summaryrefslogtreecommitdiffstats
path: root/src/video_core/renderer_opengl/gl_shader_decompiler.cpp
blob: b18f250263cf994417a972ef8da2817b8ad17270 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <map>
#include <set>
#include <string>
#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/renderer_opengl/gl_shader_decompiler.h"

namespace GLShader {
namespace Decompiler {

using Tegra::Shader::Attribute;
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
using Tegra::Shader::Register;
using Tegra::Shader::Sampler;
using Tegra::Shader::SubOp;
using Tegra::Shader::Uniform;

constexpr u32 PROGRAM_END = MAX_PROGRAM_CODE_LENGTH;

class DecompileFail : public std::runtime_error {
public:
    using std::runtime_error::runtime_error;
};

/// Describes the behaviour of code path of a given entry point and a return point.
enum class ExitMethod {
    Undetermined, ///< Internal value. Only occur when analyzing JMP loop.
    AlwaysReturn, ///< All code paths reach the return point.
    Conditional,  ///< Code path reaches the return point or an END instruction conditionally.
    AlwaysEnd,    ///< All code paths reach a END instruction.
};

/// A subroutine is a range of code refereced by a CALL, IF or LOOP instruction.
struct Subroutine {
    /// Generates a name suitable for GLSL source code.
    std::string GetName() const {
        return "sub_" + std::to_string(begin) + "_" + std::to_string(end);
    }

    u32 begin;              ///< Entry point of the subroutine.
    u32 end;                ///< Return point of the subroutine.
    ExitMethod exit_method; ///< Exit method of the subroutine.
    std::set<u32> labels;   ///< Addresses refereced by JMP instructions.

    bool operator<(const Subroutine& rhs) const {
        return std::tie(begin, end) < std::tie(rhs.begin, rhs.end);
    }
};

/// Analyzes shader code and produces a set of subroutines.
class ControlFlowAnalyzer {
public:
    ControlFlowAnalyzer(const ProgramCode& program_code, u32 main_offset)
        : program_code(program_code) {

        // Recursively finds all subroutines.
        const Subroutine& program_main = AddSubroutine(main_offset, PROGRAM_END);
        if (program_main.exit_method != ExitMethod::AlwaysEnd)
            throw DecompileFail("Program does not always end");
    }

    std::set<Subroutine> GetSubroutines() {
        return std::move(subroutines);
    }

private:
    const ProgramCode& program_code;
    std::set<Subroutine> subroutines;
    std::map<std::pair<u32, u32>, ExitMethod> exit_method_map;

    /// Adds and analyzes a new subroutine if it is not added yet.
    const Subroutine& AddSubroutine(u32 begin, u32 end) {
        auto iter = subroutines.find(Subroutine{begin, end});
        if (iter != subroutines.end())
            return *iter;

        Subroutine subroutine{begin, end};
        subroutine.exit_method = Scan(begin, end, subroutine.labels);
        if (subroutine.exit_method == ExitMethod::Undetermined)
            throw DecompileFail("Recursive function detected");
        return *subroutines.insert(std::move(subroutine)).first;
    }

    /// Scans a range of code for labels and determines the exit method.
    ExitMethod Scan(u32 begin, u32 end, std::set<u32>& labels) {
        auto [iter, inserted] =
            exit_method_map.emplace(std::make_pair(begin, end), ExitMethod::Undetermined);
        ExitMethod& exit_method = iter->second;
        if (!inserted)
            return exit_method;

        for (u32 offset = begin; offset != end && offset != PROGRAM_END; ++offset) {
            const Instruction instr = {program_code[offset]};
            switch (instr.opcode.EffectiveOpCode()) {
            case OpCode::Id::EXIT: {
                return exit_method = ExitMethod::AlwaysEnd;
            }
            }
        }
        return exit_method = ExitMethod::AlwaysReturn;
    }
};

class ShaderWriter {
public:
    void AddLine(const std::string& text) {
        DEBUG_ASSERT(scope >= 0);
        if (!text.empty()) {
            shader_source += std::string(static_cast<size_t>(scope) * 4, ' ');
        }
        shader_source += text + '\n';
    }

    std::string GetResult() {
        return std::move(shader_source);
    }

    int scope = 0;

private:
    std::string shader_source;
};

class GLSLGenerator {
public:
    GLSLGenerator(const std::set<Subroutine>& subroutines, const ProgramCode& program_code,
                  u32 main_offset, Maxwell3D::Regs::ShaderStage stage)
        : subroutines(subroutines), program_code(program_code), main_offset(main_offset),
          stage(stage) {

