summaryrefslogtreecommitdiffstats
path: root/src/tests/core/host_timing.cpp
blob: 3d0532d02b6189f8fd47f6a192d048aa7678fd69 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include <catch2/catch.hpp>

#include <array>
#include <bitset>
#include <cstdlib>
#include <memory>
#include <string>

#include "common/file_util.h"
#include "core/core.h"
#include "core/host_timing.h"

// Numbers are chosen randomly to make sure the correct one is given.
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals
static constexpr std::array<u64, 5> calls_order{{2, 0, 1, 4, 3}};
static std::array<s64, 5> delays{};

static std::bitset<CB_IDS.size()> callbacks_ran_flags;
static u64 expected_callback = 0;
static s64 lateness = 0;

template <unsigned int IDX>
void HostCallbackTemplate(u64 userdata, s64 nanoseconds_late) {
    static_assert(IDX < CB_IDS.size(), "IDX out of range");
    callbacks_ran_flags.set(IDX);
    REQUIRE(CB_IDS[IDX] == userdata);
    REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
    delays[IDX] = nanoseconds_late;
    ++expected_callback;
}

static u64 callbacks_done = 0;

struct ScopeInit final {
    ScopeInit() {
        core_timing.Initialize();
    }
    ~ScopeInit() {
        core_timing.Shutdown();
    }

    Core::HostTiming::CoreTiming core_timing;
};

TEST_CASE("HostTiming[BasicOrder]", "[core]") {
    ScopeInit guard;
    auto& core_timing = guard.core_timing;
    std::vector<std::shared_ptr<Core::HostTiming::EventType>> events;
    events.resize(5);
    events[0] = Core::HostTiming::CreateEvent("callbackA", HostCallbackTemplate<0>);
    events[1] = Core::HostTiming::CreateEvent("callbackB", HostCallbackTemplate<1>);
    events[2] = Core::HostTiming::CreateEvent("callbackC", HostCallbackTemplate<2>);
    events[3] = Core::HostTiming::CreateEvent("callbackD", HostCallbackTemplate<3>);
    events[4] = Core::HostTiming::CreateEvent("callbackE", HostCallbackTemplate<4>);

    expected_callback = 0;

    core_timing.SyncPause(true);

    u64 one_micro = 1000U;
    for (std::size_t i = 0; i < events.size(); i++) {
        u64 order = calls_order[i];
        core_timing.ScheduleEvent(i * one_micro + 100U, events[order], CB_IDS[order]);
    }
    /// test pause
    REQUIRE(callbacks_ran_flags.none());

    core_timing.Pause(false); // No need to sync

    while (core_timing.HasPendingEvents())
        ;

    REQUIRE(callbacks_ran_flags.all());

    for (std::size_t i = 0; i < delays.size(); i++) {
        const double delay = static_cast<double>(delays[i]);
        const double micro = delay / 1000.0f;
        const double mili = micro / 1000.0f;
        printf("HostTimer Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
    }
}

#pragma optimize("", off)
u64 TestTimerSpeed(Core::HostTiming::CoreTiming& core_timing) {
    u64 start = core_timing.GetGlobalTimeNs().count();
    u64 placebo = 0;
    for (std::size_t i = 0; i < 1000; i++) {
        placebo += core_timing.GetGlobalTimeNs().count();
    }
    u64 end = core_timing.GetGlobalTimeNs().count();
    return (end - start);
}
#pragma optimize("", on)

TEST_CASE("HostTiming[BasicOrderNoPausing]", "[core]") {
    ScopeInit guard;
    auto& core_timing = guard.core_timing;
    std::vector<std::shared_ptr<Core::HostTiming::EventType>> events;
    events.resize(5);
    events[0] = Core::HostTiming::CreateEvent("callbackA", HostCallbackTemplate<0>);
    events[1] = Core::HostTiming::CreateEvent("callbackB", HostCallbackTemplate<1>);
    events[2] = Core::HostTiming::CreateEvent("callbackC", HostCallbackTemplate<2>);
    events[3] = Core::HostTiming::CreateEvent("callbackD", HostCallbackTemplate<3>);
    events[4] = Core::HostTiming::CreateEvent("callbackE", HostCallbackTemplate<4>);

    core_timing.SyncPause(true);
    core_timing.SyncPause(false);

    expected_callback = 0;

    u64 start = core_timing.GetGlobalTimeNs().count();
    u64 one_micro = 1000U;
    for (std::size_t i = 0; i < events.size(); i++) {
        u64 order = calls_order[i];
        core_timing.ScheduleEvent(i * one_micro + 100U, events[order], CB_IDS[order]);
    }
    u64 end = core_timing.GetGlobalTimeNs().count();
    const double scheduling_time = static_cast<double>(end - start);
    const double timer_time = static_cast<double>(TestTimerSpeed(core_timing));

    while (core_timing.HasPendingEvents())
        ;

    REQUIRE(callbacks_ran_flags.all());

    for (std::size_t i = 0; i < delays.size(); i++) {
        const double delay = static_cast<double>(delays[i]);
        const double micro = delay / 1000.0f;
        const double mili = micro / 1000.0f;
        printf("HostTimer No Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
    }

    const double micro = scheduling_time / 1000.0f;
    const double mili = micro / 1000.0f;
    printf("HostTimer No Pausing Scheduling Time: %.3f %.6f\n", micro, mili);
    printf("HostTimer No Pausing Timer Time: %.3f %.6f\n", timer_time / 1000.f,
           timer_time / 1000000.f);
}