSamplers(true);

    for (std::size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) {
        // Skip VertexA stage
        const auto& shader = shaders[stage + 1];
        if (!shader) {
            continue;
        }
        const auto& entries = shader->GetEntries();
        SetupGraphicsConstBuffers(entries, stage);
        SetupGraphicsGlobalBuffers(entries, stage);
        SetupGraphicsTexelBuffers(entries, stage);
        SetupGraphicsTextures(entries, stage);
        SetupGraphicsImages(entries, stage);
    }
    texture_cache.GuardSamplers(false);
}

void RasterizerVulkan::SetupImageTransitions(
    Texceptions texceptions, const std::array<View, Maxwell::NumRenderTargets>& color_attachments,
    const View& zeta_attachment) {
    TransitionImages(sampled_views, vk::PipelineStageFlagBits::eAllGraphics,
                     vk::AccessFlagBits::eShaderRead);
    TransitionImages(image_views, vk::PipelineStageFlagBits::eAllGraphics,
                     vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite);

    for (std::size_t rt = 0; rt < std::size(color_attachments); ++rt) {
        const auto color_attachment = color_attachments[rt];
        if (color_attachment == nullptr) {
            continue;
        }
        const auto image_layout =
            texceptions[rt] ? vk::ImageLayout::eGeneral : vk::ImageLayout::eColorAttachmentOptimal;
        color_attachment->Transition(
            image_layout, vk::PipelineStageFlagBits::eColorAttachmentOutput,
            vk::AccessFlagBits::eColorAttachmentRead | vk::AccessFlagBits::eColorAttachmentWrite);
    }

    if (zeta_attachment != nullptr) {
        const auto image_layout = texceptions[ZETA_TEXCEPTION_INDEX]
                                      ? vk::ImageLayout::eGeneral
                                      : vk::ImageLayout::eDepthStencilAttachmentOptimal;
        zeta_attachment->Transition(image_layout, vk::PipelineStageFlagBits::eLateFragmentTests,
                                    vk::AccessFlagBits::eDepthStencilAttachmentRead |
                                        vk::AccessFlagBits::eDepthStencilAttachmentWrite);
    }
}

void RasterizerVulkan::UpdateDynamicStates() {
    auto& regs = system.GPU().Maxwell3D().regs;
    UpdateViewportsState(regs);
    UpdateScissorsState(regs);
    UpdateDepthBias(regs);
    UpdateBlendConstants(regs);
    UpdateDepthBounds(regs);
    UpdateStencilFaces(regs);
}

void RasterizerVulkan::BeginTransformFeedback() {
    const auto& regs = system.GPU().Maxwell3D().regs;
    if (regs.tfb_enabled == 0) {
        return;
    }

    UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationControl) ||
                     regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationEval) ||
                     regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::Geometry));

    UNIMPLEMENTED_IF(regs.tfb_bindings[1].buffer_enable);
    UNIMPLEMENTED_IF(regs.tfb_bindings[2].buffer_enable);
    UNIMPLEMENTED_IF(regs.tfb_bindings[3].buffer_enable);

    const auto& binding = regs.tfb_bindings[0];
    UNIMPLEMENTED_IF(binding.buffer_enable == 0);
    UNIMPLEMENTED_IF(binding.buffer_offset != 0);

    const GPUVAddr gpu_addr = binding.Address();
    const std::size_t size = binding.buffer_size;
    const auto [buffer, offset] = buffer_cache.UploadMemory(gpu_addr, size, 4, true);

    scheduler.Record([buffer = *buffer, offset = offset, size](auto cmdbuf, auto& dld) {
        cmdbuf.bindTransformFeedbackBuffersEXT(0, {buffer}, {offset}, {size}, dld);
        cmdbuf.beginTransformFeedbackEXT(0, {}, {}, dld);
    });
}

void RasterizerVulkan::EndTransformFeedback() {
    const auto& regs = system.GPU().Maxwell3D().regs;
    if (regs.tfb_enabled == 0) {
        return;
    }

