summaryrefslogtreecommitdiffstats
path: root/src/video_core/renderer_opengl/gl_rasterizer.cpp
blob: 93eadde7a7b7f720cced4eafab073e2f6d2a7a14 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <memory>
#include <string>
#include <string_view>
#include <tuple>
#include <utility>
#include <glad/glad.h>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/microprofile.h"
#include "core/core.h"
#include "core/frontend/emu_window.h"
#include "core/hle/kernel/process.h"
#include "core/settings.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_opengl/gl_rasterizer.h"
#include "video_core/renderer_opengl/gl_shader_gen.h"
#include "video_core/renderer_opengl/maxwell_to_gl.h"
#include "video_core/renderer_opengl/renderer_opengl.h"
#include "video_core/video_core.h"

using Maxwell = Tegra::Engines::Maxwell3D::Regs;
using PixelFormat = SurfaceParams::PixelFormat;
using SurfaceType = SurfaceParams::SurfaceType;

MICROPROFILE_DEFINE(OpenGL_VAO, "OpenGL", "Vertex Array Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_VS, "OpenGL", "Vertex Shader Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_FS, "OpenGL", "Fragment Shader Setup", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192));
MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(100, 100, 255));
MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100));

RasterizerOpenGL::RasterizerOpenGL(Core::Frontend::EmuWindow& window)
    : emu_window{window}, stream_buffer(GL_ARRAY_BUFFER, STREAM_BUFFER_SIZE) {
    // Create sampler objects
    for (size_t i = 0; i < texture_samplers.size(); ++i) {
        texture_samplers[i].Create();
        state.texture_units[i].sampler = texture_samplers[i].sampler.handle;
    }

    GLint ext_num;
    glGetIntegerv(GL_NUM_EXTENSIONS, &ext_num);
    for (GLint i = 0; i < ext_num; i++) {
        const std::string_view extension{
            reinterpret_cast<const char*>(glGetStringi(GL_EXTENSIONS, i))};

        if (extension == "GL_ARB_direct_state_access") {
            has_ARB_direct_state_access = true;
        } else if (extension == "GL_ARB_separate_shader_objects") {
            has_ARB_separate_shader_objects = true;
        } else if (extension == "GL_ARB_vertex_attrib_binding") {
            has_ARB_vertex_attrib_binding = true;
        }
    }

    ASSERT_MSG(has_ARB_separate_shader_objects, "has_ARB_separate_shader_objects is unsupported");

    // Clipping plane 0 is always enabled for PICA fixed clip plane z <= 0
    state.clip_distance[0] = true;

    // Generate VAO and UBO
    sw_vao.Create();
    uniform_buffer.Create();

    state.draw.vertex_array = sw_vao.handle;
    state.draw.uniform_buffer = uniform_buffer.handle;
    state.Apply();

    // Create render framebuffer
    framebuffer.Create();

    hw_vao.Create();

    state.draw.vertex_buffer = stream_buffer.GetHandle();

    shader_program_manager = std::make_unique<GLShader::ProgramManager>();
    state.draw.shader_program = 0;
    state.draw.vertex_array = hw_vao.handle;
    state.Apply();

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, stream_buffer.GetHandle());

    glEnable(GL_BLEND);

    glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &uniform_buffer_alignment);

    LOG_CRITICAL(Render_OpenGL, "Sync fixed function OpenGL state here!");
}

RasterizerOpenGL::~RasterizerOpenGL() {}

std::pair<u8*, GLintptr> RasterizerOpenGL::SetupVertexArrays(u8* array_ptr,
                                                             GLintptr buffer_offset) {
    MICROPROFILE_SCOPE(OpenGL_VAO);
    const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs;

    state.draw.vertex_array = hw_vao.handle;
    state.draw.vertex_buffer = stream_buffer.GetHandle();
    state.Apply();

    // Upload all guest vertex arrays sequentially to our buffer
    for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
        const auto& vertex_array = regs.vertex_array[index];
        if (!vertex_array.IsEnabled())
            continue;

        const Tegra::GPUVAddr start = vertex_array.StartAddress();
        const Tegra::GPUVAddr end = regs.vertex_array_limit[index].LimitAddress();

        ASSERT(end > start);
        u64 size = end - start + 1;

        GLintptr vertex_buffer_offset;
        std::tie(array_ptr, buffer_offset, vertex_buffer_offset) =
            UploadMemory(array_ptr, buffer_offset, start, size);

