1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <cstddef>
#include <memory>
#include <utility>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/vector_math.h"
#include "core/hle/service/gsp_gpu.h"
#include "core/hw/gpu.h"
#include "core/memory.h"
#include "core/tracer/recorder.h"
#include "video_core/command_processor.h"
#include "video_core/debug_utils/debug_utils.h"
#include "video_core/pica.h"
#include "video_core/pica_state.h"
#include "video_core/pica_types.h"
#include "video_core/primitive_assembly.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
#include "video_core/shader/shader.h"
#include "video_core/vertex_loader.h"
#include "video_core/video_core.h"
namespace Pica {
namespace CommandProcessor {
static int float_regs_counter = 0;
static u32 uniform_write_buffer[4];
static int default_attr_counter = 0;
static u32 default_attr_write_buffer[3];
// Expand a 4-bit mask to 4-byte mask, e.g. 0b0101 -> 0x00FF00FF
static const u32 expand_bits_to_bytes[] = {
0x00000000, 0x000000ff, 0x0000ff00, 0x0000ffff,
0x00ff0000, 0x00ff00ff, 0x00ffff00, 0x00ffffff,
0xff000000, 0xff0000ff, 0xff00ff00, 0xff00ffff,
0xffff0000, 0xffff00ff, 0xffffff00, 0xffffffff
};
MICROPROFILE_DEFINE(GPU_Drawing, "GPU", "Drawing", MP_RGB(50, 50, 240));
static void WritePicaReg(u32 id, u32 value, u32 mask) {
auto& regs = g_state.regs;
if (id >= regs.NumIds())
return;
// If we're skipping this frame, only allow trigger IRQ
if (GPU::g_skip_frame && id != PICA_REG_INDEX(trigger_irq))
return;
// TODO: Figure out how register masking acts on e.g. vs.uniform_setup.set_value
u32 old_value = regs[id];
const u32 write_mask = expand_bits_to_bytes[mask];
regs[id] = (old_value & ~write_mask) | (value & write_mask);
DebugUtils::OnPicaRegWrite({ (u16)id, (u16)mask, regs[id] });
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::PicaCommandLoaded, reinterpret_cast<void*>(&id));
switch(id) {
// Trigger IRQ
case PICA_REG_INDEX(trigger_irq):
GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::P3D);
break;
case PICA_REG_INDEX_WORKAROUND(triangle_topology, 0x25E):
g_state.primitive_assembler.Reconfigure(regs.triangle_topology);
break;
case PICA_REG_INDEX_WORKAROUND(restart_primitive, 0x25F):
g_state.primitive_assembler.Reset();
break;
case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.index, 0x232):
g_state.immediate.current_attribute = 0;
default_attr_counter = 0;
break;
// Load default vertex input attributes
case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[0], 0x233):
case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[1], 0x234):
case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[2], 0x235):
{
// TODO: Does actual hardware indeed keep an intermediate buffer or does
// it directly write the values?
default_attr_write_buffer[default_attr_counter++] = value;
// Default attributes are written in a packed format such that four float24 values are encoded in
// three 32-bit numbers. We write to internal memory once a full such vector is
// written.
if (default_attr_counter >= 3) {
default_attr_counter = 0;
auto& setup = regs.vs_default_attributes_setup;
if (setup.index >= 16) {
LOG_ERROR(HW_GPU, "Invalid VS default attribute index %d", (int)setup.index);
break;
}
Math::Vec4<float24> attribute;
// NOTE: The destination component order indeed is "backwards"
attribute.w = float24::FromRaw(default_attr_write_buffer[0] >> 8);
attribute.z = float24::FromRaw(((default_attr_write_buffer[0] & 0xFF) << 16) | ((default_attr_write_buffer[1] >> 16) & 0xFFFF));
attribute.y = float24::FromRaw(((default_attr_write_buffer[1] & 0xFFFF) << 8) | ((default_attr_write_buffer[2] >> 24) & 0xFF));
attribute.x = float24::FromRaw(default_attr_write_buffer[2] & 0xFFFFFF);
LOG_TRACE(HW_GPU, "Set default VS attribute %x to (%f %f %f %f)", (int)setup.index,
attribute.x.ToFloat32(), attribute.y.ToFloat32(), attribute.z.ToFloat32(),
attribute.w.ToFloat32());
// TODO: Verify that this actually modifies the register!
if (setup.index < 15) {
g_state.vs_default_attributes[setup.index] = attribute;
setup.index++;
} else {
// Put each attribute into an immediate input buffer.