    scheduler.Record(
        [](auto cmdbuf, auto& dld) { cmdbuf.endTransformFeedbackEXT(0, {}, {}, dld); });
}

void RasterizerVulkan::SetupVertexArrays(FixedPipelineState::VertexInput& vertex_input,
                                         BufferBindings& buffer_bindings) {
    const auto& regs = system.GPU().Maxwell3D().regs;

    for (u32 index = 0; index < static_cast<u32>(Maxwell::NumVertexAttributes); ++index) {
        const auto& attrib = regs.vertex_attrib_format[index];
        if (!attrib.IsValid()) {
            continue;
        }

        const auto& buffer = regs.vertex_array[attrib.buffer];
        ASSERT(buffer.IsEnabled());

        vertex_input.attributes[vertex_input.num_attributes++] =
            FixedPipelineState::VertexAttribute(index, attrib.buffer, attrib.type, attrib.size,
                                                attrib.offset);
    }

    for (u32 index = 0; index < static_cast<u32>(Maxwell::NumVertexArrays); ++index) {
        const auto& vertex_array = regs.vertex_array[index];
        if (!vertex_array.IsEnabled()) {
            continue;
        }

        const GPUVAddr start{vertex_array.StartAddress()};
        const GPUVAddr end{regs.vertex_array_limit[index].LimitAddress()};

        ASSERT(end > start);
        const std::size_t size{end - start + 1};
        const auto [buffer, offset] = buffer_cache.UploadMemory(start, size);

        vertex_input.bindings[vertex_input.num_bindings++] = FixedPipelineState::VertexBinding(
            index, vertex_array.stride,
            regs.instanced_arrays.IsInstancingEnabled(index) ? vertex_array.divisor : 0);
        buffer_bindings.AddVertexBinding(buffer, offset);
    }
}

void RasterizerVulkan::SetupIndexBuffer(BufferBindings& buffer_bindings, DrawParameters& params,
                                        bool is_indexed) {
    const auto& regs = system.GPU().Maxwell3D().regs;
    switch (regs.draw.topology) {
    case Maxwell::PrimitiveTopology::Quads:
        if (params.is_indexed) {
            UNIMPLEMENTED();
        } else {
            const auto [buffer, offset] =
                quad_array_pass.Assemble(params.num_vertices, params.base_vertex);
            buffer_bindings.SetIndexBinding(&buffer, offset, vk::IndexType::eUint32);
            params.base_vertex = 0;
            params.num_vertices = params.num_vertices * 6 / 4;
            params.is_indexed = true;
        }
        break;
    default: {
        if (!is_indexed) {
            break;
        }
        const GPUVAddr gpu_addr = regs.index_array.IndexStart();
        auto [buffer, offset] = buffer_cache.UploadMemory(gpu_addr, CalculateIndexBufferSize());

        auto format = regs.index_array.format;
        const bool is_uint8 = format == Maxwell::IndexFormat::UnsignedByte;
        if (is_uint8 && !device.IsExtIndexTypeUint8Supported()) {
            std::tie(buffer, offset) = uint8_pass.Assemble(params.num_vertices, *buffer, offset);
            format = Maxwell::IndexFormat::UnsignedShort;
        }

        buffer_bindings.SetIndexBinding(buffer, offset, MaxwellToVK::IndexFormat(device, format));
        break;
    }
    }
}

void RasterizerVulkan::SetupGraphicsConstBuffers(const ShaderEntries& entries, std::size_t stage) {
    MICROPROFILE_SCOPE(Vulkan_ConstBuffers);
    const auto& gpu = system.GPU().Maxwell3D();
    const auto& shader_stage = gpu.state.shader_stages[stage];
    for (const auto& entry : entries.const_buffers) {
        SetupConstBuffer(entry, shader_stage.const_buffers[entry.GetIndex()]);
    }
}

void RasterizerVulkan::SetupGraphicsGlobalBuffers(const ShaderEntries& entries, std::size_t stage) {
    MICROPROFILE_SCOPE(Vulkan_GlobalBuffers);
    auto& gpu{system.GPU()};
    const auto cbufs{gpu.Maxwell3D().state.shader_stages[stage]};