        // Bind the vertex array to the buffer at the current offset.
        glBindVertexBuffer(index, stream_buffer.GetHandle(), vertex_buffer_offset,
                           vertex_array.stride);

        ASSERT_MSG(vertex_array.divisor == 0, "Instanced vertex arrays are not supported");
    }

    // Use the vertex array as-is, assumes that the data is formatted correctly for OpenGL.
    // Enables the first 16 vertex attributes always, as we don't know which ones are actually used
    // until shader time. Note, Tegra technically supports 32, but we're capping this to 16 for now
    // to avoid OpenGL errors.
    // TODO(Subv): Analyze the shader to identify which attributes are actually used and don't
    // assume every shader uses them all.
    for (unsigned index = 0; index < 16; ++index) {
        auto& attrib = regs.vertex_attrib_format[index];

        // Ignore invalid attributes.
        if (!attrib.IsValid())
            continue;

        auto& buffer = regs.vertex_array[attrib.buffer];
        LOG_TRACE(HW_GPU, "vertex attrib {}, count={}, size={}, type={}, offset={}, normalize={}",
                  index, attrib.ComponentCount(), attrib.SizeString(), attrib.TypeString(),
                  attrib.offset.Value(), attrib.IsNormalized());

        ASSERT(buffer.IsEnabled());

        glEnableVertexAttribArray(index);
        if (attrib.type == Tegra::Engines::Maxwell3D::Regs::VertexAttribute::Type::SignedInt ||
            attrib.type == Tegra::Engines::Maxwell3D::Regs::VertexAttribute::Type::UnsignedInt) {
            glVertexAttribIFormat(index, attrib.ComponentCount(), MaxwellToGL::VertexType(attrib),
                                  attrib.offset);
        } else {
            glVertexAttribFormat(index, attrib.ComponentCount(), MaxwellToGL::VertexType(attrib),
                                 attrib.IsNormalized() ? GL_TRUE : GL_FALSE, attrib.offset);
        }
        glVertexAttribBinding(index, attrib.buffer);
    }

    return {array_ptr, buffer_offset};
}

static GLShader::ProgramCode GetShaderProgramCode(Maxwell::ShaderProgram program) {
    auto& gpu = Core::System::GetInstance().GPU().Maxwell3D();

    // Fetch program code from memory
    GLShader::ProgramCode program_code;
    auto& shader_config = gpu.regs.shader_config[static_cast<size_t>(program)];
    const u64 gpu_address{gpu.regs.code_address.CodeAddress() + shader_config.offset};
    const boost::optional<VAddr> cpu_address{gpu.memory_manager.GpuToCpuAddress(gpu_address)};
    Memory::ReadBlock(*cpu_address, program_code.data(), program_code.size() * sizeof(u64));

    return program_code;
}

std::pair<u8*, GLintptr> RasterizerOpenGL::SetupShaders(u8* buffer_ptr, GLintptr buffer_offset) {
    auto& gpu = Core::System::GetInstance().GPU().Maxwell3D();

    // Next available bindpoints to use when uploading the const buffers and textures to the GLSL
    // shaders. The constbuffer bindpoint starts after the shader stage configuration bind points.
    u32 current_constbuffer_bindpoint = Tegra::Engines::Maxwell3D::Regs::MaxShaderStage;
    u32 current_texture_bindpoint = 0;

    for (size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) {
        auto& shader_config = gpu.regs.shader_config[index];
        const Maxwell::ShaderProgram program{static_cast<Maxwell::ShaderProgram>(index)};

        // Skip stages that are not enabled
        if (!gpu.regs.IsShaderConfigEnabled(index)) {
            continue;
        }

        std::tie(buffer_ptr, buffer_offset) =
            AlignBuffer(buffer_ptr, buffer_offset, static_cast<size_t>(uniform_buffer_alignment));

        const size_t stage{index == 0 ? 0 : index - 1}; // Stage indices are 0 - 5

        GLShader::MaxwellUniformData ubo{};
        ubo.SetFromRegs(gpu.state.shader_stages[stage]);
        std::memcpy(buffer_ptr, &ubo, sizeof(ubo));

        // Bind the buffer
        glBindBufferRange(GL_UNIFORM_BUFFER, stage, stream_buffer.GetHandle(), buffer_offset,
                          sizeof(ubo));

        buffer_ptr += sizeof(ubo);
        buffer_offset += sizeof(ubo);

