summaryrefslogtreecommitdiffstats
path: root/src/video_core/renderer_opengl/gl_shader_decompiler.cpp
blob: bbccf0bfd4bd52c6c5d7bf8c92e40a62ff8cd19b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <map>
#include <set>
#include <string>
#include <string_view>
#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h"

namespace GLShader {
namespace Decompiler {

using Tegra::Shader::Attribute;
using Tegra::Shader::Instruction;
using Tegra::Shader::LogicOperation;
using Tegra::Shader::OpCode;
using Tegra::Shader::Register;
using Tegra::Shader::Sampler;
using Tegra::Shader::SubOp;

constexpr u32 PROGRAM_END = MAX_PROGRAM_CODE_LENGTH;

class DecompileFail : public std::runtime_error {
public:
    using std::runtime_error::runtime_error;
};

/// Describes the behaviour of code path of a given entry point and a return point.
enum class ExitMethod {
    Undetermined, ///< Internal value. Only occur when analyzing JMP loop.
    AlwaysReturn, ///< All code paths reach the return point.
    Conditional,  ///< Code path reaches the return point or an END instruction conditionally.
    AlwaysEnd,    ///< All code paths reach a END instruction.
};

/// A subroutine is a range of code refereced by a CALL, IF or LOOP instruction.
struct Subroutine {
    /// Generates a name suitable for GLSL source code.
    std::string GetName() const {
        return "sub_" + std::to_string(begin) + '_' + std::to_string(end);
    }

    u32 begin;              ///< Entry point of the subroutine.
    u32 end;                ///< Return point of the subroutine.
    ExitMethod exit_method; ///< Exit method of the subroutine.
    std::set<u32> labels;   ///< Addresses refereced by JMP instructions.

    bool operator<(const Subroutine& rhs) const {
        return std::tie(begin, end) < std::tie(rhs.begin, rhs.end);
    }
};

/// Analyzes shader code and produces a set of subroutines.
class ControlFlowAnalyzer {
public:
    ControlFlowAnalyzer(const ProgramCode& program_code, u32 main_offset)
        : program_code(program_code) {

        // Recursively finds all subroutines.
        const Subroutine& program_main = AddSubroutine(main_offset, PROGRAM_END);
        if (program_main.exit_method != ExitMethod::AlwaysEnd)
            throw DecompileFail("Program does not always end");
    }

    std::set<Subroutine> GetSubroutines() {
        return std::move(subroutines);
    }

private:
    const ProgramCode& program_code;
    std::set<Subroutine> subroutines;
    std::map<std::pair<u32, u32>, ExitMethod> exit_method_map;

    /// Adds and analyzes a new subroutine if it is not added yet.
    const Subroutine& AddSubroutine(u32 begin, u32 end) {
        auto iter = subroutines.find(Subroutine{begin, end});
        if (iter != subroutines.end())
            return *iter;

        Subroutine subroutine{begin, end};
        subroutine.exit_method = Scan(begin, end, subroutine.labels);
        if (subroutine.exit_method == ExitMethod::Undetermined)
            throw DecompileFail("Recursive function detected");
        return *subroutines.insert(std::move(subroutine)).first;
    }

    /// Merges exit method of two parallel branches.
    static ExitMethod ParallelExit(ExitMethod a, ExitMethod b) {
        if (a == ExitMethod::Undetermined) {
            return b;
        }
        if (b == ExitMethod::Undetermined) {
            return a;
        }
        if (a == b) {
            return a;
        }
        return ExitMethod::Conditional;
    }

    /// Scans a range of code for labels and determines the exit method.
    ExitMethod Scan(u32 begin, u32 end, std::set<u32>& labels) {
        auto [iter, inserted] =
            exit_method_map.emplace(std::make_pair(begin, end), ExitMethod::Undetermined);
        ExitMethod& exit_method = iter->second;
        if (!inserted)
            return exit_method;

        for (u32 offset = begin; offset != end && offset != PROGRAM_END; ++offset) {
            const Instruction instr = {program_code[offset]};
            if (const auto opcode = OpCode::Decode(instr)) {
                switch (opcode->GetId()) {
                case OpCode::Id::EXIT: {
                    // The EXIT instruction can be predicated, which means that the shader can
                    // conditionally end on this instruction. We have to consider the case where the
                    // condition is not met and check the exit method of that other basic block.
                    using Tegra::Shader::Pred;
                    if (instr.pred.pred_index == static_cast<u64>(Pred::UnusedIndex)) {
                        return exit_method = ExitMethod::AlwaysEnd;
                    } else {
                        ExitMethod not_met = Scan(offset + 1, end, labels);
                        return exit_method = ParallelExit(ExitMethod::AlwaysEnd, not_met);
                    }
                }
                case OpCode::Id::BRA: {
                    u32 target = offset + instr.bra.GetBranchTarget();
                    labels.insert(target);
                    ExitMethod no_jmp = Scan(offset + 1, end, labels);
                    ExitMethod jmp = Scan(target, end, labels);
                    return exit_method = ParallelExit(no_jmp, jmp);
                }
                }
            }
        }
        return exit_method = ExitMethod::AlwaysReturn;
    }
};

class ShaderWriter {
public:
    void AddLine(std::string_view text) {
        DEBUG_ASSERT(scope >= 0);
        if (!text.empty()) {
            AppendIndentation();
        }
        shader_source += text;
        AddNewLine();
    }

    void AddLine(char character) {
        DEBUG_ASSERT(scope >= 0);
        AppendIndentation();
        shader_source += character;
        AddNewLine();
    }

    void AddNewLine() {
        DEBUG_ASSERT(scope >= 0);
        shader_source += '\n';
    }

    std::string GetResult() {
        return std::move(shader_source);
    }

    int scope = 0;

private:
    void AppendIndentation() {
        shader_source.append(static_cast<size_t>(scope) * 4, ' ');
    }

    std::string shader_source;
};

/**
 * Represents an emulated shader register, used to track the state of that register for emulation
 * with GLSL. At this time, a register can be used as a float or an integer. This class is used for
 * bookkeeping within the GLSL program.
 */
class GLSLRegister {
public:
    enum class Type {
        Float,
        Integer,
        UnsignedInteger,
    };

    GLSLRegister(size_t index, ShaderWriter& shader) : index{index}, shader{shader} {}

    /// Gets the GLSL type string for a register
    static std::string GetTypeString(Type type) {
        switch (type) {
        case Type::Float:
            return "float";
        case Type::Integer:
            return "int";
        case Type::UnsignedInteger:
            return "uint";
        }

        UNREACHABLE();
        return {};
    }

    /// Gets the GLSL register prefix string, used for declarations and referencing
    static std::string GetPrefixString(Type type) {
        return "reg_" + GetTypeString(type) + '_';
    }

    /// Returns a GLSL string representing the current state of the register
    const std::string GetActiveString() {
        declr_type.insert(active_type);
        return GetPrefixString(active_type) + std::to_string(index);
    }

    /// Returns true if the active type is a float
    bool IsFloat() const {
        return active_type == Type::Float;
    }

    /// Returns true if the active type is an integer
    bool IsInteger() const {
        return active_type == Type::Integer;
    }

    /// Returns the current active type of the register
    Type GetActiveType() const {
        return active_type;
    }

    /// Returns the index of the register
    size_t GetIndex() const {
        return index;
    }

    /// Returns a set of the declared types of the register
    const std::set<Type>& DeclaredTypes() const {
        return declr_type;
    }

private:
    const size_t index;
    const std::string float_str;
    const std::string integer_str;
    ShaderWriter& shader;
    Type active_type{Type::Float};
    std::set<Type> declr_type;
};

/**
 * Used to manage shader registers that are emulated with GLSL. This class keeps track of the state
 * of all registers (e.g. whether they are currently being used as Floats or Integers), and
 * generates the necessary GLSL code to perform conversions as needed. This class is used for
 * bookkeeping within the GLSL program.
 */
class GLSLRegisterManager {
public:
    GLSLRegisterManager(ShaderWriter& shader, ShaderWriter& declarations,
                        const Maxwell3D::Regs::ShaderStage& stage)
        : shader{shader}, declarations{declarations}, stage{stage} {
        BuildRegisterList();
    }