    for (const auto& entry : entries.global_buffers) {
        const auto addr = cbufs.const_buffers[entry.GetCbufIndex()].address + entry.GetCbufOffset();
        SetupGlobalBuffer(entry, addr);
    }
}

void RasterizerVulkan::SetupGraphicsTexelBuffers(const ShaderEntries& entries, std::size_t stage) {
    MICROPROFILE_SCOPE(Vulkan_Textures);
    const auto& gpu = system.GPU().Maxwell3D();
    for (const auto& entry : entries.texel_buffers) {
        const auto image = GetTextureInfo(gpu, entry, stage).tic;
        SetupTexelBuffer(image, entry);
    }
}

void RasterizerVulkan::SetupGraphicsTextures(const ShaderEntries& entries, std::size_t stage) {
    MICROPROFILE_SCOPE(Vulkan_Textures);
    const auto& gpu = system.GPU().Maxwell3D();
    for (const auto& entry : entries.samplers) {
        for (std::size_t i = 0; i < entry.Size(); ++i) {
            const auto texture = GetTextureInfo(gpu, entry, stage, i);
            SetupTexture(texture, entry);
        }
    }
}

void RasterizerVulkan::SetupGraphicsImages(const ShaderEntries& entries, std::size_t stage) {
    MICROPROFILE_SCOPE(Vulkan_Images);
    const auto& gpu = system.GPU().Maxwell3D();
    for (const auto& entry : entries.images) {
        const auto tic = GetTextureInfo(gpu, entry, stage).tic;
        SetupImage(tic, entry);
    }
}

void RasterizerVulkan::SetupComputeConstBuffers(const ShaderEntries& entries) {
    MICROPROFILE_SCOPE(Vulkan_ConstBuffers);
    const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
    for (const auto& entry : entries.const_buffers) {
        const auto& config = launch_desc.const_buffer_config[entry.GetIndex()];
        const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value();
        Tegra::Engines::ConstBufferInfo buffer;
        buffer.address = config.Address();
        buffer.size = config.size;
        buffer.enabled = mask[entry.GetIndex()];
        SetupConstBuffer(entry, buffer);
    }
}

void RasterizerVulkan::SetupComputeGlobalBuffers(const ShaderEntries& entries) {
    MICROPROFILE_SCOPE(Vulkan_GlobalBuffers);
    const auto cbufs{system.GPU().KeplerCompute().launch_description.const_buffer_config};
    for (const auto& entry : entries.global_buffers) {
        const auto addr{cbufs[entry.GetCbufIndex()].Address() + entry.GetCbufOffset()};
        SetupGlobalBuffer(entry, addr);
    }
}

void RasterizerVulkan::SetupComputeTexelBuffers(const ShaderEntries& entries) {
    MICROPROFILE_SCOPE(Vulkan_Textures);
    const auto& gpu = system.GPU().KeplerCompute();
    for (const auto& entry : entries.texel_buffers) {
        const auto image = GetTextureInfo(gpu, entry, ComputeShaderIndex).tic;
        SetupTexelBuffer(image, entry);
    }
}

void RasterizerVulkan::SetupComputeTextures(const ShaderEntries& entries) {
    MICROPROFILE_SCOPE(Vulkan_Textures);
    const auto& gpu = system.GPU().KeplerCompute();
    for (const auto& entry : entries.samplers) {
        for (std::size_t i = 0; i < entry.Size(); ++i) {
            const auto texture = GetTextureInfo(gpu, entry, ComputeShaderIndex, i);
            SetupTexture(texture, entry);
        }
    }
}

void RasterizerVulkan::SetupComputeImages(const ShaderEntries& entries) {
    MICROPROFILE_SCOPE(Vulkan_Images);
    const auto& gpu = system.GPU().KeplerCompute();
    for (const auto& entry : entries.images) {
        const auto tic = GetTextureInfo(gpu, entry, ComputeShaderIndex).tic;
        SetupImage(tic, entry);
    }
}

void RasterizerVulkan::SetupConstBuffer(const ConstBufferEntry& entry,
                                        const Tegra::Engines::ConstBufferInfo& buffer) {
    if (!buffer.enabled) {
        // Set values to zero to unbind buffers
        update_descriptor_queue.AddBuffer(buffer_cache.GetEmptyBuffer(sizeof(float)), 0,
                                          sizeof(float));
        return;
    }