        GLShader::ShaderSetup setup{GetShaderProgramCode(program)};
        GLShader::ShaderEntries shader_resources;

        switch (program) {
        case Maxwell::ShaderProgram::VertexA: {
            // VertexB is always enabled, so when VertexA is enabled, we have two vertex shaders.
            // Conventional HW does not support this, so we combine VertexA and VertexB into one
            // stage here.
            setup.SetProgramB(GetShaderProgramCode(Maxwell::ShaderProgram::VertexB));
            GLShader::MaxwellVSConfig vs_config{setup};
            shader_resources =
                shader_program_manager->UseProgrammableVertexShader(vs_config, setup);
            break;
        }

        case Maxwell::ShaderProgram::VertexB: {
            GLShader::MaxwellVSConfig vs_config{setup};
            shader_resources =
                shader_program_manager->UseProgrammableVertexShader(vs_config, setup);
            break;
        }
        case Maxwell::ShaderProgram::Fragment: {
            GLShader::MaxwellFSConfig fs_config{setup};
            shader_resources =
                shader_program_manager->UseProgrammableFragmentShader(fs_config, setup);
            break;
        }
        default:
            LOG_CRITICAL(HW_GPU, "Unimplemented shader index={}, enable={}, offset=0x{:08X}", index,
                         shader_config.enable.Value(), shader_config.offset);
            UNREACHABLE();
        }

        GLuint gl_stage_program = shader_program_manager->GetCurrentProgramStage(
            static_cast<Maxwell::ShaderStage>(stage));

        // Configure the const buffers for this shader stage.
        std::tie(buffer_ptr, buffer_offset, current_constbuffer_bindpoint) = SetupConstBuffers(
            buffer_ptr, buffer_offset, static_cast<Maxwell::ShaderStage>(stage), gl_stage_program,
            current_constbuffer_bindpoint, shader_resources.const_buffer_entries);

        // Configure the textures for this shader stage.
        current_texture_bindpoint =
            SetupTextures(static_cast<Maxwell::ShaderStage>(stage), gl_stage_program,
                          current_texture_bindpoint, shader_resources.texture_samplers);

        // When VertexA is enabled, we have dual vertex shaders
        if (program == Maxwell::ShaderProgram::VertexA) {
            // VertexB was combined with VertexA, so we skip the VertexB iteration
            index++;
        }
    }

    shader_program_manager->UseTrivialGeometryShader();

    return {buffer_ptr, buffer_offset};
}

size_t RasterizerOpenGL::CalculateVertexArraysSize() const {
    const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs;

    size_t size = 0;
    for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
        if (!regs.vertex_array[index].IsEnabled())
            continue;

        const Tegra::GPUVAddr start = regs.vertex_array[index].StartAddress();
        const Tegra::GPUVAddr end = regs.vertex_array_limit[index].LimitAddress();

        ASSERT(end > start);
        size += end - start + 1;
    }

    return size;
}

bool RasterizerOpenGL::AccelerateDrawBatch(bool is_indexed) {
    accelerate_draw = is_indexed ? AccelDraw::Indexed : AccelDraw::Arrays;
    DrawArrays();
    return true;
}

std::pair<Surface, Surface> RasterizerOpenGL::ConfigureFramebuffers(bool using_color_fb,
                                                                    bool using_depth_fb) {
    const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs;

    if (regs.rt[0].format == Tegra::RenderTargetFormat::NONE) {
        LOG_ERROR(HW_GPU, "RenderTargetFormat is not configured");
        using_color_fb = false;
    }

    // TODO(bunnei): Implement this
    const bool has_stencil = false;

    const bool write_color_fb =
        state.color_mask.red_enabled == GL_TRUE || state.color_mask.green_enabled == GL_TRUE ||
        state.color_mask.blue_enabled == GL_TRUE || state.color_mask.alpha_enabled == GL_TRUE;

    const bool write_depth_fb =
        (state.depth.test_enabled && state.depth.write_mask == GL_TRUE) ||
        (has_stencil && state.stencil.test_enabled && state.stencil.write_mask != 0);