    /**
     * Returns code that does an integer size conversion for the specified size.
     * @param value Value to perform integer size conversion on.
     * @param size Register size to use for conversion instructions.
     * @returns GLSL string corresponding to the value converted to the specified size.
     */
    static std::string ConvertIntegerSize(const std::string& value, Register::Size size) {
        switch (size) {
        case Register::Size::Byte:
            return "((" + value + " << 24) >> 24)";
        case Register::Size::Short:
            return "((" + value + " << 16) >> 16)";
        case Register::Size::Word:
            // Default - do nothing
            return value;
        default:
            NGLOG_CRITICAL(HW_GPU, "Unimplemented conversion size {}", static_cast<u32>(size));
            UNREACHABLE();
        }
    }

    /**
     * Gets a register as an float.
     * @param reg The register to get.
     * @param elem The element to use for the operation.
     * @returns GLSL string corresponding to the register as a float.
     */
    std::string GetRegisterAsFloat(const Register& reg, unsigned elem = 0) {
        ASSERT(regs[reg].IsFloat());
        return GetRegister(reg, elem);
    }

    /**
     * Gets a register as an integer.
     * @param reg The register to get.
     * @param elem The element to use for the operation.
     * @param is_signed Whether to get the register as a signed (or unsigned) integer.
     * @param size Register size to use for conversion instructions.
     * @returns GLSL string corresponding to the register as an integer.
     */
    std::string GetRegisterAsInteger(const Register& reg, unsigned elem = 0, bool is_signed = true,
                                     Register::Size size = Register::Size::Word) {
        const std::string func = GetGLSLConversionFunc(
            GLSLRegister::Type::Float,
            is_signed ? GLSLRegister::Type::Integer : GLSLRegister::Type::UnsignedInteger);

        std::string value = func + '(' + GetRegister(reg, elem) + ')';

        return ConvertIntegerSize(value, size);
    }

    /**
     * Writes code that does a register assignment to float value operation.
     * @param reg The destination register to use.
     * @param elem The element to use for the operation.
     * @param value The code representing the value to assign.
     * @param dest_num_components Number of components in the destination.
     * @param value_num_components Number of components in the value.
     * @param is_saturated Optional, when True, saturates the provided value.
     * @param dest_elem Optional, the destination element to use for the operation.
     */
    void SetRegisterToFloat(const Register& reg, u64 elem, const std::string& value,
                            u64 dest_num_components, u64 value_num_components,
                            bool is_saturated = false, u64 dest_elem = 0) {

        SetRegister(reg, elem, is_saturated ? "clamp(" + value + ", 0.0, 1.0)" : value,
                    dest_num_components, value_num_components, dest_elem);
    }

    /**
     * Writes code that does a register assignment to integer value operation.
     * @param reg The destination register to use.
     * @param elem The element to use for the operation.
     * @param value The code representing the value to assign.
     * @param dest_num_components Number of components in the destination.
     * @param value_num_components Number of components in the value.
     * @param is_saturated Optional, when True, saturates the provided value.
     * @param dest_elem Optional, the destination element to use for the operation.
     * @param size Register size to use for conversion instructions.
     */
    void SetRegisterToInteger(const Register& reg, bool is_signed, u64 elem,
                              const std::string& value, u64 dest_num_components,
                              u64 value_num_components, bool is_saturated = false,
                              u64 dest_elem = 0, Register::Size size = Register::Size::Word) {
        ASSERT_MSG(!is_saturated, "Unimplemented");

        const std::string func = GetGLSLConversionFunc(
            is_signed ? GLSLRegister::Type::Integer : GLSLRegister::Type::UnsignedInteger,
            GLSLRegister::Type::Float);

        SetRegister(reg, elem, func + '(' + ConvertIntegerSize(value, size) + ')',
                    dest_num_components, value_num_components, dest_elem);
    }

    /**
     * Writes code that does a register assignment to input attribute operation. Input attributes
     * are stored as floats, so this may require conversion.
     * @param reg The destination register to use.
     * @param elem The element to use for the operation.
     * @param attribute The input attribute to use as the source value.
     */
    void SetRegisterToInputAttibute(const Register& reg, u64 elem, Attribute::Index attribute) {
        std::string dest = GetRegisterAsFloat(reg);
        std::string src = GetInputAttribute(attribute) + GetSwizzle(elem);

        if (regs[reg].IsFloat()) {
            shader.AddLine(dest + " = " + src + ';');
        } else if (regs[reg].IsInteger()) {
            shader.AddLine(dest + " = floatBitsToInt(" + src + ");");
        } else {
            UNREACHABLE();
        }
    }

    /**
     * Writes code that does a output attribute assignment to register operation. Output attributes
     * are stored as floats, so this may require conversion.
     * @param attribute The destination output attribute.
     * @param elem The element to use for the operation.
     * @param reg The register to use as the source value.
     */
    void SetOutputAttributeToRegister(Attribute::Index attribute, u64 elem, const Register& reg) {
        std::string dest = GetOutputAttribute(attribute) + GetSwizzle(elem);
        std::string src = GetRegisterAsFloat(reg);
        ASSERT_MSG(regs[reg].IsFloat(), "Output attributes must be set to a float");
        shader.AddLine(dest + " = " + src + ';');
    }

    /// Generates code representing a uniform (C buffer) register, interpreted as the input type.
    std::string GetUniform(u64 index, u64 offset, GLSLRegister::Type type) {
        declr_const_buffers[index].MarkAsUsed(index, offset, stage);
        std::string value = 'c' + std::to_string(index) + '[' + std::to_string(offset / 4) + "][" +
                            std::to_string(offset % 4) + ']';

        if (type == GLSLRegister::Type::Float) {
            return value;
        } else if (type == GLSLRegister::Type::Integer) {
            return "floatBitsToInt(" + value + ')';
        } else {
            UNREACHABLE();
        }
    }

    std::string GetUniformIndirect(u64 index, s64 offset, const Register& index_reg,
                                   GLSLRegister::Type type) {
        declr_const_buffers[index].MarkAsUsedIndirect(index, stage);

        std::string final_offset = "((floatBitsToInt(" + GetRegister(index_reg, 0) + ") + " +
                                   std::to_string(offset) + ") / 4)";

        std::string value =
            'c' + std::to_string(index) + '[' + final_offset + " / 4][" + final_offset + " % 4]";

        if (type == GLSLRegister::Type::Float) {
            return value;
        } else if (type == GLSLRegister::Type::Integer) {
            return "floatBitsToInt(" + value + ')';
        } else {
            UNREACHABLE();
        }
    }

    /// Add declarations for registers
    void GenerateDeclarations() {
        for (const auto& reg : regs) {
            for (const auto& type : reg.DeclaredTypes()) {
                declarations.AddLine(GLSLRegister::GetTypeString(type) + ' ' +
                                     GLSLRegister::GetPrefixString(type) +
                                     std::to_string(reg.GetIndex()) + " = 0;");
            }
        }
        declarations.AddNewLine();

        for (const auto& index : declr_input_attribute) {
            // TODO(bunnei): Use proper number of elements for these
            declarations.AddLine("layout(location = " +
                                 std::to_string(static_cast<u32>(index) -
                                                static_cast<u32>(Attribute::Index::Attribute_0)) +
                                 ") in vec4 " + GetInputAttribute(index) + ';');
        }
        declarations.AddNewLine();

        for (const auto& index : declr_output_attribute) {
            // TODO(bunnei): Use proper number of elements for these
            declarations.AddLine("layout(location = " +
                                 std::to_string(static_cast<u32>(index) -
                                                static_cast<u32>(Attribute::Index::Attribute_0)) +
                                 ") out vec4 " + GetOutputAttribute(index) + ';');
        }
        declarations.AddNewLine();

        unsigned const_buffer_layout = 0;
        for (const auto& entry : GetConstBuffersDeclarations()) {
            declarations.AddLine("layout(std140) uniform " + entry.GetName());
            declarations.AddLine('{');
            declarations.AddLine("    vec4 c" + std::to_string(entry.GetIndex()) +
                                 "[MAX_CONSTBUFFER_ELEMENTS];");
            declarations.AddLine("};");
            declarations.AddNewLine();
            ++const_buffer_layout;
        }
        declarations.AddNewLine();

