summaryrefslogtreecommitdiffstats
path: root/src/video_core/command_classes/vic.cpp
blob: dc768b9521677b8b4791aae2d00948ba3156ca24 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <array>

extern "C" {
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#endif
#include <libswscale/swscale.h>
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
}

#include "common/assert.h"
#include "common/bit_field.h"
#include "common/logging/log.h"

#include "video_core/command_classes/nvdec.h"
#include "video_core/command_classes/vic.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/textures/decoders.h"

namespace Tegra {
namespace {
enum class VideoPixelFormat : u64_le {
    RGBA8 = 0x1f,
    BGRA8 = 0x20,
    RGBX8 = 0x23,
    Yuv420 = 0x44,
};
} // Anonymous namespace

union VicConfig {
    u64_le raw{};
    BitField<0, 7, VideoPixelFormat> pixel_format;
    BitField<7, 2, u64_le> chroma_loc_horiz;
    BitField<9, 2, u64_le> chroma_loc_vert;
    BitField<11, 4, u64_le> block_linear_kind;
    BitField<15, 4, u64_le> block_linear_height_log2;
    BitField<32, 14, u64_le> surface_width_minus1;
    BitField<46, 14, u64_le> surface_height_minus1;
};

Vic::Vic(GPU& gpu_, std::shared_ptr<Nvdec> nvdec_processor_)
    : gpu(gpu_),
      nvdec_processor(std::move(nvdec_processor_)), converted_frame_buffer{nullptr, av_free} {}

Vic::~Vic() = default;

void Vic::ProcessMethod(Method method, u32 argument) {
    LOG_DEBUG(HW_GPU, "Vic method 0x{:X}", static_cast<u32>(method));
    const u64 arg = static_cast<u64>(argument) << 8;
    switch (method) {
    case Method::Execute:
        Execute();
        break;
    case Method::SetConfigStructOffset:
        config_struct_address = arg;
        break;
    case Method::SetOutputSurfaceLumaOffset:
        output_surface_luma_address = arg;
        break;
    case Method::SetOutputSurfaceChromaOffset:
        output_surface_chroma_address = arg;
        break;
    default:
        break;
    }
}

void Vic::Execute() {
    if (output_surface_luma_address == 0) {
        LOG_ERROR(Service_NVDRV, "VIC Luma address not set.");
        return;
    }
    const VicConfig config{gpu.MemoryManager().Read<u64>(config_struct_address + 0x20)};
    const AVFramePtr frame_ptr = nvdec_processor->GetFrame();
    const auto* frame = frame_ptr.get();
    if (!frame) {
        return;
    }
    const u64 surface_width = config.surface_width_minus1 + 1;
    const u64 surface_height = config.surface_height_minus1 + 1;
    if (static_cast<u64>(frame->width) != surface_width ||
        static_cast<u64>(frame->height) > surface_height) {
        // TODO: Properly support multiple video streams with differing frame dimensions
        LOG_WARNING(Debug,
                    "Frame dimensions {}x{} can't be safely decoded into surface dimensions {}x{}",
                    frame->width, frame->height, surface_width, surface_height);
        return;
    }
    switch (config.pixel_format) {
    case VideoPixelFormat::RGBA8:
    case VideoPixelFormat::BGRA8:
    case VideoPixelFormat::RGBX8:
        WriteRGBFrame(frame, config);
        break;
    case VideoPixelFormat::Yuv420:
        WriteYUVFrame(frame, config);
        break;
    default:
        UNIMPLEMENTED_MSG("Unknown video pixel format {:X}", config.pixel_format.Value());
        break;
    }
}

void Vic::WriteRGBFrame(const AVFrame* frame, const VicConfig& config) {
    LOG_TRACE(Service_NVDRV, "Writing RGB Frame");

    if (!scaler_ctx || frame->width != scaler_width || frame->height != scaler_height) {
        const AVPixelFormat target_format = [pixel_format = config.pixel_format]() {
            switch (pixel_format) {
            case VideoPixelFormat::RGBA8:
                return AV_PIX_FMT_RGBA;
            case VideoPixelFormat::BGRA8:
                return AV_PIX_FMT_BGRA;
            case VideoPixelFormat::RGBX8:
                return AV_PIX_FMT_RGB0;
            default:
                return AV_PIX_FMT_RGBA;
            }
        }();

        sws_freeContext(scaler_ctx);
        // Frames are decoded into either YUV420 or NV12 formats. Convert to desired RGB format
        scaler_ctx = sws_getContext(frame->width, frame->height,
                                    static_cast<AVPixelFormat>(frame->format), frame->width,
                                    frame->height, target_format, 0, nullptr, nullptr, nullptr);
        scaler_width = frame->width;
        scaler_height = frame->height;
        converted_frame_buffer.reset();
    }
    // Get Converted frame
    const u32 width = static_cast<u32>(frame->width);
    const u32 height = static_cast<u32>(frame->height);
    const std::size_t linear_size = width * height * 4;