    Surface color_surface;
    Surface depth_surface;
    MathUtil::Rectangle<u32> surfaces_rect;
    std::tie(color_surface, depth_surface, surfaces_rect) =
        res_cache.GetFramebufferSurfaces(using_color_fb, using_depth_fb);

    const MathUtil::Rectangle<s32> viewport_rect{regs.viewport_transform[0].GetRect()};
    const MathUtil::Rectangle<u32> draw_rect{
        static_cast<u32>(std::clamp<s32>(static_cast<s32>(surfaces_rect.left) + viewport_rect.left,
                                         surfaces_rect.left, surfaces_rect.right)), // Left
        static_cast<u32>(std::clamp<s32>(static_cast<s32>(surfaces_rect.bottom) + viewport_rect.top,
                                         surfaces_rect.bottom, surfaces_rect.top)), // Top
        static_cast<u32>(std::clamp<s32>(static_cast<s32>(surfaces_rect.left) + viewport_rect.right,
                                         surfaces_rect.left, surfaces_rect.right)), // Right
        static_cast<u32>(
            std::clamp<s32>(static_cast<s32>(surfaces_rect.bottom) + viewport_rect.bottom,
                            surfaces_rect.bottom, surfaces_rect.top))}; // Bottom

    // Bind the framebuffer surfaces
    BindFramebufferSurfaces(color_surface, depth_surface, has_stencil);

    SyncViewport(surfaces_rect);

    // Viewport can have negative offsets or larger dimensions than our framebuffer sub-rect. Enable
    // scissor test to prevent drawing outside of the framebuffer region
    state.scissor.enabled = true;
    state.scissor.x = draw_rect.left;
    state.scissor.y = draw_rect.bottom;
    state.scissor.width = draw_rect.GetWidth();
    state.scissor.height = draw_rect.GetHeight();
    state.Apply();

    // Only return the surface to be marked as dirty if writing to it is enabled.
    return std::make_pair(write_color_fb ? color_surface : nullptr,
                          write_depth_fb ? depth_surface : nullptr);
}

void RasterizerOpenGL::Clear() {
    const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs;

    bool use_color_fb = false;
    bool use_depth_fb = false;

    GLbitfield clear_mask = 0;
    if (regs.clear_buffers.R && regs.clear_buffers.G && regs.clear_buffers.B &&
        regs.clear_buffers.A) {
        clear_mask |= GL_COLOR_BUFFER_BIT;
        use_color_fb = true;
    }
    if (regs.clear_buffers.Z) {
        clear_mask |= GL_DEPTH_BUFFER_BIT;
        use_depth_fb = regs.zeta_enable != 0;

        // Always enable the depth write when clearing the depth buffer. The depth write mask is
        // ignored when clearing the buffer in the Switch, but OpenGL obeys it so we set it to true.
        state.depth.test_enabled = true;
        state.depth.write_mask = GL_TRUE;
        state.depth.test_func = GL_ALWAYS;
        state.Apply();
    }

    if (clear_mask == 0)
        return;

    ScopeAcquireGLContext acquire_context{emu_window};

    auto [dirty_color_surface, dirty_depth_surface] =
        ConfigureFramebuffers(use_color_fb, use_depth_fb);

    // TODO(Subv): Support clearing only partial colors.
    glClearColor(regs.clear_color[0], regs.clear_color[1], regs.clear_color[2],
                 regs.clear_color[3]);
    glClearDepth(regs.clear_depth);

    glClear(clear_mask);

    // Mark framebuffer surfaces as dirty
    if (Settings::values.use_accurate_framebuffers) {
        if (dirty_color_surface != nullptr) {
            res_cache.FlushSurface(dirty_color_surface);
        }
        if (dirty_depth_surface != nullptr) {
            res_cache.FlushSurface(dirty_depth_surface);
        }
    }
}

std::pair<u8*, GLintptr> RasterizerOpenGL::AlignBuffer(u8* buffer_ptr, GLintptr buffer_offset,
                                                       size_t alignment) {
    // Align the offset, not the mapped pointer
    GLintptr offset_aligned =
        static_cast<GLintptr>(Common::AlignUp(static_cast<size_t>(buffer_offset), alignment));
    return {buffer_ptr + (offset_aligned - buffer_offset), offset_aligned};
}

std::tuple<u8*, GLintptr, GLintptr> RasterizerOpenGL::UploadMemory(u8* buffer_ptr,
                                                                   GLintptr buffer_offset,
                                                                   Tegra::GPUVAddr gpu_addr,
                                                                   size_t size, size_t alignment) {
    std::tie(buffer_ptr, buffer_offset) = AlignBuffer(buffer_ptr, buffer_offset, alignment);
    GLintptr uploaded_offset = buffer_offset;

    const auto& memory_manager = Core::System::GetInstance().GPU().memory_manager;
    const boost::optional<VAddr> cpu_addr{memory_manager->GpuToCpuAddress(gpu_addr)};
    Memory::ReadBlock(*cpu_addr, buffer_ptr, size);

    buffer_ptr += size;
    buffer_offset += size;

    return {buffer_ptr, buffer_offset, uploaded_offset};
}

void RasterizerOpenGL::DrawArrays() {
    if (accelerate_draw == AccelDraw::Disabled)
        return;