        // Append the sampler2D array for the used textures.
        size_t num_samplers = GetSamplers().size();
        if (num_samplers > 0) {
            declarations.AddLine("uniform sampler2D " + SamplerEntry::GetArrayName(stage) + '[' +
                                 std::to_string(num_samplers) + "];");
            declarations.AddNewLine();
        }
    }

    /// Returns a list of constant buffer declarations
    std::vector<ConstBufferEntry> GetConstBuffersDeclarations() const {
        std::vector<ConstBufferEntry> result;
        std::copy_if(declr_const_buffers.begin(), declr_const_buffers.end(),
                     std::back_inserter(result), [](const auto& entry) { return entry.IsUsed(); });
        return result;
    }

    /// Returns a list of samplers used in the shader
    std::vector<SamplerEntry> GetSamplers() const {
        return used_samplers;
    }

    /// Returns the GLSL sampler used for the input shader sampler, and creates a new one if
    /// necessary.
    std::string AccessSampler(const Sampler& sampler) {
        size_t offset = static_cast<size_t>(sampler.index.Value());

        // If this sampler has already been used, return the existing mapping.
        auto itr =
            std::find_if(used_samplers.begin(), used_samplers.end(),
                         [&](const SamplerEntry& entry) { return entry.GetOffset() == offset; });

        if (itr != used_samplers.end()) {
            return itr->GetName();
        }

        // Otherwise create a new mapping for this sampler
        size_t next_index = used_samplers.size();
        SamplerEntry entry{stage, offset, next_index};
        used_samplers.emplace_back(entry);
        return entry.GetName();
    }

private:
    /// Build GLSL conversion function, e.g. floatBitsToInt, intBitsToFloat, etc.
    const std::string GetGLSLConversionFunc(GLSLRegister::Type src, GLSLRegister::Type dest) const {
        const std::string src_type = GLSLRegister::GetTypeString(src);
        std::string dest_type = GLSLRegister::GetTypeString(dest);
        dest_type[0] = toupper(dest_type[0]);
        return src_type + "BitsTo" + dest_type;
    }

    /// Generates code representing a temporary (GPR) register.
    std::string GetRegister(const Register& reg, unsigned elem) {
        if (reg == Register::ZeroIndex) {
            return "0";
        }

        return regs[reg.GetSwizzledIndex(elem)].GetActiveString();
    }

    /**
     * Writes code that does a register assignment to value operation.
     * @param reg The destination register to use.
     * @param elem The element to use for the operation.
     * @param value The code representing the value to assign.
     * @param dest_num_components Number of components in the destination.
     * @param value_num_components Number of components in the value.
     * @param dest_elem Optional, the destination element to use for the operation.
     */
    void SetRegister(const Register& reg, u64 elem, const std::string& value,
                     u64 dest_num_components, u64 value_num_components, u64 dest_elem) {
        std::string dest = GetRegister(reg, static_cast<u32>(dest_elem));
        if (dest_num_components > 1) {
            dest += GetSwizzle(elem);
        }

        std::string src = '(' + value + ')';
        if (value_num_components > 1) {
            src += GetSwizzle(elem);
        }

        shader.AddLine(dest + " = " + src + ';');
    }

    /// Build the GLSL register list.
    void BuildRegisterList() {
        for (size_t index = 0; index < Register::NumRegisters; ++index) {
            regs.emplace_back(index, shader);
        }
    }

    /// Generates code representing an input attribute register.
    std::string GetInputAttribute(Attribute::Index attribute) {
        switch (attribute) {
        case Attribute::Index::Position:
            return "position";
        case Attribute::Index::TessCoordInstanceIDVertexID:
            // TODO(Subv): Find out what the values are for the first two elements when inside a
            // vertex shader, and what's the value of the fourth element when inside a Tess Eval
            // shader.
            ASSERT(stage == Maxwell3D::Regs::ShaderStage::Vertex);
            return "vec4(0, 0, uintBitsToFloat(gl_InstanceID), uintBitsToFloat(gl_VertexID))";
        default:
            const u32 index{static_cast<u32>(attribute) -
                            static_cast<u32>(Attribute::Index::Attribute_0)};
            if (attribute >= Attribute::Index::Attribute_0) {
                declr_input_attribute.insert(attribute);
                return "input_attribute_" + std::to_string(index);
            }

            NGLOG_CRITICAL(HW_GPU, "Unhandled input attribute: {}", index);
            UNREACHABLE();
        }
    }

    /// Generates code representing an output attribute register.
    std::string GetOutputAttribute(Attribute::Index attribute) {
        switch (attribute) {
        case Attribute::Index::Position:
            return "position";
        default:
            const u32 index{static_cast<u32>(attribute) -
                            static_cast<u32>(Attribute::Index::Attribute_0)};
            if (attribute >= Attribute::Index::Attribute_0) {
                declr_output_attribute.insert(attribute);
                return "output_attribute_" + std::to_string(index);
            }

            NGLOG_CRITICAL(HW_GPU, "Unhandled output attribute: {}", index);
            UNREACHABLE();
        }
    }

    /// Generates code to use for a swizzle operation.
    static std::string GetSwizzle(u64 elem) {
        ASSERT(elem <= 3);
        std::string swizzle = ".";
        swizzle += "xyzw"[elem];
        return swizzle;
    }

    ShaderWriter& shader;
    ShaderWriter& declarations;
    std::vector<GLSLRegister> regs;
    std::set<Attribute::Index> declr_input_attribute;
    std::set<Attribute::Index> declr_output_attribute;
    std::array<ConstBufferEntry, Maxwell3D::Regs::MaxConstBuffers> declr_const_buffers;
    std::vector<SamplerEntry> used_samplers;
    const Maxwell3D::Regs::ShaderStage& stage;
};

class GLSLGenerator {
public:
    GLSLGenerator(const std::set<Subroutine>& subroutines, const ProgramCode& program_code,
                  u32 main_offset, Maxwell3D::Regs::ShaderStage stage)
        : subroutines(subroutines), program_code(program_code), main_offset(main_offset),
          stage(stage) {

        Generate();
    }

    std::string GetShaderCode() {
        return declarations.GetResult() + shader.GetResult();
    }

    /// Returns entries in the shader that are useful for external functions
    ShaderEntries GetEntries() const {
        return {regs.GetConstBuffersDeclarations(), regs.GetSamplers()};
    }

private:
    /// Gets the Subroutine object corresponding to the specified address.
    const Subroutine& GetSubroutine(u32 begin, u32 end) const {
        auto iter = subroutines.find(Subroutine{begin, end});
        ASSERT(iter != subroutines.end());
        return *iter;
    }

    /// Generates code representing a 19-bit immediate value
    static std::string GetImmediate19(const Instruction& instr) {
        return std::to_string(instr.alu.GetImm20_19());
    }

    /// Generates code representing a 32-bit immediate value
    static std::string GetImmediate32(const Instruction& instr) {
        return std::to_string(instr.alu.GetImm20_32());
    }

    /// Generates code representing a texture sampler.
    std::string GetSampler(const Sampler& sampler) {
        return regs.AccessSampler(sampler);
    }

    /**
     * Adds code that calls a subroutine.
     * @param subroutine the subroutine to call.
     */
    void CallSubroutine(const Subroutine& subroutine) {
        if (subroutine.exit_method == ExitMethod::AlwaysEnd) {
            shader.AddLine(subroutine.GetName() + "();");
            shader.AddLine("return true;");
        } else if (subroutine.exit_method == ExitMethod::Conditional) {
            shader.AddLine("if (" + subroutine.GetName() + "()) { return true; }");
        } else {
            shader.AddLine(subroutine.GetName() + "();");
        }
    }

