summaryrefslogtreecommitdiffstats
path: root/src/video_core/macro_interpreter.cpp
blob: 993a6774613f27bc3f39823deb1036ded5b83566 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include "common/assert.h"
#include "common/logging/log.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/macro_interpreter.h"

namespace Tegra {

MacroInterpreter::MacroInterpreter(Engines::Maxwell3D& maxwell3d) : maxwell3d(maxwell3d) {}

void MacroInterpreter::Execute(const std::vector<u32>& code, std::vector<u32> parameters) {
    Reset();
    registers[1] = parameters[0];
    this->parameters = std::move(parameters);

    // Execute the code until we hit an exit condition.
    bool keep_executing = true;
    while (keep_executing) {
        keep_executing = Step(code, false);
    }

    // Assert the the macro used all the input parameters
    ASSERT(next_parameter_index == this->parameters.size());
}

void MacroInterpreter::Reset() {
    registers = {};
    pc = 0;
    delayed_pc = boost::none;
    method_address.raw = 0;
    parameters.clear();
    // The next parameter index starts at 1, because $r1 already has the value of the first
    // parameter.
    next_parameter_index = 1;
}

bool MacroInterpreter::Step(const std::vector<u32>& code, bool is_delay_slot) {
    u32 base_address = pc;

    Opcode opcode = GetOpcode(code);
    pc += 4;

    // Update the program counter if we were delayed
    if (delayed_pc != boost::none) {
        ASSERT(is_delay_slot);
        pc = *delayed_pc;
        delayed_pc = boost::none;
    }

    switch (opcode.operation) {
    case Operation::ALU: {
        u32 result = GetALUResult(opcode.alu_operation, GetRegister(opcode.src_a),
                                  GetRegister(opcode.src_b));
        ProcessResult(opcode.result_operation, opcode.dst, result);
        break;
    }
    case Operation::AddImmediate: {
        ProcessResult(opcode.result_operation, opcode.dst,
                      GetRegister(opcode.src_a) + opcode.immediate);
        break;
    }
    case Operation::ExtractInsert: {
        u32 dst = GetRegister(opcode.src_a);
        u32 src = GetRegister(opcode.src_b);

        src = (src >> opcode.bf_src_bit) & opcode.GetBitfieldMask();
        dst &= ~(opcode.GetBitfieldMask() << opcode.bf_dst_bit);
        dst |= src << opcode.bf_dst_bit;
        ProcessResult(opcode.result_operation, opcode.dst, dst);
        break;
    }
    case Operation::ExtractShiftLeftImmediate: {
        u32 dst = GetRegister(opcode.src_a);
        u32 src = GetRegister(opcode.src_b);

        u32 result = ((src >> dst) & opcode.GetBitfieldMask()) << opcode.bf_dst_bit;

        ProcessResult(opcode.result_operation, opcode.dst, result);
        break;
    }
    case Operation::ExtractShiftLeftRegister: {
        u32 dst = GetRegister(opcode.src_a);
        u32 src = GetRegister(opcode.src_b);

        u32 result = ((src >> opcode.bf_src_bit) & opcode.GetBitfieldMask()) << dst;

        ProcessResult(opcode.result_operation, opcode.dst, result);
        break;
    }
    case Operation::Read: {
        u32 result = Read(GetRegister(opcode.src_a) + opcode.immediate);
        ProcessResult(opcode.result_operation, opcode.dst, result);
        break;
    }
    case Operation::Branch: {
        ASSERT_MSG(!is_delay_slot, "Executing a branch in a delay slot is not valid");
        u32 value = GetRegister(opcode.src_a);
        bool taken = EvaluateBranchCondition(opcode.branch_condition, value);
        if (taken) {
            // Ignore the delay slot if the branch has the annul bit.
            if (opcode.branch_annul) {
                pc = base_address + (opcode.immediate << 2);
                return true;
            }

            delayed_pc = base_address + (opcode.immediate << 2);
            // Execute one more instruction due to the delay slot.
            return Step(code, true);
        }
        break;
    }
    default:
        UNIMPLEMENTED_MSG("Unimplemented macro operation %u",
                          static_cast<u32>(opcode.operation.Value()));
    }

    if (opcode.is_exit) {
        // Exit has a delay slot, execute the next instruction
        // Note: Executing an exit during a branch delay slot will cause the instruction at the
        // branch target to be executed before exiting.
        Step(code, true);
        return false;
    }

