summaryrefslogtreecommitdiffstats
path: root/src/video_core/renderer_opengl/gl_compute_pipeline.cpp
blob: a40106c87fec442e4c1dc126b855a13a462258d1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <cstring>

#include "common/cityhash.h"
#include "video_core/renderer_opengl/gl_compute_pipeline.h"
#include "video_core/renderer_opengl/gl_shader_manager.h"

namespace OpenGL {

using Shader::ImageBufferDescriptor;
using Tegra::Texture::TexturePair;
using VideoCommon::ImageId;

constexpr u32 MAX_TEXTURES = 64;
constexpr u32 MAX_IMAGES = 16;

template <typename Range>
u32 AccumulateCount(const Range& range) {
    u32 num{};
    for (const auto& desc : range) {
        num += desc.count;
    }
    return num;
}

size_t ComputePipelineKey::Hash() const noexcept {
    return static_cast<size_t>(
        Common::CityHash64(reinterpret_cast<const char*>(this), sizeof *this));
}

bool ComputePipelineKey::operator==(const ComputePipelineKey& rhs) const noexcept {
    return std::memcmp(this, &rhs, sizeof *this) == 0;
}

ComputePipeline::ComputePipeline(const Device& device, TextureCache& texture_cache_,
                                 BufferCache& buffer_cache_, Tegra::MemoryManager& gpu_memory_,
                                 Tegra::Engines::KeplerCompute& kepler_compute_,
                                 ProgramManager& program_manager_, const Shader::Info& info_,
                                 OGLProgram source_program_, OGLAssemblyProgram assembly_program_)
    : texture_cache{texture_cache_}, buffer_cache{buffer_cache_}, gpu_memory{gpu_memory_},
      kepler_compute{kepler_compute_}, program_manager{program_manager_}, info{info_},
      source_program{std::move(source_program_)}, assembly_program{std::move(assembly_program_)} {
    std::copy_n(info.constant_buffer_used_sizes.begin(), uniform_buffer_sizes.size(),
                uniform_buffer_sizes.begin());

    num_texture_buffers = AccumulateCount(info.texture_buffer_descriptors);
    num_image_buffers = AccumulateCount(info.image_buffer_descriptors);

    const u32 num_textures{num_texture_buffers + AccumulateCount(info.texture_descriptors)};
    ASSERT(num_textures <= MAX_TEXTURES);

    const u32 num_images{num_image_buffers + AccumulateCount(info.image_descriptors)};
    ASSERT(num_images <= MAX_IMAGES);

    const bool is_glasm{assembly_program.handle != 0};
    const u32 num_storage_buffers{AccumulateCount(info.storage_buffers_descriptors)};
    use_storage_buffers =
        !is_glasm || num_storage_buffers < device.GetMaxGLASMStorageBufferBlocks();
    writes_global_memory = !use_storage_buffers &&
                           std::ranges::any_of(info.storage_buffers_descriptors,
                                               [](const auto& desc) { return desc.is_written; });
}

void ComputePipeline::Configure() {
    buffer_cache.SetComputeUniformBufferState(info.constant_buffer_mask, &uniform_buffer_sizes);
    buffer_cache.UnbindComputeStorageBuffers();
    size_t ssbo_index{};
    for (const auto& desc : info.storage_buffers_descriptors) {
        ASSERT(desc.count == 1);
        buffer_cache.BindComputeStorageBuffer(ssbo_index, desc.cbuf_index, desc.cbuf_offset,
                                              desc.is_written);
        ++ssbo_index;
    }
    texture_cache.SynchronizeComputeDescriptors();

    std::array<ImageViewId, MAX_TEXTURES + MAX_IMAGES> image_view_ids;
    boost::container::static_vector<u32, MAX_TEXTURES + MAX_IMAGES> image_view_indices;
    std::array<GLuint, MAX_TEXTURES> samplers;
    std::array<GLuint, MAX_TEXTURES> textures;
    std::array<GLuint, MAX_IMAGES> images;
    GLsizei sampler_binding{};
    GLsizei texture_binding{};
    GLsizei image_binding{};