    /*
     * Writes code that assigns a predicate boolean variable.
     * @param pred The id of the predicate to write to.
     * @param value The expression value to assign to the predicate.
     */
    void SetPredicate(u64 pred, const std::string& value) {
        using Tegra::Shader::Pred;
        // Can't assign to the constant predicate.
        ASSERT(pred != static_cast<u64>(Pred::UnusedIndex));

        std::string variable = 'p' + std::to_string(pred);
        shader.AddLine(variable + " = " + value + ';');
        declr_predicates.insert(std::move(variable));
    }

    /*
     * Returns the condition to use in the 'if' for a predicated instruction.
     * @param instr Instruction to generate the if condition for.
     * @returns string containing the predicate condition.
     */
    std::string GetPredicateCondition(u64 index, bool negate) const {
        using Tegra::Shader::Pred;
        std::string variable;

        // Index 7 is used as an 'Always True' condition.
        if (index == static_cast<u64>(Pred::UnusedIndex))
            variable = "true";
        else
            variable = 'p' + std::to_string(index);

        if (negate) {
            return "!(" + variable + ')';
        }

        return variable;
    }

    /**
     * Returns the comparison string to use to compare two values in the 'set' family of
     * instructions.
     * @param condition The condition used in the 'set'-family instruction.
     * @param op_a First operand to use for the comparison.
     * @param op_b Second operand to use for the comparison.
     * @returns String corresponding to the GLSL operator that matches the desired comparison.
     */
    std::string GetPredicateComparison(Tegra::Shader::PredCondition condition,
                                       const std::string& op_a, const std::string& op_b) const {
        using Tegra::Shader::PredCondition;
        static const std::unordered_map<PredCondition, const char*> PredicateComparisonStrings = {
            {PredCondition::LessThan, "<"},         {PredCondition::Equal, "=="},
            {PredCondition::LessEqual, "<="},       {PredCondition::GreaterThan, ">"},
            {PredCondition::NotEqual, "!="},        {PredCondition::GreaterEqual, ">="},
            {PredCondition::NotEqualWithNan, "!="},
        };

        const auto& comparison{PredicateComparisonStrings.find(condition)};
        ASSERT_MSG(comparison != PredicateComparisonStrings.end(),
                   "Unknown predicate comparison operation");

        std::string predicate{'(' + op_a + ") " + comparison->second + " (" + op_b + ')'};
        if (condition == PredCondition::NotEqualWithNan) {
            predicate += " || isnan(" + op_a + ") || isnan(" + op_b + ')';
        }

        return predicate;
    }

    /**
     * Returns the operator string to use to combine two predicates in the 'setp' family of
     * instructions.
     * @params operation The operator used in the 'setp'-family instruction.
     * @returns String corresponding to the GLSL operator that matches the desired operator.
     */
    std::string GetPredicateCombiner(Tegra::Shader::PredOperation operation) const {
        using Tegra::Shader::PredOperation;
        static const std::unordered_map<PredOperation, const char*> PredicateOperationStrings = {
            {PredOperation::And, "&&"},
            {PredOperation::Or, "||"},
            {PredOperation::Xor, "^^"},
        };

        auto op = PredicateOperationStrings.find(operation);
        ASSERT_MSG(op != PredicateOperationStrings.end(), "Unknown predicate operation");
        return op->second;
    }

    /*
     * Returns whether the instruction at the specified offset is a 'sched' instruction.
     * Sched instructions always appear before a sequence of 3 instructions.
     */
    bool IsSchedInstruction(u32 offset) const {
        // sched instructions appear once every 4 instructions.
        static constexpr size_t SchedPeriod = 4;
        u32 absolute_offset = offset - main_offset;

        return (absolute_offset % SchedPeriod) == 0;
    }

    void WriteLogicOperation(Register dest, LogicOperation logic_op, const std::string& op_a,
                             const std::string& op_b) {
        switch (logic_op) {
        case LogicOperation::And: {
            regs.SetRegisterToInteger(dest, true, 0, '(' + op_a + " & " + op_b + ')', 1, 1);
            break;
        }
        case LogicOperation::Or: {
            regs.SetRegisterToInteger(dest, true, 0, '(' + op_a + " | " + op_b + ')', 1, 1);
            break;
        }
        case LogicOperation::Xor: {
            regs.SetRegisterToInteger(dest, true, 0, '(' + op_a + " ^ " + op_b + ')', 1, 1);
            break;
        }
        case LogicOperation::PassB: {
            regs.SetRegisterToInteger(dest, true, 0, op_b, 1, 1);
            break;
        }
        default:
            NGLOG_CRITICAL(HW_GPU, "Unimplemented logic operation: {}", static_cast<u32>(logic_op));
            UNREACHABLE();
        }
    }

    /**
     * Compiles a single instruction from Tegra to GLSL.
     * @param offset the offset of the Tegra shader instruction.
     * @return the offset of the next instruction to execute. Usually it is the current offset
     * + 1. If the current instruction always terminates the program, returns PROGRAM_END.
     */
    u32 CompileInstr(u32 offset) {
        // Ignore sched instructions when generating code.
        if (IsSchedInstruction(offset)) {
            return offset + 1;
        }

        const Instruction instr = {program_code[offset]};
        const auto opcode = OpCode::Decode(instr);

        // Decoding failure
        if (!opcode) {
            NGLOG_CRITICAL(HW_GPU, "Unhandled instruction: {0:x}", instr.value);
            UNREACHABLE();
            return offset + 1;
        }

        shader.AddLine("// " + std::to_string(offset) + ": " + opcode->GetName());

        using Tegra::Shader::Pred;
        ASSERT_MSG(instr.pred.full_pred != Pred::NeverExecute,
                   "NeverExecute predicate not implemented");

        if (instr.pred.pred_index != static_cast<u64>(Pred::UnusedIndex)) {
            shader.AddLine("if (" +
                           GetPredicateCondition(instr.pred.pred_index, instr.negate_pred != 0) +
                           ')');
            shader.AddLine('{');
            ++shader.scope;
        }

        switch (opcode->GetType()) {
        case OpCode::Type::Arithmetic: {
            std::string op_a = regs.GetRegisterAsFloat(instr.gpr8);
            if (instr.alu.abs_a) {
                op_a = "abs(" + op_a + ')';
            }

            if (instr.alu.negate_a) {
                op_a = "-(" + op_a + ')';
            }

            std::string op_b;

            if (instr.is_b_imm) {
                op_b = GetImmediate19(instr);
            } else {
                if (instr.is_b_gpr) {
                    op_b = regs.GetRegisterAsFloat(instr.gpr20);
                } else {
                    op_b = regs.GetUniform(instr.cbuf34.index, instr.cbuf34.offset,
                                           GLSLRegister::Type::Float);
                }
            }

            if (instr.alu.abs_b) {
                op_b = "abs(" + op_b + ')';
            }

            if (instr.alu.negate_b) {
                op_b = "-(" + op_b + ')';
            }

            switch (opcode->GetId()) {
            case OpCode::Id::MOV_C:
            case OpCode::Id::MOV_R: {
                regs.SetRegisterToFloat(instr.gpr0, 0, op_b, 1, 1);
                break;
            }