// When all specified immediate attributes are present, the Vertex Shader is invoked and everything is
// sent to the primitive assembler.
auto& immediate_input = g_state.immediate.input_vertex;
auto& immediate_attribute_id = g_state.immediate.current_attribute;
immediate_input.attr[immediate_attribute_id++] = attribute;
if (immediate_attribute_id >= regs.vs.num_input_attributes+1) {
immediate_attribute_id = 0;
Shader::UnitState<false> shader_unit;
g_state.vs.Setup();
// Send to vertex shader
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::VertexShaderInvocation, static_cast<void*>(&immediate_input));
Shader::OutputVertex output = g_state.vs.Run(shader_unit, immediate_input, regs.vs.num_input_attributes+1);
// Send to renderer
using Pica::Shader::OutputVertex;
auto AddTriangle = [](const OutputVertex& v0, const OutputVertex& v1, const OutputVertex& v2) {
VideoCore::g_renderer->Rasterizer()->AddTriangle(v0, v1, v2);
};
g_state.primitive_assembler.SubmitVertex(output, AddTriangle);
}
}
}
break;
}
case PICA_REG_INDEX(gpu_mode):
if (regs.gpu_mode == Regs::GPUMode::Configuring) {
// Draw immediate mode triangles when GPU Mode is set to GPUMode::Configuring
VideoCore::g_renderer->Rasterizer()->DrawTriangles();
if (g_debug_context) {
g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr);
}
}
break;
case PICA_REG_INDEX_WORKAROUND(command_buffer.trigger[0], 0x23c):
case PICA_REG_INDEX_WORKAROUND(command_buffer.trigger[1], 0x23d):
{
unsigned index = static_cast<unsigned>(id - PICA_REG_INDEX(command_buffer.trigger[0]));
u32* head_ptr = (u32*)Memory::GetPhysicalPointer(regs.command_buffer.GetPhysicalAddress(index));
g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = head_ptr;
g_state.cmd_list.length = regs.command_buffer.GetSize(index) / sizeof(u32);
break;
}
// It seems like these trigger vertex rendering
case PICA_REG_INDEX(trigger_draw):
case PICA_REG_INDEX(trigger_draw_indexed):
{
MICROPROFILE_SCOPE(GPU_Drawing);
#if PICA_LOG_TEV
DebugUtils::DumpTevStageConfig(regs.GetTevStages());
#endif
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::IncomingPrimitiveBatch, nullptr);
// Processes information about internal vertex attributes to figure out how a vertex is loaded.
// Later, these can be compiled and cached.
const u32 base_address = regs.vertex_attributes.GetPhysicalBaseAddress();
VertexLoader loader(regs);
// Load vertices
bool is_indexed = (id == PICA_REG_INDEX(trigger_draw_indexed));
const auto& index_info = regs.index_array;
const u8* index_address_8 = Memory::GetPhysicalPointer(base_address + index_info.offset);
const u16* index_address_16 = reinterpret_cast<const u16*>(index_address_8);
bool index_u16 = index_info.format != 0;
PrimitiveAssembler<Shader::OutputVertex>& primitive_assembler = g_state.primitive_assembler;
if (g_debug_context) {
for (int i = 0; i < 3; ++i) {
const auto texture = regs.GetTextures()[i];
if (!texture.enabled)
continue;
u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
if (g_debug_context && Pica::g_debug_context->recorder)
g_debug_context->recorder->MemoryAccessed(texture_data, Pica::Regs::NibblesPerPixel(texture.format) * texture.config.width / 2 * texture.config.height, texture.config.GetPhysicalAddress());
}
}
DebugUtils::MemoryAccessTracker memory_accesses;
// Simple circular-replacement vertex cache
// The size has been tuned for optimal balance between hit-rate and the cost of lookup
const size_t VERTEX_CACHE_SIZE = 32;
std::array<u16, VERTEX_CACHE_SIZE> vertex_cache_ids;
std::array<Shader::OutputVertex, VERTEX_CACHE_SIZE> vertex_cache;
unsigned int vertex_cache_pos = 0;
vertex_cache_ids.fill(-1);
Shader::UnitState<false> shader_unit;
g_state.vs.Setup();
for (unsigned int index = 0; index < regs.num_vertices; ++index)
{
// Indexed rendering doesn't use the start offset
unsigned int vertex = is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index]) : (index + regs.vertex_offset);
// -1 is a common special value used for primitive restart. Since it's unknown if
// the PICA supports it, and it would mess up the caching, guard against it here.