    // Only allocate frame_buffer once per stream, as the size is not expected to change
    if (!converted_frame_buffer) {
        converted_frame_buffer = AVMallocPtr{static_cast<u8*>(av_malloc(linear_size)), av_free};
    }
    const std::array<int, 4> converted_stride{frame->width * 4, frame->height * 4, 0, 0};
    u8* const converted_frame_buf_addr{converted_frame_buffer.get()};

    sws_scale(scaler_ctx, frame->data, frame->linesize, 0, frame->height, &converted_frame_buf_addr,
              converted_stride.data());

    const u32 blk_kind = static_cast<u32>(config.block_linear_kind);
    if (blk_kind != 0) {
        // swizzle pitch linear to block linear
        const u32 block_height = static_cast<u32>(config.block_linear_height_log2);
        const auto size = Texture::CalculateSize(true, 4, width, height, 1, block_height, 0);
        luma_buffer.resize(size);
        Texture::SwizzleSubrect(width, height, width * 4, width, 4, luma_buffer.data(),
                                converted_frame_buffer.get(), block_height, 0, 0);

        gpu.MemoryManager().WriteBlock(output_surface_luma_address, luma_buffer.data(), size);
    } else {
        // send pitch linear frame
        gpu.MemoryManager().WriteBlock(output_surface_luma_address, converted_frame_buf_addr,
                                       linear_size);
    }
}

void Vic::WriteYUVFrame(const AVFrame* frame, const VicConfig& config) {
    LOG_TRACE(Service_NVDRV, "Writing YUV420 Frame");

    const std::size_t surface_width = config.surface_width_minus1 + 1;
    const std::size_t surface_height = config.surface_height_minus1 + 1;
    const auto frame_width = std::min(surface_width, static_cast<size_t>(frame->width));
    const auto frame_height = std::min(surface_height, static_cast<size_t>(frame->height));
    const std::size_t aligned_width = (surface_width + 0xff) & ~0xffUL;

    const auto stride = static_cast<size_t>(frame->linesize[0]);

    luma_buffer.resize(aligned_width * surface_height);
    chroma_buffer.resize(aligned_width * surface_height / 2);

    // Populate luma buffer
    const u8* luma_src = frame->data[0];
    for (std::size_t y = 0; y < frame_height; ++y) {
        const std::size_t src = y * stride;
        const std::size_t dst = y * aligned_width;
        for (std::size_t x = 0; x < frame_width; ++x) {
            luma_buffer[dst + x] = luma_src[src + x];
        }
    }
    gpu.MemoryManager().WriteBlock(output_surface_luma_address, luma_buffer.data(),
                                   luma_buffer.size());

    // Chroma
    const std::size_t half_height = frame_height / 2;
    const auto half_stride = static_cast<size_t>(frame->linesize[1]);

    switch (frame->format) {
    case AV_PIX_FMT_YUV420P: {
        // Frame from FFmpeg software
        // Populate chroma buffer from both channels with interleaving.
        const std::size_t half_width = frame_width / 2;
        const u8* chroma_b_src = frame->data[1];
        const u8* chroma_r_src = frame->data[2];
        for (std::size_t y = 0; y < half_height; ++y) {
            const std::size_t src = y * half_stride;
            const std::size_t dst = y * aligned_width;

            for (std::size_t x = 0; x < half_width; ++x) {
                chroma_buffer[dst + x * 2] = chroma_b_src[src + x];
                chroma_buffer[dst + x * 2 + 1] = chroma_r_src[src + x];
            }
        }
        break;
    }
    case AV_PIX_FMT_NV12: {
        // Frame from VA-API hardware
        // This is already interleaved so just copy
        const u8* chroma_src = frame->data[1];
        for (std::size_t y = 0; y < half_height; ++y) {
            const std::size_t src = y * stride;
            const std::size_t dst = y * aligned_width;
            for (std::size_t x = 0; x < frame_width; ++x) {
                chroma_buffer[dst + x] = chroma_src[src + x];
            }
        }
        break;
    }
    default:
        UNREACHABLE();
        break;
    }
    gpu.MemoryManager().WriteBlock(output_surface_chroma_address, chroma_buffer.data(),
                                   chroma_buffer.size());
}

} // namespace Tegra