            case OpCode::Id::FMUL_C:
            case OpCode::Id::FMUL_R:
            case OpCode::Id::FMUL_IMM: {
                regs.SetRegisterToFloat(instr.gpr0, 0, op_a + " * " + op_b, 1, 1,
                                        instr.alu.saturate_d);
                break;
            }
            case OpCode::Id::FADD_C:
            case OpCode::Id::FADD_R:
            case OpCode::Id::FADD_IMM: {
                regs.SetRegisterToFloat(instr.gpr0, 0, op_a + " + " + op_b, 1, 1,
                                        instr.alu.saturate_d);
                break;
            }
            case OpCode::Id::MUFU: {
                switch (instr.sub_op) {
                case SubOp::Cos:
                    regs.SetRegisterToFloat(instr.gpr0, 0, "cos(" + op_a + ')', 1, 1,
                                            instr.alu.saturate_d);
                    break;
                case SubOp::Sin:
                    regs.SetRegisterToFloat(instr.gpr0, 0, "sin(" + op_a + ')', 1, 1,
                                            instr.alu.saturate_d);
                    break;
                case SubOp::Ex2:
                    regs.SetRegisterToFloat(instr.gpr0, 0, "exp2(" + op_a + ')', 1, 1,
                                            instr.alu.saturate_d);
                    break;
                case SubOp::Lg2:
                    regs.SetRegisterToFloat(instr.gpr0, 0, "log2(" + op_a + ')', 1, 1,
                                            instr.alu.saturate_d);
                    break;
                case SubOp::Rcp:
                    regs.SetRegisterToFloat(instr.gpr0, 0, "1.0 / " + op_a, 1, 1,
                                            instr.alu.saturate_d);
                    break;
                case SubOp::Rsq:
                    regs.SetRegisterToFloat(instr.gpr0, 0, "inversesqrt(" + op_a + ')', 1, 1,
                                            instr.alu.saturate_d);
                    break;
                default:
                    NGLOG_CRITICAL(HW_GPU, "Unhandled MUFU sub op: {0:x}",
                                   static_cast<unsigned>(instr.sub_op.Value()));
                    UNREACHABLE();
                }
                break;
            }
            case OpCode::Id::FMNMX_C:
            case OpCode::Id::FMNMX_R:
            case OpCode::Id::FMNMX_IMM: {
                std::string condition =
                    GetPredicateCondition(instr.alu.fmnmx.pred, instr.alu.fmnmx.negate_pred != 0);
                std::string parameters = op_a + ',' + op_b;
                regs.SetRegisterToFloat(instr.gpr0, 0,
                                        '(' + condition + ") ? min(" + parameters + ") : max(" +
                                            parameters + ')',
                                        1, 1);
                break;
            }
            case OpCode::Id::RRO_C:
            case OpCode::Id::RRO_R:
            case OpCode::Id::RRO_IMM: {
                // Currently RRO is only implemented as a register move.
                // Usage of `abs_b` and `negate_b` here should also be correct.
                regs.SetRegisterToFloat(instr.gpr0, 0, op_b, 1, 1);
                NGLOG_WARNING(HW_GPU, "RRO instruction is incomplete");
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled arithmetic instruction: {}", opcode->GetName());
                UNREACHABLE();
            }
            }
            break;
        }
        case OpCode::Type::ArithmeticImmediate: {
            switch (opcode->GetId()) {
            case OpCode::Id::MOV32_IMM: {
                regs.SetRegisterToFloat(instr.gpr0, 0, GetImmediate32(instr), 1, 1);
                break;
            }
            case OpCode::Id::FMUL32_IMM: {
                regs.SetRegisterToFloat(
                    instr.gpr0, 0,
                    regs.GetRegisterAsFloat(instr.gpr8) + " * " + GetImmediate32(instr), 1, 1);
                break;
            }
            }
            break;
        }
        case OpCode::Type::Bfe: {
            ASSERT_MSG(!instr.bfe.negate_b, "Unimplemented");

            std::string op_a = instr.bfe.negate_a ? "-" : "";
            op_a += regs.GetRegisterAsInteger(instr.gpr8);

            switch (opcode->GetId()) {
            case OpCode::Id::BFE_IMM: {
                std::string inner_shift =
                    '(' + op_a + " << " + std::to_string(instr.bfe.GetLeftShiftValue()) + ')';
                std::string outer_shift =
                    '(' + inner_shift + " >> " +
                    std::to_string(instr.bfe.GetLeftShiftValue() + instr.bfe.shift_position) + ')';

                regs.SetRegisterToInteger(instr.gpr0, true, 0, outer_shift, 1, 1);
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled BFE instruction: {}", opcode->GetName());
                UNREACHABLE();
            }
            }

            break;
        }

        case OpCode::Type::Shift: {
            std::string op_a = regs.GetRegisterAsInteger(instr.gpr8, 0, true);
            std::string op_b;

            if (instr.is_b_imm) {
                op_b += '(' + std::to_string(instr.alu.GetSignedImm20_20()) + ')';
            } else {
                if (instr.is_b_gpr) {
                    op_b += regs.GetRegisterAsInteger(instr.gpr20);
                } else {
                    op_b += regs.GetUniform(instr.cbuf34.index, instr.cbuf34.offset,
                                            GLSLRegister::Type::Integer);
                }
            }

            switch (opcode->GetId()) {
            case OpCode::Id::SHR_C:
            case OpCode::Id::SHR_R:
            case OpCode::Id::SHR_IMM: {
                if (!instr.shift.is_signed) {
                    // Logical shift right
                    op_a = "uint(" + op_a + ')';
                }

                // Cast to int is superfluous for arithmetic shift, it's only for a logical shift
                regs.SetRegisterToInteger(instr.gpr0, true, 0, "int(" + op_a + " >> " + op_b + ')',
                                          1, 1);
                break;
            }
            case OpCode::Id::SHL_C:
            case OpCode::Id::SHL_R:
            case OpCode::Id::SHL_IMM:
                regs.SetRegisterToInteger(instr.gpr0, true, 0, op_a + " << " + op_b, 1, 1);
                break;
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled shift instruction: {}", opcode->GetName());
                UNREACHABLE();
            }
            }
            break;
        }

        case OpCode::Type::ArithmeticIntegerImmediate: {
            std::string op_a = regs.GetRegisterAsInteger(instr.gpr8);
            std::string op_b = std::to_string(instr.alu.imm20_32.Value());

            switch (opcode->GetId()) {
            case OpCode::Id::IADD32I:
                if (instr.iadd32i.negate_a)
                    op_a = "-(" + op_a + ')';

                regs.SetRegisterToInteger(instr.gpr0, true, 0, op_a + " + " + op_b, 1, 1,
                                          instr.iadd32i.saturate != 0);
                break;
            case OpCode::Id::LOP32I: {
                if (instr.alu.lop32i.invert_a)
                    op_a = "~(" + op_a + ')';

                if (instr.alu.lop32i.invert_b)
                    op_b = "~(" + op_b + ')';

                WriteLogicOperation(instr.gpr0, instr.alu.lop32i.operation, op_a, op_b);
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled ArithmeticIntegerImmediate instruction: {}",
                               opcode->GetName());
                UNREACHABLE();
            }
            }
            break;
        }
        case OpCode::Type::ArithmeticInteger: {
            std::string op_a = regs.GetRegisterAsInteger(instr.gpr8);
            std::string op_b;
            if (instr.is_b_imm) {
                op_b += '(' + std::to_string(instr.alu.GetSignedImm20_20()) + ')';
            } else {
                if (instr.is_b_gpr) {
                    op_b += regs.GetRegisterAsInteger(instr.gpr20);
                } else {
                    op_b += regs.GetUniform(instr.cbuf34.index, instr.cbuf34.offset,
                                            GLSLRegister::Type::Integer);
                }
            }

            switch (opcode->GetId()) {
            case OpCode::Id::IADD_C:
            case OpCode::Id::IADD_R:
            case OpCode::Id::IADD_IMM: {
                if (instr.alu_integer.negate_a)
                    op_a = "-(" + op_a + ')';

                if (instr.alu_integer.negate_b)
                    op_b = "-(" + op_b + ')';

                regs.SetRegisterToInteger(instr.gpr0, true, 0, op_a + " + " + op_b, 1, 1,
                                          instr.alu.saturate_d);
                break;
            }
            case OpCode::Id::ISCADD_C:
            case OpCode::Id::ISCADD_R:
            case OpCode::Id::ISCADD_IMM: {
                if (instr.alu_integer.negate_a)
                    op_a = "-(" + op_a + ')';

                if (instr.alu_integer.negate_b)
                    op_b = "-(" + op_b + ')';

                std::string shift = std::to_string(instr.alu_integer.shift_amount.Value());

                regs.SetRegisterToInteger(instr.gpr0, true, 0,
                                          "((" + op_a + " << " + shift + ") + " + op_b + ')', 1, 1);
                break;
            }
            case OpCode::Id::LOP_C:
            case OpCode::Id::LOP_R:
            case OpCode::Id::LOP_IMM: {
                ASSERT_MSG(!instr.alu.lop.unk44, "Unimplemented");
                ASSERT_MSG(instr.alu.lop.pred48 == Pred::UnusedIndex, "Unimplemented");

                if (instr.alu.lop.invert_a)
                    op_a = "~(" + op_a + ')';

                if (instr.alu.lop.invert_b)
                    op_b = "~(" + op_b + ')';