    // Align the size to avoid bad std140 interactions
    const std::size_t size =
        Common::AlignUp(CalculateConstBufferSize(entry, buffer), 4 * sizeof(float));
    ASSERT(size <= MaxConstbufferSize);

    const auto [buffer_handle, offset] =
        buffer_cache.UploadMemory(buffer.address, size, device.GetUniformBufferAlignment());

    update_descriptor_queue.AddBuffer(buffer_handle, offset, size);
}

void RasterizerVulkan::SetupGlobalBuffer(const GlobalBufferEntry& entry, GPUVAddr address) {
    auto& memory_manager{system.GPU().MemoryManager()};
    const auto actual_addr = memory_manager.Read<u64>(address);
    const auto size = memory_manager.Read<u32>(address + 8);

    if (size == 0) {
        // Sometimes global memory pointers don't have a proper size. Upload a dummy entry because
        // Vulkan doesn't like empty buffers.
        constexpr std::size_t dummy_size = 4;
        const auto buffer = buffer_cache.GetEmptyBuffer(dummy_size);
        update_descriptor_queue.AddBuffer(buffer, 0, dummy_size);
        return;
    }

    const auto [buffer, offset] = buffer_cache.UploadMemory(
        actual_addr, size, device.GetStorageBufferAlignment(), entry.IsWritten());
    update_descriptor_queue.AddBuffer(buffer, offset, size);
}

void RasterizerVulkan::SetupTexelBuffer(const Tegra::Texture::TICEntry& tic,
                                        const TexelBufferEntry& entry) {
    const auto view = texture_cache.GetTextureSurface(tic, entry);
    ASSERT(view->IsBufferView());

    update_descriptor_queue.AddTexelBuffer(view->GetBufferView());
}

void RasterizerVulkan::SetupTexture(const Tegra::Texture::FullTextureInfo& texture,
                                    const SamplerEntry& entry) {
    auto view = texture_cache.GetTextureSurface(texture.tic, entry);
    ASSERT(!view->IsBufferView());

    const auto image_view = view->GetHandle(texture.tic.x_source, texture.tic.y_source,
                                            texture.tic.z_source, texture.tic.w_source);
    const auto sampler = sampler_cache.GetSampler(texture.tsc);
    update_descriptor_queue.AddSampledImage(sampler, image_view);

    const auto image_layout = update_descriptor_queue.GetLastImageLayout();
    *image_layout = vk::ImageLayout::eShaderReadOnlyOptimal;
    sampled_views.push_back(ImageView{std::move(view), image_layout});
}

void RasterizerVulkan::SetupImage(const Tegra::Texture::TICEntry& tic, const ImageEntry& entry) {
    auto view = texture_cache.GetImageSurface(tic, entry);

    if (entry.IsWritten()) {
        view->MarkAsModified(texture_cache.Tick());
    }

    UNIMPLEMENTED_IF(tic.IsBuffer());

    const auto image_view = view->GetHandle(tic.x_source, tic.y_source, tic.z_source, tic.w_source);
    update_descriptor_queue.AddImage(image_view);

    const auto image_layout = update_descriptor_queue.GetLastImageLayout();
    *image_layout = vk::ImageLayout::eGeneral;
    image_views.push_back(ImageView{std::move(view), image_layout});
}

