summaryrefslogtreecommitdiffstats
path: root/src/video_core/renderer_vulkan/vk_pipeline_cache.cpp
blob: bcb7dd2eb44c0eb4c32c391a8f6b8dfb90068e4b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <cstddef>
#include <memory>
#include <vector>

#include "common/bit_cast.h"
#include "common/cityhash.h"
#include "common/microprofile.h"
#include "core/core.h"
#include "core/memory.h"
#include "shader_recompiler/environment.h"
#include "shader_recompiler/recompiler.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_vulkan/fixed_pipeline_state.h"
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/vk_compute_pipeline.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h"
#include "video_core/renderer_vulkan/vk_pipeline_cache.h"
#include "video_core/renderer_vulkan/vk_rasterizer.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_shader_util.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h"
#include "video_core/shader_cache.h"
#include "video_core/shader_notify.h"
#include "video_core/vulkan_common/vulkan_device.h"
#include "video_core/vulkan_common/vulkan_wrapper.h"

namespace Vulkan {
MICROPROFILE_DECLARE(Vulkan_PipelineCache);

using Tegra::Engines::ShaderType;

namespace {
class Environment final : public Shader::Environment {
public:
    explicit Environment(Tegra::Engines::KeplerCompute& kepler_compute_,
                         Tegra::MemoryManager& gpu_memory_, GPUVAddr program_base_)
        : kepler_compute{kepler_compute_}, gpu_memory{gpu_memory_}, program_base{program_base_} {}

    ~Environment() override = default;

    [[nodiscard]] std::optional<u128> Analyze(u32 start_address) {
        const std::optional<u64> size{TryFindSize(start_address)};
        if (!size) {
            return std::nullopt;
        }
        cached_lowest = start_address;
        cached_highest = start_address + static_cast<u32>(*size);
        return Common::CityHash128(reinterpret_cast<const char*>(code.data()), code.size());
    }

    [[nodiscard]] size_t ShaderSize() const noexcept {
        return read_highest - read_lowest + INST_SIZE;
    }

    [[nodiscard]] u128 ComputeHash() const {
        const size_t size{ShaderSize()};
        auto data = std::make_unique<u64[]>(size);
        gpu_memory.ReadBlock(program_base + read_lowest, data.get(), size);
        return Common::CityHash128(reinterpret_cast<const char*>(data.get()), size);
    }

    u64 ReadInstruction(u32 address) override {
        read_lowest = std::min(read_lowest, address);
        read_highest = std::max(read_highest, address);

        if (address >= cached_lowest && address < cached_highest) {
            return code[address / INST_SIZE];
        }
        return gpu_memory.Read<u64>(program_base + address);
    }

    u32 TextureBoundBuffer() override {
        return kepler_compute.regs.tex_cb_index;
    }

    std::array<u32, 3> WorkgroupSize() override {
        const auto& qmd{kepler_compute.launch_description};
        return {qmd.block_dim_x, qmd.block_dim_y, qmd.block_dim_z};
    }

private:
    static constexpr size_t INST_SIZE = sizeof(u64);
    static constexpr size_t BLOCK_SIZE = 0x1000;
    static constexpr size_t MAXIMUM_SIZE = 0x100000;

    static constexpr u64 SELF_BRANCH_A = 0xE2400FFFFF87000FULL;
    static constexpr u64 SELF_BRANCH_B = 0xE2400FFFFF07000FULL;

    std::optional<u64> TryFindSize(u32 start_address) {
        GPUVAddr guest_addr = program_base + start_address;
        size_t offset = 0;
        size_t size = BLOCK_SIZE;
        while (size <= MAXIMUM_SIZE) {
            code.resize(size / INST_SIZE);
            u64* const data = code.data() + offset / INST_SIZE;
            gpu_memory.ReadBlock(guest_addr, data, BLOCK_SIZE);
            for (size_t i = 0; i < BLOCK_SIZE; i += INST_SIZE) {
                const u64 inst = data[i / INST_SIZE];
                if (inst == SELF_BRANCH_A || inst == SELF_BRANCH_B) {
                    return offset + i;
                }
            }
            guest_addr += BLOCK_SIZE;
            size += BLOCK_SIZE;
            offset += BLOCK_SIZE;
        }
        return std::nullopt;
    }

    Tegra::Engines::KeplerCompute& kepler_compute;
    Tegra::MemoryManager& gpu_memory;
    GPUVAddr program_base;

    u32 read_lowest = 0;
    u32 read_highest = 0;

    std::vector<u64> code;
    u32 cached_lowest = std::numeric_limits<u32>::max();
    u32 cached_highest = 0;
};
} // Anonymous namespace

size_t ComputePipelineCacheKey::Hash() const noexcept {
    const u64 hash = Common::CityHash64(reinterpret_cast<const char*>(this), sizeof *this);
    return static_cast<size_t>(hash);
}

bool ComputePipelineCacheKey::operator==(const ComputePipelineCacheKey& rhs) const noexcept {
    return std::memcmp(&rhs, this, sizeof *this) == 0;
}