                WriteLogicOperation(instr.gpr0, instr.alu.lop.operation, op_a, op_b);
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled ArithmeticInteger instruction: {}",
                               opcode->GetName());
                UNREACHABLE();
            }
            }

            break;
        }
        case OpCode::Type::Ffma: {
            std::string op_a = regs.GetRegisterAsFloat(instr.gpr8);
            std::string op_b = instr.ffma.negate_b ? "-" : "";
            std::string op_c = instr.ffma.negate_c ? "-" : "";

            switch (opcode->GetId()) {
            case OpCode::Id::FFMA_CR: {
                op_b += regs.GetUniform(instr.cbuf34.index, instr.cbuf34.offset,
                                        GLSLRegister::Type::Float);
                op_c += regs.GetRegisterAsFloat(instr.gpr39);
                break;
            }
            case OpCode::Id::FFMA_RR: {
                op_b += regs.GetRegisterAsFloat(instr.gpr20);
                op_c += regs.GetRegisterAsFloat(instr.gpr39);
                break;
            }
            case OpCode::Id::FFMA_RC: {
                op_b += regs.GetRegisterAsFloat(instr.gpr39);
                op_c += regs.GetUniform(instr.cbuf34.index, instr.cbuf34.offset,
                                        GLSLRegister::Type::Float);
                break;
            }
            case OpCode::Id::FFMA_IMM: {
                op_b += GetImmediate19(instr);
                op_c += regs.GetRegisterAsFloat(instr.gpr39);
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled FFMA instruction: {}", opcode->GetName());
                UNREACHABLE();
            }
            }

            regs.SetRegisterToFloat(instr.gpr0, 0, op_a + " * " + op_b + " + " + op_c, 1, 1,
                                    instr.alu.saturate_d);
            break;
        }
        case OpCode::Type::Conversion: {
            ASSERT_MSG(!instr.conversion.negate_a, "Unimplemented");

            switch (opcode->GetId()) {
            case OpCode::Id::I2I_R: {
                ASSERT_MSG(!instr.conversion.selector, "Unimplemented");

                std::string op_a = regs.GetRegisterAsInteger(
                    instr.gpr20, 0, instr.conversion.is_input_signed, instr.conversion.src_size);

                if (instr.conversion.abs_a) {
                    op_a = "abs(" + op_a + ')';
                }

                regs.SetRegisterToInteger(instr.gpr0, instr.conversion.is_output_signed, 0, op_a, 1,
                                          1, instr.alu.saturate_d, 0, instr.conversion.dest_size);
                break;
            }
            case OpCode::Id::I2F_R: {
                ASSERT_MSG(instr.conversion.dest_size == Register::Size::Word, "Unimplemented");
                ASSERT_MSG(!instr.conversion.selector, "Unimplemented");
                std::string op_a = regs.GetRegisterAsInteger(
                    instr.gpr20, 0, instr.conversion.is_input_signed, instr.conversion.src_size);

                if (instr.conversion.abs_a) {
                    op_a = "abs(" + op_a + ')';
                }

                regs.SetRegisterToFloat(instr.gpr0, 0, op_a, 1, 1);
                break;
            }
            case OpCode::Id::F2F_R: {
                ASSERT_MSG(instr.conversion.dest_size == Register::Size::Word, "Unimplemented");
                ASSERT_MSG(instr.conversion.src_size == Register::Size::Word, "Unimplemented");
                std::string op_a = regs.GetRegisterAsFloat(instr.gpr20);

                switch (instr.conversion.f2f.rounding) {
                case Tegra::Shader::F2fRoundingOp::None:
                    break;
                case Tegra::Shader::F2fRoundingOp::Floor:
                    op_a = "floor(" + op_a + ')';
                    break;
                case Tegra::Shader::F2fRoundingOp::Ceil:
                    op_a = "ceil(" + op_a + ')';
                    break;
                case Tegra::Shader::F2fRoundingOp::Trunc:
                    op_a = "trunc(" + op_a + ')';
                    break;
                default:
                    NGLOG_CRITICAL(HW_GPU, "Unimplemented f2f rounding mode {}",
                                   static_cast<u32>(instr.conversion.f2f.rounding.Value()));
                    UNREACHABLE();
                    break;
                }

                if (instr.conversion.abs_a) {
                    op_a = "abs(" + op_a + ')';
                }

                regs.SetRegisterToFloat(instr.gpr0, 0, op_a, 1, 1, instr.alu.saturate_d);
                break;
            }
            case OpCode::Id::F2I_R: {
                ASSERT_MSG(instr.conversion.src_size == Register::Size::Word, "Unimplemented");
                std::string op_a = regs.GetRegisterAsFloat(instr.gpr20);

                if (instr.conversion.abs_a) {
                    op_a = "abs(" + op_a + ')';
                }

                switch (instr.conversion.f2i.rounding) {
                case Tegra::Shader::F2iRoundingOp::None:
                    break;
                case Tegra::Shader::F2iRoundingOp::Floor:
                    op_a = "floor(" + op_a + ')';
                    break;
                case Tegra::Shader::F2iRoundingOp::Ceil:
                    op_a = "ceil(" + op_a + ')';
                    break;
                case Tegra::Shader::F2iRoundingOp::Trunc:
                    op_a = "trunc(" + op_a + ')';
                    break;
                default:
                    NGLOG_CRITICAL(HW_GPU, "Unimplemented f2i rounding mode {}",
                                   static_cast<u32>(instr.conversion.f2i.rounding.Value()));
                    UNREACHABLE();
                    break;
                }

                if (instr.conversion.is_output_signed) {
                    op_a = "int(" + op_a + ')';
                } else {
                    op_a = "uint(" + op_a + ')';
                }

                regs.SetRegisterToInteger(instr.gpr0, instr.conversion.is_output_signed, 0, op_a, 1,
                                          1, false, 0, instr.conversion.dest_size);
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled conversion instruction: {}", opcode->GetName());
                UNREACHABLE();
            }
            }
            break;
        }
        case OpCode::Type::Memory: {
            switch (opcode->GetId()) {
            case OpCode::Id::LD_A: {
                ASSERT_MSG(instr.attribute.fmt20.size == 0, "untested");
                regs.SetRegisterToInputAttibute(instr.gpr0, instr.attribute.fmt20.element,
                                                instr.attribute.fmt20.index);
                break;
            }
            case OpCode::Id::LD_C: {
                ASSERT_MSG(instr.ld_c.unknown == 0, "Unimplemented");

                std::string op_a =
                    regs.GetUniformIndirect(instr.cbuf36.index, instr.cbuf36.offset + 0, instr.gpr8,
                                            GLSLRegister::Type::Float);
                std::string op_b =
                    regs.GetUniformIndirect(instr.cbuf36.index, instr.cbuf36.offset + 4, instr.gpr8,
                                            GLSLRegister::Type::Float);

                switch (instr.ld_c.type.Value()) {
                case Tegra::Shader::UniformType::Single:
                    regs.SetRegisterToFloat(instr.gpr0, 0, op_a, 1, 1);
                    break;

                case Tegra::Shader::UniformType::Double:
                    regs.SetRegisterToFloat(instr.gpr0, 0, op_a, 1, 1);
                    regs.SetRegisterToFloat(instr.gpr0.Value() + 1, 0, op_b, 1, 1);
                    break;