void RasterizerVulkan::UpdateViewportsState(Tegra::Engines::Maxwell3D::Regs& regs) {
    if (!state_tracker.TouchViewports()) {
        return;
    }
    const std::array viewports{
        GetViewportState(device, regs, 0),  GetViewportState(device, regs, 1),
        GetViewportState(device, regs, 2),  GetViewportState(device, regs, 3),
        GetViewportState(device, regs, 4),  GetViewportState(device, regs, 5),
        GetViewportState(device, regs, 6),  GetViewportState(device, regs, 7),
        GetViewportState(device, regs, 8),  GetViewportState(device, regs, 9),
        GetViewportState(device, regs, 10), GetViewportState(device, regs, 11),
        GetViewportState(device, regs, 12), GetViewportState(device, regs, 13),
        GetViewportState(device, regs, 14), GetViewportState(device, regs, 15)};
    scheduler.Record([viewports](auto cmdbuf, auto& dld) {
        cmdbuf.setViewport(0, static_cast<u32>(viewports.size()), viewports.data(), dld);
    });
}

void RasterizerVulkan::UpdateScissorsState(Tegra::Engines::Maxwell3D::Regs& regs) {
    if (!state_tracker.TouchScissors()) {
        return;
    }
    const std::array scissors = {
        GetScissorState(regs, 0),  GetScissorState(regs, 1),  GetScissorState(regs, 2),
        GetScissorState(regs, 3),  GetScissorState(regs, 4),  GetScissorState(regs, 5),
        GetScissorState(regs, 6),  GetScissorState(regs, 7),  GetScissorState(regs, 8),
        GetScissorState(regs, 9),  GetScissorState(regs, 10), GetScissorState(regs, 11),
        GetScissorState(regs, 12), GetScissorState(regs, 13), GetScissorState(regs, 14),
        GetScissorState(regs, 15)};
    scheduler.Record([scissors](auto cmdbuf, auto& dld) {
        cmdbuf.setScissor(0, static_cast<u32>(scissors.size()), scissors.data(), dld);
    });
}

void RasterizerVulkan::UpdateDepthBias(Tegra::Engines::Maxwell3D::Regs& regs) {
    if (!state_tracker.TouchDepthBias()) {
        return;
    }
    scheduler.Record([constant = regs.polygon_offset_units, clamp = regs.polygon_offset_clamp,
                      factor = regs.polygon_offset_factor](auto cmdbuf, auto& dld) {
        cmdbuf.setDepthBias(constant, clamp, factor / 2.0f, dld);
    });
}

void RasterizerVulkan::UpdateBlendConstants(Tegra::Engines::Maxwell3D::Regs& regs) {
    if (!state_tracker.TouchBlendConstants()) {
        return;
    }
    const std::array blend_color = {regs.blend_color.r, regs.blend_color.g, regs.blend_color.b,
                                    regs.blend_color.a};
    scheduler.Record([blend_color](auto cmdbuf, auto& dld) {
        cmdbuf.setBlendConstants(blend_color.data(), dld);
    });
}

void RasterizerVulkan::UpdateDepthBounds(Tegra::Engines::Maxwell3D::Regs& regs) {
    if (!state_tracker.TouchDepthBounds()) {
        return;
    }
    scheduler.Record([min = regs.depth_bounds[0], max = regs.depth_bounds[1]](
                         auto cmdbuf, auto& dld) { cmdbuf.setDepthBounds(min, max, dld); });
}

void RasterizerVulkan::UpdateStencilFaces(Tegra::Engines::Maxwell3D::Regs& regs) {
    if (!state_tracker.TouchStencilProperties()) {
        return;
    }
    if (regs.stencil_two_side_enable) {
        // Separate values per face
        scheduler.Record(
            [front_ref = regs.stencil_front_func_ref, front_write_mask = regs.stencil_front_mask,
             front_test_mask = regs.stencil_front_func_mask, back_ref = regs.stencil_back_func_ref,
             back_write_mask = regs.stencil_back_mask,
             back_test_mask = regs.stencil_back_func_mask](auto cmdbuf, auto& dld) {
                // Front face
                cmdbuf.setStencilReference(vk::StencilFaceFlagBits::eFront, front_ref, dld);
                cmdbuf.setStencilWriteMask(vk::StencilFaceFlagBits::eFront, front_write_mask, dld);
                cmdbuf.setStencilCompareMask(vk::StencilFaceFlagBits::eFront, front_test_mask, dld);