        Generate();
    }

    std::string GetShaderCode() {
        return declarations.GetResult() + shader.GetResult();
    }

    /// Returns entries in the shader that are useful for external functions
    ShaderEntries GetEntries() const {
        return {GetConstBuffersDeclarations()};
    }

private:
    /// Gets the Subroutine object corresponding to the specified address.
    const Subroutine& GetSubroutine(u32 begin, u32 end) const {
        auto iter = subroutines.find(Subroutine{begin, end});
        ASSERT(iter != subroutines.end());
        return *iter;
    }

    /// Generates code representing an input attribute register.
    std::string GetInputAttribute(Attribute::Index attribute) {
        switch (attribute) {
        case Attribute::Index::Position:
            return "position";
        default:
            const u32 index{static_cast<u32>(attribute) -
                            static_cast<u32>(Attribute::Index::Attribute_0)};
            if (attribute >= Attribute::Index::Attribute_0) {
                declr_input_attribute.insert(attribute);
                return "input_attribute_" + std::to_string(index);
            }

            NGLOG_CRITICAL(HW_GPU, "Unhandled input attribute: {}", index);
            UNREACHABLE();
        }
    }

    /// Generates code representing an output attribute register.
    std::string GetOutputAttribute(Attribute::Index attribute) {
        switch (attribute) {
        case Attribute::Index::Position:
            return "position";
        default:
            const u32 index{static_cast<u32>(attribute) -
                            static_cast<u32>(Attribute::Index::Attribute_0)};
            if (attribute >= Attribute::Index::Attribute_0) {
                declr_output_attribute.insert(attribute);
                return "output_attribute_" + std::to_string(index);
            }

            NGLOG_CRITICAL(HW_GPU, "Unhandled output attribute: {}", index);
            UNREACHABLE();
        }
    }

    /// Generates code representing an immediate value
    static std::string GetImmediate(const Instruction& instr) {
        return std::to_string(instr.alu.GetImm20());
    }

    /// Generates code representing a temporary (GPR) register.
    std::string GetRegister(const Register& reg, unsigned elem = 0) {
        if (stage == Maxwell3D::Regs::ShaderStage::Fragment && reg < 4) {
            // GPRs 0-3 are output color for the fragment shader
            return std::string{"color."} + "rgba"[(reg + elem) & 3];
        }

        return *declr_register.insert("register_" + std::to_string(reg + elem)).first;
    }

    /// Generates code representing a uniform (C buffer) register.
    std::string GetUniform(const Uniform& reg) {
        declr_const_buffers[reg.index].MarkAsUsed(static_cast<unsigned>(reg.index),
                                                  static_cast<unsigned>(reg.offset), stage);
        return 'c' + std::to_string(reg.index) + '[' + std::to_string(reg.offset) + ']';
    }

    /// Generates code representing a texture sampler.
    std::string GetSampler(const Sampler& sampler) const {
        // TODO(Subv): Support more than just texture sampler 0
        ASSERT_MSG(sampler.index == Sampler::Index::Sampler_0, "unsupported");
        const unsigned index{static_cast<unsigned>(sampler.index.Value()) -
                             static_cast<unsigned>(Sampler::Index::Sampler_0)};
        return "tex[" + std::to_string(index) + "]";
    }

    /**
     * Adds code that calls a subroutine.
     * @param subroutine the subroutine to call.
     */
    void CallSubroutine(const Subroutine& subroutine) {
        if (subroutine.exit_method == ExitMethod::AlwaysEnd) {
            shader.AddLine(subroutine.GetName() + "();");
            shader.AddLine("return true;");
        } else if (subroutine.exit_method == ExitMethod::Conditional) {
            shader.AddLine("if (" + subroutine.GetName() + "()) { return true; }");
        } else {
            shader.AddLine(subroutine.GetName() + "();");
        }
    }