                default:
                    NGLOG_CRITICAL(HW_GPU, "Unhandled type: {}",
                                   static_cast<unsigned>(instr.ld_c.type.Value()));
                    UNREACHABLE();
                }
                break;
            }
            case OpCode::Id::ST_A: {
                ASSERT_MSG(instr.attribute.fmt20.size == 0, "untested");
                regs.SetOutputAttributeToRegister(instr.attribute.fmt20.index,
                                                  instr.attribute.fmt20.element, instr.gpr0);
                break;
            }
            case OpCode::Id::TEX: {
                const std::string op_a = regs.GetRegisterAsFloat(instr.gpr8);
                const std::string op_b = regs.GetRegisterAsFloat(instr.gpr8.Value() + 1);
                const std::string sampler = GetSampler(instr.sampler);
                const std::string coord = "vec2 coords = vec2(" + op_a + ", " + op_b + ");";
                // Add an extra scope and declare the texture coords inside to prevent
                // overwriting them in case they are used as outputs of the texs instruction.
                shader.AddLine("{");
                ++shader.scope;
                shader.AddLine(coord);
                const std::string texture = "texture(" + sampler + ", coords)";

                size_t dest_elem{};
                for (size_t elem = 0; elem < 4; ++elem) {
                    if (!instr.tex.IsComponentEnabled(elem)) {
                        // Skip disabled components
                        continue;
                    }
                    regs.SetRegisterToFloat(instr.gpr0, elem, texture, 1, 4, false, dest_elem);
                    ++dest_elem;
                }
                --shader.scope;
                shader.AddLine("}");
                break;
            }
            case OpCode::Id::TEXS: {
                const std::string op_a = regs.GetRegisterAsFloat(instr.gpr8);
                const std::string op_b = regs.GetRegisterAsFloat(instr.gpr20);
                const std::string sampler = GetSampler(instr.sampler);
                const std::string coord = "vec2 coords = vec2(" + op_a + ", " + op_b + ");";
                // Add an extra scope and declare the texture coords inside to prevent
                // overwriting them in case they are used as outputs of the texs instruction.
                shader.AddLine("{");
                ++shader.scope;
                shader.AddLine(coord);
                const std::string texture = "texture(" + sampler + ", coords)";

                // TEXS has two destination registers. RG goes into gpr0+0 and gpr0+1, and BA
                // goes into gpr28+0 and gpr28+1
                size_t offset{};

                for (const auto& dest : {instr.gpr0.Value(), instr.gpr28.Value()}) {
                    for (unsigned elem = 0; elem < 2; ++elem) {
                        if (!instr.texs.IsComponentEnabled(elem)) {
                            // Skip disabled components
                            continue;
                        }
                        regs.SetRegisterToFloat(dest, elem + offset, texture, 1, 4, false, elem);
                    }

                    if (!instr.texs.HasTwoDestinations()) {
                        // Skip the second destination
                        break;
                    }

                    offset += 2;
                }
                --shader.scope;
                shader.AddLine("}");
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled memory instruction: {}", opcode->GetName());
                UNREACHABLE();
            }
            }
            break;
        }
        case OpCode::Type::FloatSetPredicate: {
            std::string op_a = instr.fsetp.neg_a ? "-" : "";
            op_a += regs.GetRegisterAsFloat(instr.gpr8);

            if (instr.fsetp.abs_a) {
                op_a = "abs(" + op_a + ')';
            }

            std::string op_b{};

            if (instr.is_b_imm) {
                if (instr.fsetp.neg_b) {
                    // Only the immediate version of fsetp has a neg_b bit.
                    op_b += '-';
                }
                op_b += '(' + GetImmediate19(instr) + ')';
            } else {
                if (instr.is_b_gpr) {
                    op_b += regs.GetRegisterAsFloat(instr.gpr20);
                } else {
                    op_b += regs.GetUniform(instr.cbuf34.index, instr.cbuf34.offset,
                                            GLSLRegister::Type::Float);
                }
            }

            if (instr.fsetp.abs_b) {
                op_b = "abs(" + op_b + ')';
            }

            using Tegra::Shader::Pred;
            // We can't use the constant predicate as destination.
            ASSERT(instr.fsetp.pred3 != static_cast<u64>(Pred::UnusedIndex));

            std::string second_pred =
                GetPredicateCondition(instr.fsetp.pred39, instr.fsetp.neg_pred != 0);

            std::string combiner = GetPredicateCombiner(instr.fsetp.op);

            std::string predicate = GetPredicateComparison(instr.fsetp.cond, op_a, op_b);
            // Set the primary predicate to the result of Predicate OP SecondPredicate
            SetPredicate(instr.fsetp.pred3,
                         '(' + predicate + ") " + combiner + " (" + second_pred + ')');

            if (instr.fsetp.pred0 != static_cast<u64>(Pred::UnusedIndex)) {
                // Set the secondary predicate to the result of !Predicate OP SecondPredicate,
                // if enabled
                SetPredicate(instr.fsetp.pred0,
                             "!(" + predicate + ") " + combiner + " (" + second_pred + ')');
            }
            break;
        }
        case OpCode::Type::IntegerSetPredicate: {
            std::string op_a = regs.GetRegisterAsInteger(instr.gpr8, 0, instr.isetp.is_signed);
            std::string op_b;

            if (instr.is_b_imm) {
                op_b += '(' + std::to_string(instr.alu.GetSignedImm20_20()) + ')';
            } else {
                if (instr.is_b_gpr) {
                    op_b += regs.GetRegisterAsInteger(instr.gpr20, 0, instr.isetp.is_signed);
                } else {
                    op_b += regs.GetUniform(instr.cbuf34.index, instr.cbuf34.offset,
                                            GLSLRegister::Type::Integer);
                }
            }

            using Tegra::Shader::Pred;
            // We can't use the constant predicate as destination.
            ASSERT(instr.isetp.pred3 != static_cast<u64>(Pred::UnusedIndex));

            std::string second_pred =
                GetPredicateCondition(instr.isetp.pred39, instr.isetp.neg_pred != 0);

            std::string combiner = GetPredicateCombiner(instr.isetp.op);

            std::string predicate = GetPredicateComparison(instr.isetp.cond, op_a, op_b);
            // Set the primary predicate to the result of Predicate OP SecondPredicate
            SetPredicate(instr.isetp.pred3,
                         '(' + predicate + ") " + combiner + " (" + second_pred + ')');

            if (instr.isetp.pred0 != static_cast<u64>(Pred::UnusedIndex)) {
                // Set the secondary predicate to the result of !Predicate OP SecondPredicate,
                // if enabled
                SetPredicate(instr.isetp.pred0,
                             "!(" + predicate + ") " + combiner + " (" + second_pred + ')');
            }
            break;
        }
        case OpCode::Type::FloatSet: {
            std::string op_a = instr.fset.neg_a ? "-" : "";
            op_a += regs.GetRegisterAsFloat(instr.gpr8);

            if (instr.fset.abs_a) {
                op_a = "abs(" + op_a + ')';
            }

            std::string op_b = instr.fset.neg_b ? "-" : "";

            if (instr.is_b_imm) {
                std::string imm = GetImmediate19(instr);
                if (instr.fset.neg_imm)
                    op_b += "(-" + imm + ')';
                else
                    op_b += imm;
            } else {
                if (instr.is_b_gpr) {
                    op_b += regs.GetRegisterAsFloat(instr.gpr20);
                } else {
                    op_b += regs.GetUniform(instr.cbuf34.index, instr.cbuf34.offset,
                                            GLSLRegister::Type::Float);
                }
            }

            if (instr.fset.abs_b) {
                op_b = "abs(" + op_b + ')';
            }