    MICROPROFILE_SCOPE(OpenGL_Drawing);
    const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs;

    ScopeAcquireGLContext acquire_context{emu_window};

    auto [dirty_color_surface, dirty_depth_surface] =
        ConfigureFramebuffers(true, regs.zeta.Address() != 0 && regs.zeta_enable != 0);

    SyncDepthTestState();
    SyncBlendState();
    SyncCullMode();

    // TODO(bunnei): Sync framebuffer_scale uniform here
    // TODO(bunnei): Sync scissorbox uniform(s) here

    // Draw the vertex batch
    const bool is_indexed = accelerate_draw == AccelDraw::Indexed;
    const u64 index_buffer_size{regs.index_array.count * regs.index_array.FormatSizeInBytes()};
    const unsigned vertex_num{is_indexed ? regs.index_array.count : regs.vertex_buffer.count};

    state.draw.vertex_buffer = stream_buffer.GetHandle();
    state.Apply();

    size_t buffer_size = CalculateVertexArraysSize();

    if (is_indexed) {
        buffer_size = Common::AlignUp<size_t>(buffer_size, 4) + index_buffer_size;
    }

    // Uniform space for the 5 shader stages
    buffer_size =
        Common::AlignUp<size_t>(buffer_size, 4) +
        (sizeof(GLShader::MaxwellUniformData) + uniform_buffer_alignment) * Maxwell::MaxShaderStage;

    // Add space for at least 18 constant buffers
    buffer_size += Maxwell::MaxConstBuffers * (MaxConstbufferSize + uniform_buffer_alignment);

    u8* buffer_ptr;
    GLintptr buffer_offset;
    std::tie(buffer_ptr, buffer_offset, std::ignore) =
        stream_buffer.Map(static_cast<GLsizeiptr>(buffer_size), 4);
    u8* buffer_ptr_base = buffer_ptr;

    std::tie(buffer_ptr, buffer_offset) = SetupVertexArrays(buffer_ptr, buffer_offset);

    // If indexed mode, copy the index buffer
    GLintptr index_buffer_offset = 0;
    if (is_indexed) {
        std::tie(buffer_ptr, buffer_offset, index_buffer_offset) = UploadMemory(
            buffer_ptr, buffer_offset, regs.index_array.StartAddress(), index_buffer_size);
    }

    std::tie(buffer_ptr, buffer_offset) = SetupShaders(buffer_ptr, buffer_offset);

    stream_buffer.Unmap(buffer_ptr - buffer_ptr_base);

    shader_program_manager->ApplyTo(state);
    state.Apply();

    const GLenum primitive_mode{MaxwellToGL::PrimitiveTopology(regs.draw.topology)};
    if (is_indexed) {
        const GLint base_vertex{static_cast<GLint>(regs.vb_element_base)};

        // Adjust the index buffer offset so it points to the first desired index.
        index_buffer_offset += regs.index_array.first * regs.index_array.FormatSizeInBytes();

        glDrawElementsBaseVertex(primitive_mode, regs.index_array.count,
                                 MaxwellToGL::IndexFormat(regs.index_array.format),
                                 reinterpret_cast<const void*>(index_buffer_offset), base_vertex);
    } else {
        glDrawArrays(primitive_mode, regs.vertex_buffer.first, regs.vertex_buffer.count);
    }

    // Disable scissor test
    state.scissor.enabled = false;

    accelerate_draw = AccelDraw::Disabled;

    // Unbind textures for potential future use as framebuffer attachments
    for (auto& texture_unit : state.texture_units) {
        texture_unit.Unbind();
    }
    state.Apply();