    /**
     * Writes code that does an assignment operation.
     * @param reg the destination register code.
     * @param value the code representing the value to assign.
     */
    void SetDest(u64 elem, const std::string& reg, const std::string& value,
                 u64 dest_num_components, u64 value_num_components, bool is_abs = false) {
        std::string swizzle = ".";
        swizzle += "xyzw"[elem];

        std::string dest = reg + (dest_num_components != 1 ? swizzle : "");
        std::string src = "(" + value + ")" + (value_num_components != 1 ? swizzle : "");
        src = is_abs ? "abs(" + src + ")" : src;

        shader.AddLine(dest + " = " + src + ";");
    }

    /**
     * Compiles a single instruction from Tegra to GLSL.
     * @param offset the offset of the Tegra shader instruction.
     * @return the offset of the next instruction to execute. Usually it is the current offset
     * + 1. If the current instruction always terminates the program, returns PROGRAM_END.
     */
    u32 CompileInstr(u32 offset) {
        const Instruction instr = {program_code[offset]};

        shader.AddLine("// " + std::to_string(offset) + ": " + OpCode::GetInfo(instr.opcode).name);

        switch (OpCode::GetInfo(instr.opcode).type) {
        case OpCode::Type::Arithmetic: {
            std::string dest = GetRegister(instr.gpr0);
            std::string op_a = instr.alu.negate_a ? "-" : "";
            op_a += GetRegister(instr.gpr8);
            if (instr.alu.abs_a) {
                op_a = "abs(" + op_a + ")";
            }

            std::string op_b = instr.alu.negate_b ? "-" : "";

            if (instr.is_b_imm) {
                op_b += GetImmediate(instr);
            } else {
                if (instr.is_b_gpr) {
                    op_b += GetRegister(instr.gpr20);
                } else {
                    op_b += GetUniform(instr.uniform);
                }
            }

            if (instr.alu.abs_b) {
                op_b = "abs(" + op_b + ")";
            }

            switch (instr.opcode.EffectiveOpCode()) {
            case OpCode::Id::FMUL_C:
            case OpCode::Id::FMUL_R:
            case OpCode::Id::FMUL_IMM: {
                SetDest(0, dest, op_a + " * " + op_b, 1, 1, instr.alu.abs_d);
                break;
            }
            case OpCode::Id::FADD_C:
            case OpCode::Id::FADD_R:
            case OpCode::Id::FADD_IMM: {
                SetDest(0, dest, op_a + " + " + op_b, 1, 1, instr.alu.abs_d);
                break;
            }
            case OpCode::Id::MUFU: {
                switch (instr.sub_op) {
                case SubOp::Cos:
                    SetDest(0, dest, "cos(" + op_a + ")", 1, 1, instr.alu.abs_d);
                    break;
                case SubOp::Sin:
                    SetDest(0, dest, "sin(" + op_a + ")", 1, 1, instr.alu.abs_d);
                    break;
                case SubOp::Ex2:
                    SetDest(0, dest, "exp2(" + op_a + ")", 1, 1, instr.alu.abs_d);
                    break;
                case SubOp::Lg2:
                    SetDest(0, dest, "log2(" + op_a + ")", 1, 1, instr.alu.abs_d);
                    break;
                case SubOp::Rcp:
                    SetDest(0, dest, "1.0 / " + op_a, 1, 1, instr.alu.abs_d);
                    break;
                case SubOp::Rsq:
                    SetDest(0, dest, "inversesqrt(" + op_a + ")", 1, 1, instr.alu.abs_d);
                    break;
                case SubOp::Min:
                    SetDest(0, dest, "min(" + op_a + "," + op_b + ")", 1, 1, instr.alu.abs_d);
                    break;
                default:
                    NGLOG_CRITICAL(HW_GPU, "Unhandled MUFU sub op: {}",
                                   static_cast<unsigned>(instr.sub_op.Value()));
                    UNREACHABLE();
                }
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled arithmetic instruction: {} ({}): {}",
                               static_cast<unsigned>(instr.opcode.EffectiveOpCode()),
                               OpCode::GetInfo(instr.opcode).name, instr.hex);
                UNREACHABLE();
            }
            }
            break;
        }
        case OpCode::Type::Ffma: {
            std::string dest = GetRegister(instr.gpr0);
            std::string op_a = GetRegister(instr.gpr8);
            std::string op_b = instr.ffma.negate_b ? "-" : "";
            std::string op_c = instr.ffma.negate_c ? "-" : "";

            switch (instr.opcode.EffectiveOpCode()) {
            case OpCode::Id::FFMA_CR: {
                op_b += GetUniform(instr.uniform);
                op_c += GetRegister(instr.gpr39);
                break;
            }
            case OpCode::Id::FFMA_RR: {
                op_b += GetRegister(instr.gpr20);
                op_c += GetRegister(instr.gpr39);
                break;
            }
            case OpCode::Id::FFMA_RC: {
                op_b += GetRegister(instr.gpr39);
                op_c += GetUniform(instr.uniform);
                break;
            }
            case OpCode::Id::FFMA_IMM: {
                op_b += GetImmediate(instr);
                op_c += GetRegister(instr.gpr39);
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled FFMA instruction: {} ({}): {}",
                               static_cast<unsigned>(instr.opcode.EffectiveOpCode()),
                               OpCode::GetInfo(instr.opcode).name, instr.hex);
                UNREACHABLE();
            }
            }