                // Back face
                cmdbuf.setStencilReference(vk::StencilFaceFlagBits::eBack, back_ref, dld);
                cmdbuf.setStencilWriteMask(vk::StencilFaceFlagBits::eBack, back_write_mask, dld);
                cmdbuf.setStencilCompareMask(vk::StencilFaceFlagBits::eBack, back_test_mask, dld);
            });
    } else {
        // Front face defines both faces
        scheduler.Record([ref = regs.stencil_back_func_ref, write_mask = regs.stencil_back_mask,
                          test_mask = regs.stencil_back_func_mask](auto cmdbuf, auto& dld) {
            cmdbuf.setStencilReference(vk::StencilFaceFlagBits::eFrontAndBack, ref, dld);
            cmdbuf.setStencilWriteMask(vk::StencilFaceFlagBits::eFrontAndBack, write_mask, dld);
            cmdbuf.setStencilCompareMask(vk::StencilFaceFlagBits::eFrontAndBack, test_mask, dld);
        });
    }
}

std::size_t RasterizerVulkan::CalculateGraphicsStreamBufferSize(bool is_indexed) const {
    std::size_t size = CalculateVertexArraysSize();
    if (is_indexed) {
        size = Common::AlignUp(size, 4) + CalculateIndexBufferSize();
    }
    size += Maxwell::MaxConstBuffers * (MaxConstbufferSize + device.GetUniformBufferAlignment());
    return size;
}

std::size_t RasterizerVulkan::CalculateComputeStreamBufferSize() const {
    return Tegra::Engines::KeplerCompute::NumConstBuffers *
           (Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment());
}

std::size_t RasterizerVulkan::CalculateVertexArraysSize() const {
    const auto& regs = system.GPU().Maxwell3D().regs;

    std::size_t size = 0;
    for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
        // This implementation assumes that all attributes are used in the shader.
        const GPUVAddr start{regs.vertex_array[index].StartAddress()};
        const GPUVAddr end{regs.vertex_array_limit[index].LimitAddress()};
        DEBUG_ASSERT(end >= start);

        size += (end - start + 1) * regs.vertex_array[index].enable;
    }
    return size;
}

std::size_t RasterizerVulkan::CalculateIndexBufferSize() const {
    const auto& regs = system.GPU().Maxwell3D().regs;
    return static_cast<std::size_t>(regs.index_array.count) *
           static_cast<std::size_t>(regs.index_array.FormatSizeInBytes());
}

std::size_t RasterizerVulkan::CalculateConstBufferSize(
    const ConstBufferEntry& entry, const Tegra::Engines::ConstBufferInfo& buffer) const {
    if (entry.IsIndirect()) {
        // Buffer is accessed indirectly, so upload the entire thing
        return buffer.size;
    } else {
        // Buffer is accessed directly, upload just what we use
        return entry.GetSize();
    }
}

RenderPassParams RasterizerVulkan::GetRenderPassParams(Texceptions texceptions) const {
    using namespace VideoCore::Surface;

    const auto& regs = system.GPU().Maxwell3D().regs;
    RenderPassParams renderpass_params;

    for (std::size_t rt = 0; rt < static_cast<std::size_t>(regs.rt_control.count); ++rt) {
        const auto& rendertarget = regs.rt[rt];
        if (rendertarget.Address() == 0 || rendertarget.format == Tegra::RenderTargetFormat::NONE) {
            continue;
        }
        renderpass_params.color_attachments.push_back(RenderPassParams::ColorAttachment{
            static_cast<u32>(rt), PixelFormatFromRenderTargetFormat(rendertarget.format),
            texceptions[rt]});
    }

    renderpass_params.has_zeta = regs.zeta_enable;
    if (renderpass_params.has_zeta) {
        renderpass_params.zeta_pixel_format = PixelFormatFromDepthFormat(regs.zeta.format);
        renderpass_params.zeta_texception = texceptions[ZETA_TEXCEPTION_INDEX];
    }

    return renderpass_params;
}

} // namespace Vulkan