    const auto& qmd{kepler_compute.launch_description};
    const auto& cbufs{qmd.const_buffer_config};
    const bool via_header_index{qmd.linked_tsc != 0};
    const auto read_handle{[&](const auto& desc, u32 index) {
        ASSERT(((qmd.const_buffer_enable_mask >> desc.cbuf_index) & 1) != 0);
        const u32 index_offset{index << desc.size_shift};
        const u32 offset{desc.cbuf_offset + index_offset};
        const GPUVAddr addr{cbufs[desc.cbuf_index].Address() + offset};
        if constexpr (std::is_same_v<decltype(desc), const Shader::TextureDescriptor&> ||
                      std::is_same_v<decltype(desc), const Shader::TextureBufferDescriptor&>) {
            if (desc.has_secondary) {
                ASSERT(((qmd.const_buffer_enable_mask >> desc.secondary_cbuf_index) & 1) != 0);
                const u32 secondary_offset{desc.secondary_cbuf_offset + index_offset};
                const GPUVAddr separate_addr{cbufs[desc.secondary_cbuf_index].Address() +
                                             secondary_offset};
                const u32 lhs_raw{gpu_memory.Read<u32>(addr)};
                const u32 rhs_raw{gpu_memory.Read<u32>(separate_addr)};
                return TexturePair(lhs_raw | rhs_raw, via_header_index);
            }
        }
        return TexturePair(gpu_memory.Read<u32>(addr), via_header_index);
    }};
    const auto add_image{[&](const auto& desc) {
        for (u32 index = 0; index < desc.count; ++index) {
            const auto handle{read_handle(desc, index)};
            image_view_indices.push_back(handle.first);
        }
    }};
    for (const auto& desc : info.texture_buffer_descriptors) {
        for (u32 index = 0; index < desc.count; ++index) {
            const auto handle{read_handle(desc, index)};
            image_view_indices.push_back(handle.first);
            samplers[sampler_binding++] = 0;
        }
    }
    std::ranges::for_each(info.image_buffer_descriptors, add_image);
    for (const auto& desc : info.texture_descriptors) {
        for (u32 index = 0; index < desc.count; ++index) {
            const auto handle{read_handle(desc, index)};
            image_view_indices.push_back(handle.first);

            Sampler* const sampler = texture_cache.GetComputeSampler(handle.second);
            samplers[sampler_binding++] = sampler->Handle();
        }
    }
    std::ranges::for_each(info.image_descriptors, add_image);

    const std::span indices_span(image_view_indices.data(), image_view_indices.size());
    texture_cache.FillComputeImageViews(indices_span, image_view_ids);

    if (assembly_program.handle != 0) {
        program_manager.BindComputeAssemblyProgram(assembly_program.handle);
    } else {
        program_manager.BindProgram(source_program.handle);
    }
    buffer_cache.UnbindComputeTextureBuffers();
    size_t texbuf_index{};
    const auto add_buffer{[&](const auto& desc) {
        constexpr bool is_image = std::is_same_v<decltype(desc), const ImageBufferDescriptor&>;
        for (u32 i = 0; i < desc.count; ++i) {
            bool is_written{false};
            if constexpr (is_image) {
                is_written = desc.is_written;
            }
            ImageView& image_view{texture_cache.GetImageView(image_view_ids[texbuf_index])};
            buffer_cache.BindComputeTextureBuffer(texbuf_index, image_view.GpuAddr(),
                                                  image_view.BufferSize(), image_view.format,
                                                  is_written, is_image);
            ++texbuf_index;
        }
    }};
    std::ranges::for_each(info.texture_buffer_descriptors, add_buffer);
    std::ranges::for_each(info.image_buffer_descriptors, add_buffer);

    buffer_cache.UpdateComputeBuffers();

    buffer_cache.runtime.SetEnableStorageBuffers(use_storage_buffers);
    buffer_cache.runtime.SetImagePointers(textures.data(), images.data());
    buffer_cache.BindHostComputeBuffers();

    const ImageId* views_it{image_view_ids.data() + num_texture_buffers + num_image_buffers};
    texture_binding += num_texture_buffers;
    image_binding += num_image_buffers;

    for (const auto& desc : info.texture_descriptors) {
        for (u32 index = 0; index < desc.count; ++index) {
            ImageView& image_view{texture_cache.GetImageView(*(views_it++))};
            textures[texture_binding++] = image_view.Handle(desc.type);
        }
    }
    for (const auto& desc : info.image_descriptors) {
        for (u32 index = 0; index < desc.count; ++index) {
            ImageView& image_view{texture_cache.GetImageView(*(views_it++))};
            if (desc.is_written) {
                texture_cache.MarkModification(image_view.image_id);
            }
            images[image_binding++] = image_view.StorageView(desc.type, desc.format);
        }
    }
    if (texture_binding != 0) {
        ASSERT(texture_binding == sampler_binding);
        glBindTextures(0, texture_binding, textures.data());
        glBindSamplers(0, sampler_binding, samplers.data());
    }
    if (image_binding != 0) {
        glBindImageTextures(0, image_binding, images.data());
    }
}

} // namespace OpenGL