            SetDest(0, dest, op_a + " * " + op_b + " + " + op_c, 1, 1);
            break;
        }
        case OpCode::Type::Memory: {
            std::string gpr0 = GetRegister(instr.gpr0);
            const Attribute::Index attribute = instr.attribute.fmt20.index;

            switch (instr.opcode.EffectiveOpCode()) {
            case OpCode::Id::LD_A: {
                ASSERT_MSG(instr.attribute.fmt20.size == 0, "untested");
                SetDest(instr.attribute.fmt20.element, gpr0, GetInputAttribute(attribute), 1, 4);
                break;
            }
            case OpCode::Id::ST_A: {
                ASSERT_MSG(instr.attribute.fmt20.size == 0, "untested");
                SetDest(instr.attribute.fmt20.element, GetOutputAttribute(attribute), gpr0, 4, 1);
                break;
            }
            case OpCode::Id::TEXS: {
                ASSERT_MSG(instr.attribute.fmt20.size == 4, "untested");
                const std::string op_a = GetRegister(instr.gpr8);
                const std::string op_b = GetRegister(instr.gpr20);
                const std::string sampler = GetSampler(instr.sampler);
                const std::string coord = "vec2 coords = vec2(" + op_a + ", " + op_b + ");";
                // Add an extra scope and declare the texture coords inside to prevent overwriting
                // them in case they are used as outputs of the texs instruction.
                shader.AddLine("{");
                ++shader.scope;
                shader.AddLine(coord);
                const std::string texture = "texture(" + sampler + ", coords)";
                for (unsigned elem = 0; elem < instr.attribute.fmt20.size; ++elem) {
                    SetDest(elem, GetRegister(instr.gpr0, elem), texture, 1, 4);
                }
                --shader.scope;
                shader.AddLine("}");
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled memory instruction: {} ({}): {}",
                               static_cast<unsigned>(instr.opcode.EffectiveOpCode()),
                               OpCode::GetInfo(instr.opcode).name, instr.hex);
                UNREACHABLE();
            }
            }
            break;
        }

        default: {
            switch (instr.opcode.EffectiveOpCode()) {
            case OpCode::Id::EXIT: {
                shader.AddLine("return true;");
                offset = PROGRAM_END - 1;
                break;
            }
            case OpCode::Id::IPA: {
                const auto& attribute = instr.attribute.fmt28;
                std::string dest = GetRegister(instr.gpr0);
                SetDest(attribute.element, dest, GetInputAttribute(attribute.index), 1, 4);
                break;
            }
            default: {
                NGLOG_CRITICAL(HW_GPU, "Unhandled instruction: {} ({}): {}",
                               static_cast<unsigned>(instr.opcode.EffectiveOpCode()),
                               OpCode::GetInfo(instr.opcode).name, instr.hex);
                UNREACHABLE();
            }
            }

            break;
        }
        }

        return offset + 1;
    }

    /**
     * Compiles a range of instructions from Tegra to GLSL.
     * @param begin the offset of the starting instruction.
     * @param end the offset where the compilation should stop (exclusive).
     * @return the offset of the next instruction to compile. PROGRAM_END if the program
     * terminates.
     */
    u32 CompileRange(u32 begin, u32 end) {
        u32 program_counter;
        for (program_counter = begin; program_counter < (begin > end ? PROGRAM_END : end);) {
            program_counter = CompileInstr(program_counter);
        }
        return program_counter;
    }

    void Generate() {
        // Add declarations for all subroutines
        for (const auto& subroutine : subroutines) {
            shader.AddLine("bool " + subroutine.GetName() + "();");
        }
        shader.AddLine("");

        // Add the main entry point
        shader.AddLine("bool exec_shader() {");
        ++shader.scope;
        CallSubroutine(GetSubroutine(main_offset, PROGRAM_END));
        --shader.scope;
        shader.AddLine("}\n");