ASSERT(vertex != -1);
bool vertex_cache_hit = false;
Shader::OutputVertex output;
if (is_indexed) {
if (g_debug_context && Pica::g_debug_context->recorder) {
int size = index_u16 ? 2 : 1;
memory_accesses.AddAccess(base_address + index_info.offset + size * index, size);
}
for (unsigned int i = 0; i < VERTEX_CACHE_SIZE; ++i) {
if (vertex == vertex_cache_ids[i]) {
output = vertex_cache[i];
vertex_cache_hit = true;
break;
}
}
}
if (!vertex_cache_hit) {
// Initialize data for the current vertex
Shader::InputVertex input;
loader.LoadVertex(base_address, index, vertex, input, memory_accesses);
// Send to vertex shader
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::VertexShaderInvocation, (void*)&input);
output = g_state.vs.Run(shader_unit, input, loader.GetNumTotalAttributes());
if (is_indexed) {
vertex_cache[vertex_cache_pos] = output;
vertex_cache_ids[vertex_cache_pos] = vertex;
vertex_cache_pos = (vertex_cache_pos + 1) % VERTEX_CACHE_SIZE;
}
}
// Send to renderer
using Pica::Shader::OutputVertex;
auto AddTriangle = [](
const OutputVertex& v0, const OutputVertex& v1, const OutputVertex& v2) {
VideoCore::g_renderer->Rasterizer()->AddTriangle(v0, v1, v2);
};
primitive_assembler.SubmitVertex(output, AddTriangle);
}
for (auto& range : memory_accesses.ranges) {
g_debug_context->recorder->MemoryAccessed(Memory::GetPhysicalPointer(range.first),
range.second, range.first);
}
break;
}
case PICA_REG_INDEX(vs.bool_uniforms):
for (unsigned i = 0; i < 16; ++i)
g_state.vs.uniforms.b[i] = (regs.vs.bool_uniforms.Value() & (1 << i)) != 0;
break;
case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[0], 0x2b1):
case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[1], 0x2b2):
case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[2], 0x2b3):
case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[3], 0x2b4):
{
int index = (id - PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[0], 0x2b1));
auto values = regs.vs.int_uniforms[index];
g_state.vs.uniforms.i[index] = Math::Vec4<u8>(values.x, values.y, values.z, values.w);
LOG_TRACE(HW_GPU, "Set integer uniform %d to %02x %02x %02x %02x",
index, values.x.Value(), values.y.Value(), values.z.Value(), values.w.Value());
break;
}
case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[0], 0x2c1):
case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[1], 0x2c2):
case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[2], 0x2c3):
case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[3], 0x2c4):
case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[4], 0x2c5):
case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[5], 0x2c6):
case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[6], 0x2c7):
case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[7], 0x2c8):
{
auto& uniform_setup = regs.vs.uniform_setup;
// TODO: Does actual hardware indeed keep an intermediate buffer or does
// it directly write the values?
uniform_write_buffer[float_regs_counter++] = value;
// Uniforms are written in a packed format such that four float24 values are encoded in
// three 32-bit numbers. We write to internal memory once a full such vector is
// written.