PipelineCache::PipelineCache(RasterizerVulkan& rasterizer_, Tegra::GPU& gpu_,
                             Tegra::Engines::Maxwell3D& maxwell3d_,
                             Tegra::Engines::KeplerCompute& kepler_compute_,
                             Tegra::MemoryManager& gpu_memory_, const Device& device_,
                             VKScheduler& scheduler_, VKDescriptorPool& descriptor_pool_,
                             VKUpdateDescriptorQueue& update_descriptor_queue_)
    : VideoCommon::ShaderCache<ShaderInfo>{rasterizer_}, gpu{gpu_}, maxwell3d{maxwell3d_},
      kepler_compute{kepler_compute_}, gpu_memory{gpu_memory_}, device{device_},
      scheduler{scheduler_}, descriptor_pool{descriptor_pool_}, update_descriptor_queue{
                                                                    update_descriptor_queue_} {}

PipelineCache::~PipelineCache() = default;

ComputePipeline* PipelineCache::CurrentComputePipeline() {
    MICROPROFILE_SCOPE(Vulkan_PipelineCache);

    const GPUVAddr program_base{kepler_compute.regs.code_loc.Address()};
    const auto& qmd{kepler_compute.launch_description};
    const GPUVAddr shader_addr{program_base + qmd.program_start};
    const std::optional<VAddr> cpu_shader_addr{gpu_memory.GpuToCpuAddress(shader_addr)};
    if (!cpu_shader_addr) {
        return nullptr;
    }
    ShaderInfo* const shader{TryGet(*cpu_shader_addr)};
    if (!shader) {
        return CreateComputePipelineWithoutShader(*cpu_shader_addr);
    }
    const ComputePipelineCacheKey key{MakeComputePipelineKey(shader->unique_hash)};
    const auto [pair, is_new]{compute_cache.try_emplace(key)};
    auto& pipeline{pair->second};
    if (!is_new) {
        return &pipeline;
    }
    pipeline = CreateComputePipeline(shader);
    shader->compute_users.push_back(key);
    return &pipeline;
}

ComputePipeline PipelineCache::CreateComputePipeline(ShaderInfo* shader_info) {
    const GPUVAddr program_base{kepler_compute.regs.code_loc.Address()};
    const auto& qmd{kepler_compute.launch_description};
    Environment env{kepler_compute, gpu_memory, program_base};
    if (const std::optional<u128> cached_hash{env.Analyze(qmd.program_start)}) {
        // TODO: Load from cache
    }
    const auto& float_control{device.FloatControlProperties()};
    const Shader::Profile profile{
        .unified_descriptor_binding = true,
        .support_float_controls = true,
        .support_separate_denorm_behavior = float_control.denormBehaviorIndependence ==
                                            VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR,
        .support_separate_rounding_mode =
            float_control.roundingModeIndependence == VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR,
        .support_fp16_denorm_preserve = float_control.shaderDenormPreserveFloat16 != VK_FALSE,
        .support_fp32_denorm_preserve = float_control.shaderDenormPreserveFloat32 != VK_FALSE,
        .support_fp16_denorm_flush = float_control.shaderDenormFlushToZeroFloat16 != VK_FALSE,
        .support_fp32_denorm_flush = float_control.shaderDenormFlushToZeroFloat32 != VK_FALSE,
        .has_broken_spirv_clamp = true, // TODO: is_intel
    };
    const auto [info, code]{Shader::RecompileSPIRV(profile, env, qmd.program_start)};
    /*
    FILE* file = fopen("D:\\shader.spv", "wb");
    fwrite(code.data(), 4, code.size(), file);
    fclose(file);
    std::system("spirv-dis D:\\shader.spv");
    */
    shader_info->unique_hash = env.ComputeHash();
    shader_info->size_bytes = env.ShaderSize();
    return ComputePipeline{device, descriptor_pool, update_descriptor_queue, info,
                           BuildShader(device, code)};
}

ComputePipeline* PipelineCache::CreateComputePipelineWithoutShader(VAddr shader_cpu_addr) {
    ShaderInfo shader;
    ComputePipeline pipeline{CreateComputePipeline(&shader)};
    const ComputePipelineCacheKey key{MakeComputePipelineKey(shader.unique_hash)};
    shader.compute_users.push_back(key);
    pipeline.AddRef();

    const size_t size_bytes{shader.size_bytes};
    Register(std::make_unique<ShaderInfo>(std::move(shader)), shader_cpu_addr, size_bytes);
    return &compute_cache.emplace(key, std::move(pipeline)).first->second;
}

ComputePipelineCacheKey PipelineCache::MakeComputePipelineKey(u128 unique_hash) const {
    const auto& qmd{kepler_compute.launch_description};
    return {
        .unique_hash = unique_hash,
        .shared_memory_size = qmd.shared_alloc,
        .workgroup_size{qmd.block_dim_x, qmd.block_dim_y, qmd.block_dim_z},
    };
}

void PipelineCache::OnShaderRemoval(ShaderInfo* shader) {
    for (const ComputePipelineCacheKey& key : shader->compute_users) {
        const auto it = compute_cache.find(key);
        ASSERT(it != compute_cache.end());

        Pipeline& pipeline = it->second;
        if (pipeline.RemoveRef()) {
            // Wait for the pipeline to be free of GPU usage before destroying it
            scheduler.Wait(pipeline.UsageTick());
            compute_cache.erase(it);
        }
    }
}

} // namespace Vulkan