    // Mark framebuffer surfaces as dirty
    if (Settings::values.use_accurate_framebuffers) {
        if (dirty_color_surface != nullptr) {
            res_cache.FlushSurface(dirty_color_surface);
        }
        if (dirty_depth_surface != nullptr) {
            res_cache.FlushSurface(dirty_depth_surface);
        }
    }
}

void RasterizerOpenGL::NotifyMaxwellRegisterChanged(u32 method) {}

void RasterizerOpenGL::FlushAll() {
    MICROPROFILE_SCOPE(OpenGL_CacheManagement);
    res_cache.FlushRegion(0, Kernel::VMManager::MAX_ADDRESS);
}

void RasterizerOpenGL::FlushRegion(Tegra::GPUVAddr addr, u64 size) {
    MICROPROFILE_SCOPE(OpenGL_CacheManagement);
    res_cache.FlushRegion(addr, size);
}

void RasterizerOpenGL::InvalidateRegion(Tegra::GPUVAddr addr, u64 size) {
    MICROPROFILE_SCOPE(OpenGL_CacheManagement);
    res_cache.InvalidateRegion(addr, size);
}

void RasterizerOpenGL::FlushAndInvalidateRegion(Tegra::GPUVAddr addr, u64 size) {
    MICROPROFILE_SCOPE(OpenGL_CacheManagement);
    res_cache.FlushRegion(addr, size);
    res_cache.InvalidateRegion(addr, size);
}

bool RasterizerOpenGL::AccelerateDisplayTransfer(const void* config) {
    MICROPROFILE_SCOPE(OpenGL_Blits);
    UNREACHABLE();
    return true;
}

bool RasterizerOpenGL::AccelerateTextureCopy(const void* config) {
    UNREACHABLE();
    return true;
}

bool RasterizerOpenGL::AccelerateFill(const void* config) {
    UNREACHABLE();
    return true;
}

bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config,
                                         VAddr framebuffer_addr, u32 pixel_stride,
                                         ScreenInfo& screen_info) {
    if (!framebuffer_addr) {
        return {};
    }

    MICROPROFILE_SCOPE(OpenGL_CacheManagement);

    const auto& surface{res_cache.TryFindFramebufferSurface(framebuffer_addr)};
    if (!surface) {
        return {};
    }

    // Verify that the cached surface is the same size and format as the requested framebuffer
    const auto& params{surface->GetSurfaceParams()};
    const auto& pixel_format{SurfaceParams::PixelFormatFromGPUPixelFormat(config.pixel_format)};
    ASSERT_MSG(params.width == config.width, "Framebuffer width is different");
    ASSERT_MSG(params.height == config.height, "Framebuffer height is different");
    ASSERT_MSG(params.pixel_format == pixel_format, "Framebuffer pixel_format is different");

    screen_info.display_texture = surface->Texture().handle;

    return true;
}

void RasterizerOpenGL::SamplerInfo::Create() {
    sampler.Create();
    mag_filter = min_filter = Tegra::Texture::TextureFilter::Linear;
    wrap_u = wrap_v = Tegra::Texture::WrapMode::Wrap;

    // default is GL_LINEAR_MIPMAP_LINEAR
    glSamplerParameteri(sampler.handle, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    // Other attributes have correct defaults
}

void RasterizerOpenGL::SamplerInfo::SyncWithConfig(const Tegra::Texture::TSCEntry& config) {
    GLuint s = sampler.handle;

    if (mag_filter != config.mag_filter) {
        mag_filter = config.mag_filter;
        glSamplerParameteri(s, GL_TEXTURE_MAG_FILTER, MaxwellToGL::TextureFilterMode(mag_filter));
    }
    if (min_filter != config.min_filter) {
        min_filter = config.min_filter;
        glSamplerParameteri(s, GL_TEXTURE_MIN_FILTER, MaxwellToGL::TextureFilterMode(min_filter));
    }

    if (wrap_u != config.wrap_u) {
        wrap_u = config.wrap_u;
        glSamplerParameteri(s, GL_TEXTURE_WRAP_S, MaxwellToGL::WrapMode(wrap_u));
    }
    if (wrap_v != config.wrap_v) {
        wrap_v = config.wrap_v;
        glSamplerParameteri(s, GL_TEXTURE_WRAP_T, MaxwellToGL::WrapMode(wrap_v));
    }

    if (wrap_u == Tegra::Texture::WrapMode::Border || wrap_v == Tegra::Texture::WrapMode::Border) {
        const GLvec4 new_border_color = {{config.border_color_r, config.border_color_g,
                                          config.border_color_b, config.border_color_a}};
        if (border_color != new_border_color) {
            border_color = new_border_color;
            glSamplerParameterfv(s, GL_TEXTURE_BORDER_COLOR, border_color.data());
        }
    }
}

std::tuple<u8*, GLintptr, u32> RasterizerOpenGL::SetupConstBuffers(
    u8* buffer_ptr, GLintptr buffer_offset, Maxwell::ShaderStage stage, GLuint program,
    u32 current_bindpoint, const std::vector<GLShader::ConstBufferEntry>& entries) {
    const auto& gpu = Core::System::GetInstance().GPU();
    const auto& maxwell3d = gpu.Maxwell3D();