if ((float_regs_counter >= 4 && uniform_setup.IsFloat32()) ||
(float_regs_counter >= 3 && !uniform_setup.IsFloat32())) {
float_regs_counter = 0;
auto& uniform = g_state.vs.uniforms.f[uniform_setup.index];
if (uniform_setup.index > 95) {
LOG_ERROR(HW_GPU, "Invalid VS uniform index %d", (int)uniform_setup.index);
break;
}
// NOTE: The destination component order indeed is "backwards"
if (uniform_setup.IsFloat32()) {
for (auto i : {0,1,2,3})
uniform[3 - i] = float24::FromFloat32(*(float*)(&uniform_write_buffer[i]));
} else {
// TODO: Untested
uniform.w = float24::FromRaw(uniform_write_buffer[0] >> 8);
uniform.z = float24::FromRaw(((uniform_write_buffer[0] & 0xFF) << 16) | ((uniform_write_buffer[1] >> 16) & 0xFFFF));
uniform.y = float24::FromRaw(((uniform_write_buffer[1] & 0xFFFF) << 8) | ((uniform_write_buffer[2] >> 24) & 0xFF));
uniform.x = float24::FromRaw(uniform_write_buffer[2] & 0xFFFFFF);
}
LOG_TRACE(HW_GPU, "Set uniform %x to (%f %f %f %f)", (int)uniform_setup.index,
uniform.x.ToFloat32(), uniform.y.ToFloat32(), uniform.z.ToFloat32(),
uniform.w.ToFloat32());
// TODO: Verify that this actually modifies the register!
uniform_setup.index.Assign(uniform_setup.index + 1);
}
break;
}
// Load shader program code
case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[0], 0x2cc):
case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[1], 0x2cd):
case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[2], 0x2ce):
case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[3], 0x2cf):
case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[4], 0x2d0):
case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[5], 0x2d1):
case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[6], 0x2d2):
case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[7], 0x2d3):
{
g_state.vs.program_code[regs.vs.program.offset] = value;
regs.vs.program.offset++;
break;
}
// Load swizzle pattern data
case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[0], 0x2d6):
case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[1], 0x2d7):
case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[2], 0x2d8):
case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[3], 0x2d9):
case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[4], 0x2da):
case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[5], 0x2db):
case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[6], 0x2dc):
case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[7], 0x2dd):
{
g_state.vs.swizzle_data[regs.vs.swizzle_patterns.offset] = value;
regs.vs.swizzle_patterns.offset++;
break;
}
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[0], 0x1c8):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[1], 0x1c9):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[2], 0x1ca):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[3], 0x1cb):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[4], 0x1cc):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[5], 0x1cd):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[6], 0x1ce):
case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[7], 0x1cf):
{
auto& lut_config = regs.lighting.lut_config;
ASSERT_MSG(lut_config.index < 256, "lut_config.index exceeded maximum value of 255!");
g_state.lighting.luts[lut_config.type][lut_config.index].raw = value;
lut_config.index.Assign(lut_config.index + 1);
break;
}
default:
break;
}
VideoCore::g_renderer->Rasterizer()->NotifyPicaRegisterChanged(id);
if (g_debug_context)
g_debug_context->OnEvent(DebugContext::Event::PicaCommandProcessed, reinterpret_cast<void*>(&id));
}
void ProcessCommandList(const u32* list, u32 size) {
g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = list;
g_state.cmd_list.length = size / sizeof(u32);
while (g_state.cmd_list.current_ptr < g_state.cmd_list.head_ptr + g_state.cmd_list.length) {
// Align read pointer to 8 bytes
if ((g_state.cmd_list.head_ptr - g_state.cmd_list.current_ptr) % 2 != 0)
++g_state.cmd_list.current_ptr;
u32 value = *g_state.cmd_list.current_ptr++;
const CommandHeader header = { *g_state.cmd_list.current_ptr++ };
WritePicaReg(header.cmd_id, value, header.parameter_mask);
for (unsigned i = 0; i < header.extra_data_length; ++i) {
u32 cmd = header.cmd_id + (header.group_commands ? i + 1 : 0);
WritePicaReg(cmd, *g_state.cmd_list.current_ptr++, header.parameter_mask);
}
}
}
} // namespace
} // namespace
|