        // Add definitions for all subroutines
        for (const auto& subroutine : subroutines) {
            std::set<u32> labels = subroutine.labels;

            shader.AddLine("bool " + subroutine.GetName() + "() {");
            ++shader.scope;

            if (labels.empty()) {
                if (CompileRange(subroutine.begin, subroutine.end) != PROGRAM_END) {
                    shader.AddLine("return false;");
                }
            } else {
                labels.insert(subroutine.begin);
                shader.AddLine("uint jmp_to = " + std::to_string(subroutine.begin) + "u;");
                shader.AddLine("while (true) {");
                ++shader.scope;

                shader.AddLine("switch (jmp_to) {");

                for (auto label : labels) {
                    shader.AddLine("case " + std::to_string(label) + "u: {");
                    ++shader.scope;

                    auto next_it = labels.lower_bound(label + 1);
                    u32 next_label = next_it == labels.end() ? subroutine.end : *next_it;

                    u32 compile_end = CompileRange(label, next_label);
                    if (compile_end > next_label && compile_end != PROGRAM_END) {
                        // This happens only when there is a label inside a IF/LOOP block
                        shader.AddLine("{ jmp_to = " + std::to_string(compile_end) + "u; break; }");
                        labels.emplace(compile_end);
                    }

                    --shader.scope;
                    shader.AddLine("}");
                }

                shader.AddLine("default: return false;");
                shader.AddLine("}");

                --shader.scope;
                shader.AddLine("}");

                shader.AddLine("return false;");
            }

            --shader.scope;
            shader.AddLine("}\n");

            DEBUG_ASSERT(shader.scope == 0);
        }

        GenerateDeclarations();
    }

    /// Returns a list of constant buffer declarations
    std::vector<ConstBufferEntry> GetConstBuffersDeclarations() const {
        std::vector<ConstBufferEntry> result;
        std::copy_if(declr_const_buffers.begin(), declr_const_buffers.end(),
                     std::back_inserter(result), [](const auto& entry) { return entry.IsUsed(); });
        return result;
    }

    /// Add declarations for registers
    void GenerateDeclarations() {
        for (const auto& reg : declr_register) {
            declarations.AddLine("float " + reg + " = 0.0;");
        }
        declarations.AddLine("");

        for (const auto& index : declr_input_attribute) {
            // TODO(bunnei): Use proper number of elements for these
            declarations.AddLine("layout(location = " +
                                 std::to_string(static_cast<u32>(index) -
                                                static_cast<u32>(Attribute::Index::Attribute_0)) +
                                 ") in vec4 " + GetInputAttribute(index) + ";");
        }
        declarations.AddLine("");

        for (const auto& index : declr_output_attribute) {
            // TODO(bunnei): Use proper number of elements for these
            declarations.AddLine("layout(location = " +
                                 std::to_string(static_cast<u32>(index) -
                                                static_cast<u32>(Attribute::Index::Attribute_0)) +
                                 ") out vec4 " + GetOutputAttribute(index) + ";");
        }
        declarations.AddLine("");

        unsigned const_buffer_layout = 0;
        for (const auto& entry : GetConstBuffersDeclarations()) {
            declarations.AddLine("layout(std430) buffer " + entry.GetName());
            declarations.AddLine("{");
            declarations.AddLine("    float c" + std::to_string(entry.GetIndex()) + "[];");
            declarations.AddLine("};");
            declarations.AddLine("");
            ++const_buffer_layout;
        }
    }

private:
    const std::set<Subroutine>& subroutines;
    const ProgramCode& program_code;
    const u32 main_offset;
    Maxwell3D::Regs::ShaderStage stage;

    ShaderWriter shader;
    ShaderWriter declarations;

    // Declarations
    std::set<std::string> declr_register;
    std::set<Attribute::Index> declr_input_attribute;
    std::set<Attribute::Index> declr_output_attribute;
    std::array<ConstBufferEntry, Maxwell3D::Regs::MaxConstBuffers> declr_const_buffers;
};

std::string GetCommonDeclarations() {
    return "bool exec_shader();";
}

boost::optional<ProgramResult> DecompileProgram(const ProgramCode& program_code, u32 main_offset,
                                                Maxwell3D::Regs::ShaderStage stage) {
    try {
        auto subroutines = ControlFlowAnalyzer(program_code, main_offset).GetSubroutines();
        GLSLGenerator generator(subroutines, program_code, main_offset, stage);
        return ProgramResult{generator.GetShaderCode(), generator.GetEntries()};
    } catch (const DecompileFail& exception) {
        NGLOG_ERROR(HW_GPU, "Shader decompilation failed: {}", exception.what());
    }
    return boost::none;
}

} // namespace Decompiler
} // namespace GLShader