    // Upload only the enabled buffers from the 16 constbuffers of each shader stage
    const auto& shader_stage = maxwell3d.state.shader_stages[static_cast<size_t>(stage)];

    for (u32 bindpoint = 0; bindpoint < entries.size(); ++bindpoint) {
        const auto& used_buffer = entries[bindpoint];
        const auto& buffer = shader_stage.const_buffers[used_buffer.GetIndex()];

        if (!buffer.enabled) {
            continue;
        }

        size_t size = 0;

        if (used_buffer.IsIndirect()) {
            // Buffer is accessed indirectly, so upload the entire thing
            size = buffer.size;

            if (size > MaxConstbufferSize) {
                LOG_CRITICAL(HW_GPU, "indirect constbuffer size {} exceeds maximum {}", size,
                             MaxConstbufferSize);
                size = MaxConstbufferSize;
            }
        } else {
            // Buffer is accessed directly, upload just what we use
            size = used_buffer.GetSize() * sizeof(float);
        }

        // Align the actual size so it ends up being a multiple of vec4 to meet the OpenGL std140
        // UBO alignment requirements.
        size = Common::AlignUp(size, sizeof(GLvec4));
        ASSERT_MSG(size <= MaxConstbufferSize, "Constbuffer too big");

        GLintptr const_buffer_offset;
        std::tie(buffer_ptr, buffer_offset, const_buffer_offset) =
            UploadMemory(buffer_ptr, buffer_offset, buffer.address, size,
                         static_cast<size_t>(uniform_buffer_alignment));

        glBindBufferRange(GL_UNIFORM_BUFFER, current_bindpoint + bindpoint,
                          stream_buffer.GetHandle(), const_buffer_offset, size);

        // Now configure the bindpoint of the buffer inside the shader
        const std::string buffer_name = used_buffer.GetName();
        const GLuint index =
            glGetProgramResourceIndex(program, GL_UNIFORM_BLOCK, buffer_name.c_str());
        if (index != GL_INVALID_INDEX) {
            glUniformBlockBinding(program, index, current_bindpoint + bindpoint);
        }
    }

    state.Apply();

    return {buffer_ptr, buffer_offset, current_bindpoint + static_cast<u32>(entries.size())};
}

u32 RasterizerOpenGL::SetupTextures(Maxwell::ShaderStage stage, GLuint program, u32 current_unit,
                                    const std::vector<GLShader::SamplerEntry>& entries) {
    const auto& gpu = Core::System::GetInstance().GPU();
    const auto& maxwell3d = gpu.Maxwell3D();

    ASSERT_MSG(current_unit + entries.size() <= std::size(state.texture_units),
               "Exceeded the number of active textures.");

    for (u32 bindpoint = 0; bindpoint < entries.size(); ++bindpoint) {
        const auto& entry = entries[bindpoint];
        u32 current_bindpoint = current_unit + bindpoint;

        // Bind the uniform to the sampler.
        GLint uniform = glGetUniformLocation(program, entry.GetName().c_str());
        if (uniform == -1) {
            continue;
        }

        glProgramUniform1i(program, uniform, current_bindpoint);

        const auto texture = maxwell3d.GetStageTexture(entry.GetStage(), entry.GetOffset());

        if (!texture.enabled) {
            state.texture_units[current_bindpoint].texture_2d = 0;
            continue;
        }

        texture_samplers[current_bindpoint].SyncWithConfig(texture.tsc);
        Surface surface = res_cache.GetTextureSurface(texture);
        if (surface != nullptr) {
            state.texture_units[current_bindpoint].texture_2d = surface->Texture().handle;
            state.texture_units[current_bindpoint].swizzle.r =
                MaxwellToGL::SwizzleSource(texture.tic.x_source);
            state.texture_units[current_bindpoint].swizzle.g =
                MaxwellToGL::SwizzleSource(texture.tic.y_source);
            state.texture_units[current_bindpoint].swizzle.b =
                MaxwellToGL::SwizzleSource(texture.tic.z_source);
            state.texture_units[current_bindpoint].swizzle.a =
                MaxwellToGL::SwizzleSource(texture.tic.w_source);
        } else {
            // Can occur when texture addr is null or its memory is unmapped/invalid
            state.texture_units[current_bindpoint].texture_2d = 0;
        }
    }

