1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/thread.h"
#include "core/core.h"
#include "core/frontend/emu_window.h"
#include "core/settings.h"
#include "video_core/dma_pusher.h"
#include "video_core/gpu.h"
#include "video_core/gpu_thread.h"
#include "video_core/renderer_base.h"
namespace VideoCommon::GPUThread {
/// Runs the GPU thread
static void RunThread(Core::System& system, VideoCore::RendererBase& renderer,
Core::Frontend::GraphicsContext& context, Tegra::DmaPusher& dma_pusher,
SynchState& state) {
std::string name = "yuzu:GPU";
MicroProfileOnThreadCreate(name.c_str());
SCOPE_EXIT({ MicroProfileOnThreadExit(); });
Common::SetCurrentThreadName(name.c_str());
Common::SetCurrentThreadPriority(Common::ThreadPriority::High);
system.RegisterHostThread();
// Wait for first GPU command before acquiring the window context
state.queue.Wait();
// If emulation was stopped during disk shader loading, abort before trying to acquire context
if (!state.is_running) {
return;
}
auto current_context = context.Acquire();
VideoCore::RasterizerInterface* const rasterizer = renderer.ReadRasterizer();
CommandDataContainer next;
while (state.is_running) {
next = state.queue.PopWait();
if (auto* submit_list = std::get_if<SubmitListCommand>(&next.data)) {
dma_pusher.Push(std::move(submit_list->entries));
dma_pusher.DispatchCalls();
} else if (const auto* data = std::get_if<SwapBuffersCommand>(&next.data)) {
renderer.SwapBuffers(data->framebuffer ? &*data->framebuffer : nullptr);
} else if (std::holds_alternative<OnCommandListEndCommand>(next.data)) {
rasterizer->ReleaseFences();
} else if (std::holds_alternative<GPUTickCommand>(next.data)) {
system.GPU().TickWork();
} else if (const auto* flush = std::get_if<FlushRegionCommand>(&next.data)) {
rasterizer->FlushRegion(flush->addr, flush->size);
} else if (const auto* invalidate = std::get_if<InvalidateRegionCommand>(&next.data)) {
rasterizer->OnCPUWrite(invalidate->addr, invalidate->size);
} else if (std::holds_alternative<EndProcessingCommand>(next.data)) {
ASSERT(state.is_running == false);
} else {
UNREACHABLE();
}
state.signaled_fence.store(next.fence);
if (next.block) {
// We have to lock the write_lock to ensure that the condition_variable wait not get a
// race between the check and the lock itself.
std::lock_guard lk(state.write_lock);
state.cv.notify_all();
}
}
}
ThreadManager::ThreadManager(Core::System& system_, bool is_async_)
: system{system_}, is_async{is_async_} {}
ThreadManager::~ThreadManager() {
ShutDown();
}
void ThreadManager::StartThread(VideoCore::RendererBase& renderer,
Core::Frontend::GraphicsContext& context,
Tegra::DmaPusher& dma_pusher) {
rasterizer = renderer.ReadRasterizer();
thread = std::thread(RunThread, std::ref(system), std::ref(renderer), std::ref(context),
std::ref(dma_pusher), std::ref(state));
}
void ThreadManager::SubmitList(Tegra::CommandList&& entries) {
PushCommand(SubmitListCommand(std::move(entries)));
}
void ThreadManager::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) {
PushCommand(SwapBuffersCommand(framebuffer ? std::make_optional(*framebuffer) : std::nullopt));
}
void ThreadManager::FlushRegion(VAddr addr, u64 size) {
if (!is_async) {
// Always flush with synchronous GPU mode
PushCommand(FlushRegionCommand(addr, size));
return;
}
// Asynchronous GPU mode
switch (Settings::values.gpu_accuracy.GetValue()) {
case Settings::GPUAccuracy::Normal:
PushCommand(FlushRegionCommand(addr, size));
break;
case Settings::GPUAccuracy::High:
// TODO(bunnei): Is this right? Preserving existing behavior for now
break;
case Settings::GPUAccuracy::Extreme: {
auto& gpu = system.GPU();
u64 fence = gpu.RequestFlush(addr, size);
PushCommand(GPUTickCommand(), true);
ASSERT(fence <= gpu.CurrentFlushRequestFence());
break;
}
default:
UNIMPLEMENTED_MSG("Unsupported gpu_accuracy {}", Settings::values.gpu_accuracy.GetValue());
}
}
void ThreadManager::InvalidateRegion(VAddr addr, u64 size) {
rasterizer->OnCPUWrite(addr, size);
}
void ThreadManager::FlushAndInvalidateRegion(VAddr addr, u64 size) {
// Skip flush on asynch mode, as FlushAndInvalidateRegion is not used for anything too important
rasterizer->OnCPUWrite(addr, size);
}
void ThreadManager::ShutDown() {
if (!state.is_running) {
return;
}
{
std::lock_guard lk(state.write_lock);
state.is_running = false;
state.cv.notify_all();
}
if (!thread.joinable()) {
return;
}
// Notify GPU thread that a shutdown is pending
PushCommand(EndProcessingCommand());
thread.join();
}
void ThreadManager::OnCommandListEnd() {
PushCommand(OnCommandListEndCommand());
}
u64 ThreadManager::PushCommand(CommandData&& command_data, bool block) {
if (!is_async) {
// In synchronous GPU mode, block the caller until the command has executed
block = true;
}
std::unique_lock lk(state.write_lock);
const u64 fence{++state.last_fence};
state.queue.Push(CommandDataContainer(std::move(command_data), fence, block));
if (block) {
state.cv.wait(lk, [this, fence] {
return fence <= state.signaled_fence.load(std::memory_order_relaxed) ||
!state.is_running;
});
}
return fence;
}
} // namespace VideoCommon::GPUThread
|