    return true;
}

MacroInterpreter::Opcode MacroInterpreter::GetOpcode(const std::vector<u32>& code) const {
    ASSERT((pc % sizeof(u32)) == 0);
    ASSERT(pc < code.size() * sizeof(u32));
    return {code[pc / sizeof(u32)]};
}

u32 MacroInterpreter::GetALUResult(ALUOperation operation, u32 src_a, u32 src_b) const {
    switch (operation) {
    case ALUOperation::Add:
        return src_a + src_b;
    // TODO(Subv): Implement AddWithCarry
    case ALUOperation::Subtract:
        return src_a - src_b;
    // TODO(Subv): Implement SubtractWithBorrow
    case ALUOperation::Xor:
        return src_a ^ src_b;
    case ALUOperation::Or:
        return src_a | src_b;
    case ALUOperation::And:
        return src_a & src_b;
    case ALUOperation::AndNot:
        return src_a & ~src_b;
    case ALUOperation::Nand:
        return ~(src_a & src_b);

    default:
        UNIMPLEMENTED_MSG("Unimplemented ALU operation %u", static_cast<u32>(operation));
    }
}

void MacroInterpreter::ProcessResult(ResultOperation operation, u32 reg, u32 result) {
    switch (operation) {
    case ResultOperation::IgnoreAndFetch:
        // Fetch parameter and ignore result.
        SetRegister(reg, FetchParameter());
        break;
    case ResultOperation::Move:
        // Move result.
        SetRegister(reg, result);
        break;
    case ResultOperation::MoveAndSetMethod:
        // Move result and use as Method Address.
        SetRegister(reg, result);
        SetMethodAddress(result);
        break;
    case ResultOperation::FetchAndSend:
        // Fetch parameter and send result.
        SetRegister(reg, FetchParameter());
        Send(result);
        break;
    case ResultOperation::MoveAndSend:
        // Move and send result.
        SetRegister(reg, result);
        Send(result);
        break;
    case ResultOperation::FetchAndSetMethod:
        // Fetch parameter and use result as Method Address.
        SetRegister(reg, FetchParameter());
        SetMethodAddress(result);
        break;
    case ResultOperation::MoveAndSetMethodFetchAndSend:
        // Move result and use as Method Address, then fetch and send parameter.
        SetRegister(reg, result);
        SetMethodAddress(result);
        Send(FetchParameter());
        break;
    case ResultOperation::MoveAndSetMethodSend:
        // Move result and use as Method Address, then send bits 12:17 of result.
        SetRegister(reg, result);
        SetMethodAddress(result);
        Send((result >> 12) & 0b111111);
        break;
    default:
        UNIMPLEMENTED_MSG("Unimplemented result operation %u", static_cast<u32>(operation));
    }
}

u32 MacroInterpreter::FetchParameter() {
    ASSERT(next_parameter_index < parameters.size());
    return parameters[next_parameter_index++];
}

u32 MacroInterpreter::GetRegister(u32 register_id) const {
    // Register 0 is supposed to always return 0.
    if (register_id == 0)
        return 0;

    ASSERT(register_id < registers.size());
    return registers[register_id];
}

void MacroInterpreter::SetRegister(u32 register_id, u32 value) {
    // Register 0 is supposed to always return 0. NOP is implemented as a store to the zero
    // register.
    if (register_id == 0)
        return;

    ASSERT(register_id < registers.size());
    registers[register_id] = value;
}

void MacroInterpreter::SetMethodAddress(u32 address) {
    method_address.raw = address;
}

void MacroInterpreter::Send(u32 value) {
    maxwell3d.WriteReg(method_address.address, value, 0);
    // Increment the method address by the method increment.
    method_address.address.Assign(method_address.address.Value() +
                                  method_address.increment.Value());
}

u32 MacroInterpreter::Read(u32 method) const {
    return maxwell3d.GetRegisterValue(method);
}

bool MacroInterpreter::EvaluateBranchCondition(BranchCondition cond, u32 value) const {
    switch (cond) {
    case BranchCondition::Zero:
        return value == 0;
    case BranchCondition::NotZero:
        return value != 0;
    }
    UNREACHABLE();
}

} // namespace Tegra