    state.Apply();

    return current_unit + static_cast<u32>(entries.size());
}

void RasterizerOpenGL::BindFramebufferSurfaces(const Surface& color_surface,
                                               const Surface& depth_surface, bool has_stencil) {
    state.draw.draw_framebuffer = framebuffer.handle;
    state.Apply();

    glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
                           color_surface != nullptr ? color_surface->Texture().handle : 0, 0);
    if (depth_surface != nullptr) {
        if (has_stencil) {
            // attach both depth and stencil
            glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
                                   depth_surface->Texture().handle, 0);
        } else {
            // attach depth
            glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
                                   depth_surface->Texture().handle, 0);
            // clear stencil attachment
            glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
        }
    } else {
        // clear both depth and stencil attachment
        glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
                               0);
    }
}

void RasterizerOpenGL::SyncViewport(const MathUtil::Rectangle<u32>& surfaces_rect) {
    const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs;
    const MathUtil::Rectangle<s32> viewport_rect{regs.viewport_transform[0].GetRect()};

    state.viewport.x = static_cast<GLint>(surfaces_rect.left) + viewport_rect.left;
    state.viewport.y = static_cast<GLint>(surfaces_rect.bottom) + viewport_rect.bottom;
    state.viewport.width = static_cast<GLsizei>(viewport_rect.GetWidth());
    state.viewport.height = static_cast<GLsizei>(viewport_rect.GetHeight());
}

void RasterizerOpenGL::SyncClipEnabled() {
    UNREACHABLE();
}

void RasterizerOpenGL::SyncClipCoef() {
    UNREACHABLE();
}

void RasterizerOpenGL::SyncCullMode() {
    const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs;

    state.cull.enabled = regs.cull.enabled != 0;

    if (state.cull.enabled) {
        state.cull.front_face = MaxwellToGL::FrontFace(regs.cull.front_face);
        state.cull.mode = MaxwellToGL::CullFace(regs.cull.cull_face);

        const bool flip_triangles{regs.screen_y_control.triangle_rast_flip == 0 ||
                                  regs.viewport_transform[0].scale_y < 0.0f};

        // If the GPU is configured to flip the rasterized triangles, then we need to flip the
        // notion of front and back. Note: We flip the triangles when the value of the register is 0
        // because OpenGL already does it for us.
        if (flip_triangles) {
            if (state.cull.front_face == GL_CCW)
                state.cull.front_face = GL_CW;
            else if (state.cull.front_face == GL_CW)
                state.cull.front_face = GL_CCW;
        }
    }
}

void RasterizerOpenGL::SyncDepthScale() {
    UNREACHABLE();
}

void RasterizerOpenGL::SyncDepthOffset() {
    UNREACHABLE();
}

void RasterizerOpenGL::SyncDepthTestState() {
    const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs;

    state.depth.test_enabled = regs.depth_test_enable != 0;
    state.depth.write_mask = regs.depth_write_enabled ? GL_TRUE : GL_FALSE;

    if (!state.depth.test_enabled)
        return;

    state.depth.test_func = MaxwellToGL::ComparisonOp(regs.depth_test_func);
}

void RasterizerOpenGL::SyncBlendState() {
    const auto& regs = Core::System::GetInstance().GPU().Maxwell3D().regs;

    // TODO(Subv): Support more than just render target 0.
    state.blend.enabled = regs.blend.enable[0] != 0;

    if (!state.blend.enabled)
        return;

    ASSERT_MSG(regs.independent_blend_enable == 1, "Only independent blending is implemented");
    ASSERT_MSG(!regs.independent_blend[0].separate_alpha, "Unimplemented");
    state.blend.rgb_equation = MaxwellToGL::BlendEquation(regs.independent_blend[0].equation_rgb);
    state.blend.src_rgb_func = MaxwellToGL::BlendFunc(regs.independent_blend[0].factor_source_rgb);
    state.blend.dst_rgb_func = MaxwellToGL::BlendFunc(regs.independent_blend[0].factor_dest_rgb);
    state.blend.a_equation = MaxwellToGL::BlendEquation(regs.independent_blend[0].equation_a);
    state.blend.src_a_func = MaxwellToGL::BlendFunc(regs.independent_blend[0].factor_source_a);
    state.blend.dst_a_func = MaxwellToGL::BlendFunc(regs.independent_blend[0].factor_dest_a);
}