            // The fset instruction sets a register to 1.0 or -1 (depending on the bf bit) if the
            // condition is true, and to 0 otherwise.
            std::string second_pred =
                GetPredicateCondition(instr.fset.pred39, instr.fset.neg_pred != 0);

            std::string combiner = GetPredicateCombiner(instr.fset.op);

            std::string predicate = "((" + GetPredicateComparison(instr.fset.cond, op_a, op_b) +
                                    ") " + combiner + " (" + second_pred + "))";

            if (instr.fset.bf) {
                regs.SetRegisterToFloat(instr.gpr0, 0, predicate + " ? 1.0 : 0.0", 1, 1);
            } else {
                regs.SetRegisterToInteger(instr.gpr0, false, 0, predicate + " ? 0xFFFFFFFF : 0", 1,
                                          1);
            }
            break;
        }
        case OpCode::Type::IntegerSet: {
            std::string op_a = regs.GetRegisterAsInteger(instr.gpr8, 0, instr.iset.is_signed);

            std::string op_b;

            if (instr.is_b_imm) {
                op_b = std::to_string(instr.alu.GetSignedImm20_20());
            } else {
                if (instr.is_b_gpr) {
                    op_b = regs.GetRegisterAsInteger(instr.gpr20, 0, instr.iset.is_signed);
                } else {
                    op_b = regs.GetUniform(instr.cbuf34.index, instr.cbuf34.offset,
                                           GLSLRegister::Type::Integer);
                }
            }

            // The iset instruction sets a register to 1.0 or -1 (depending on the bf bit) if the
            // condition is true, and to 0 otherwise.
            std::string second_pred =
                GetPredicateCondition(instr.iset.pred39, instr.iset.neg_pred != 0);

            std::string combiner = GetPredicateCombiner(instr.iset.op);

            std::string predicate = "((" + GetPredicateComparison(instr.iset.cond, op_a, op_b) +
                                    ") " + combiner + " (" + second_pred + "))";

            if (instr.iset.bf) {
                regs.SetRegisterToFloat(instr.gpr0, 0, predicate + " ? 1.0 : 0.0", 1, 1);
            } else {
                regs.SetRegisterToInteger(instr.gpr0, false, 0, predicate + " ? 0xFFFFFFFF : 0", 1,
                                          1);
            }
            break;
        }
        default: {
            switch (opcode->GetId()) {
            case OpCode::Id::EXIT: {
                // Final color output is currently hardcoded to GPR0-3 for fragment shaders
                if (stage == Maxwell3D::Regs::ShaderStage::Fragment) {
                    shader.AddLine("color.r = " + regs.GetRegisterAsFloat(0) + ';');
                    shader.AddLine("color.g = " + regs.GetRegisterAsFloat(1) + ';');
                    shader.AddLine("color.b = " + regs.GetRegisterAsFloat(2) + ';');
                    shader.AddLine("color.a = " + regs.GetRegisterAsFloat(3) + ';');
                }

                shader.AddLine("return true;");
                if (instr.pred.pred_index == static_cast<u64>(Pred::UnusedIndex)) {
                    // If this is an unconditional exit then just end processing here, otherwise
                    // we have to account for the possibility of the condition not being met, so
                    // continue processing the next instruction.
                    offset = PROGRAM_END - 1;
                }
                break;
            }
            case OpCode::Id::KIL: {
                shader.AddLine("discard;");
                break;
            }
            case OpCode::Id::BRA: {
                ASSERT_MSG(instr.bra.constant_buffer == 0,
                           "BRA with constant buffers are not implemented");
                u32 target = offset + instr.bra.GetBranchTarget();
                shader.AddLine("{ jmp_to = " + std::to_string(target) + "u; break; }");
                break;
            }
            case OpCode::Id::IPA: {
                const auto& attribute = instr.attribute.fmt28;
                regs.SetRegisterToInputAttibute(instr.gpr0, attribute.element, attribute.index);
                break;
            }
            case OpCode::Id::SSY: {
                // The SSY opcode tells the GPU where to re-converge divergent execution paths, we
                // can ignore this when generating GLSL code.
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled instruction: {}", opcode->GetName());
                UNREACHABLE();
            }
            }

            break;
        }
        }

        // Close the predicate condition scope.
        if (instr.pred.pred_index != static_cast<u64>(Pred::UnusedIndex)) {
            --shader.scope;
            shader.AddLine('}');
        }

        return offset + 1;
    }

    /**
     * Compiles a range of instructions from Tegra to GLSL.
     * @param begin the offset of the starting instruction.
     * @param end the offset where the compilation should stop (exclusive).
     * @return the offset of the next instruction to compile. PROGRAM_END if the program
     * terminates.
     */
    u32 CompileRange(u32 begin, u32 end) {
        u32 program_counter;
        for (program_counter = begin; program_counter < (begin > end ? PROGRAM_END : end);) {
            program_counter = CompileInstr(program_counter);
        }
        return program_counter;
    }

    void Generate() {
        // Add declarations for all subroutines
        for (const auto& subroutine : subroutines) {
            shader.AddLine("bool " + subroutine.GetName() + "();");
        }
        shader.AddNewLine();

        // Add the main entry point
        shader.AddLine("bool exec_shader() {");
        ++shader.scope;
        CallSubroutine(GetSubroutine(main_offset, PROGRAM_END));
        --shader.scope;
        shader.AddLine("}\n");

        // Add definitions for all subroutines
        for (const auto& subroutine : subroutines) {
            std::set<u32> labels = subroutine.labels;

            shader.AddLine("bool " + subroutine.GetName() + "() {");
            ++shader.scope;

            if (labels.empty()) {
                if (CompileRange(subroutine.begin, subroutine.end) != PROGRAM_END) {
                    shader.AddLine("return false;");
                }
            } else {
                labels.insert(subroutine.begin);
                shader.AddLine("uint jmp_to = " + std::to_string(subroutine.begin) + "u;");
                shader.AddLine("while (true) {");
                ++shader.scope;

                shader.AddLine("switch (jmp_to) {");

                for (auto label : labels) {
                    shader.AddLine("case " + std::to_string(label) + "u: {");
                    ++shader.scope;

                    auto next_it = labels.lower_bound(label + 1);
                    u32 next_label = next_it == labels.end() ? subroutine.end : *next_it;

                    u32 compile_end = CompileRange(label, next_label);
                    if (compile_end > next_label && compile_end != PROGRAM_END) {
                        // This happens only when there is a label inside a IF/LOOP block
                        shader.AddLine("{ jmp_to = " + std::to_string(compile_end) + "u; break; }");
                        labels.emplace(compile_end);
                    }

                    --shader.scope;
                    shader.AddLine('}');
                }

                shader.AddLine("default: return false;");
                shader.AddLine('}');

                --shader.scope;
                shader.AddLine('}');

                shader.AddLine("return false;");
            }

            --shader.scope;
            shader.AddLine("}\n");

            DEBUG_ASSERT(shader.scope == 0);
        }

        GenerateDeclarations();
    }

    /// Add declarations for registers
    void GenerateDeclarations() {
        regs.GenerateDeclarations();

        for (const auto& pred : declr_predicates) {
            declarations.AddLine("bool " + pred + " = false;");
        }
        declarations.AddNewLine();
    }

private:
    const std::set<Subroutine>& subroutines;
    const ProgramCode& program_code;
    const u32 main_offset;
    Maxwell3D::Regs::ShaderStage stage;

    ShaderWriter shader;
    ShaderWriter declarations;
    GLSLRegisterManager regs{shader, declarations, stage};

    // Declarations
    std::set<std::string> declr_predicates;
}; // namespace Decompiler

std::string GetCommonDeclarations() {
    std::string declarations = "bool exec_shader();\n";
    declarations += "#define MAX_CONSTBUFFER_ELEMENTS " +
                    std::to_string(RasterizerOpenGL::MaxConstbufferSize / (sizeof(GLvec4)));
    return declarations;
}

boost::optional<ProgramResult> DecompileProgram(const ProgramCode& program_code, u32 main_offset,
                                                Maxwell3D::Regs::ShaderStage stage) {
    try {
        auto subroutines = ControlFlowAnalyzer(program_code, main_offset).GetSubroutines();
        GLSLGenerator generator(subroutines, program_code, main_offset, stage);
        return ProgramResult{generator.GetShaderCode(), generator.GetEntries()};
    } catch (const DecompileFail& exception) {
        NGLOG_ERROR(HW_GPU, "Shader decompilation failed: {}", exception.what());
    }
    return boost::none;
}

} // namespace Decompiler
} // namespace GLShader