summaryrefslogtreecommitdiffstats
path: root/src/shader_recompiler/frontend/maxwell/translate/impl/load_store_attribute.cpp
blob: 7d7dcc3cbd1c6673707918d3cc84c8c7ade9f66e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include "common/bit_field.h"
#include "common/common_types.h"
#include "shader_recompiler/exception.h"
#include "shader_recompiler/frontend/ir/ir_emitter.h"
#include "shader_recompiler/frontend/maxwell/opcodes.h"
#include "shader_recompiler/frontend/maxwell/translate/impl/impl.h"

namespace Shader::Maxwell {
namespace {
enum class Size : u64 {
    B32,
    B64,
    B96,
    B128,
};

enum class InterpolationMode : u64 {
    Pass,
    Multiply,
    Constant,
    Sc,
};

enum class SampleMode : u64 {
    Default,
    Centroid,
    Offset,
};

u32 NumElements(Size size) {
    switch (size) {
    case Size::B32:
        return 1;
    case Size::B64:
        return 2;
    case Size::B96:
        return 3;
    case Size::B128:
        return 4;
    }
    throw InvalidArgument("Invalid size {}", size);
}

template <typename F>
void HandleIndexed(TranslatorVisitor& v, IR::Reg index_reg, u32 num_elements, F&& f) {
    const IR::U32 index_value{v.X(index_reg)};
    for (u32 element = 0; element < num_elements; ++element) {
        const IR::U32 final_offset{
            element == 0 ? index_value : IR::U32{v.ir.IAdd(index_value, v.ir.Imm32(element * 4U))}};
        f(element, final_offset);
    }
}

} // Anonymous namespace

void TranslatorVisitor::ALD(u64 insn) {
    union {
        u64 raw;
        BitField<0, 8, IR::Reg> dest_reg;
        BitField<8, 8, IR::Reg> index_reg;
        BitField<20, 10, u64> absolute_offset;
        BitField<20, 11, s64> relative_offset;
        BitField<39, 8, IR::Reg> vertex_reg;
        BitField<32, 1, u64> o;
        BitField<31, 1, u64> patch;
        BitField<47, 2, Size> size;
    } const ald{insn};

    const u64 offset{ald.absolute_offset.Value()};
    if (offset % 4 != 0) {
        throw NotImplementedException("Unaligned absolute offset {}", offset);
    }
    const IR::U32 vertex{X(ald.vertex_reg)};
    const u32 num_elements{NumElements(ald.size)};
    if (ald.index_reg == IR::Reg::RZ) {
        for (u32 element = 0; element < num_elements; ++element) {
            if (ald.patch != 0) {
                const IR::Patch patch{offset / 4 + element};
                F(ald.dest_reg + element, ir.GetPatch(patch));
            } else {
                const IR::Attribute attr{offset / 4 + element};
                F(ald.dest_reg + element, ir.GetAttribute(attr, vertex));
            }
        }
        return;
    }
    if (ald.patch != 0) {
        throw NotImplementedException("Indirect patch read");
    }
    HandleIndexed(*this, ald.index_reg, num_elements, [&](u32 element, IR::U32 final_offset) {
        F(ald.dest_reg + element, ir.GetAttributeIndexed(final_offset, vertex));
    });
}

void TranslatorVisitor::AST(u64 insn) {
    union {
        u64 raw;
        BitField<0, 8, IR::Reg> src_reg;
        BitField<8, 8, IR::Reg> index_reg;
        BitField<20, 10, u64> absolute_offset;
        BitField<20, 11, s64> relative_offset;
        BitField<31, 1, u64> patch;
        BitField<39, 8, IR::Reg> vertex_reg;
        BitField<47, 2, Size> size;
    } const ast{insn};

    if (ast.index_reg != IR::Reg::RZ) {
        throw NotImplementedException("Indexed store");
    }
    const u64 offset{ast.absolute_offset.Value()};
    if (offset % 4 != 0) {
        throw NotImplementedException("Unaligned absolute offset {}", offset);
    }
    const IR::U32 vertex{X(ast.vertex_reg)};
    const u32 num_elements{NumElements(ast.size)};
    if (ast.index_reg == IR::Reg::RZ) {
        for (u32 element = 0; element < num_elements; ++element) {
            if (ast.patch != 0) {
                const IR::Patch patch{offset / 4 + element};
                ir.SetPatch(patch, F(ast.src_reg + element));
            } else {
                const IR::Attribute attr{offset / 4 + element};
                ir.SetAttribute(attr, F(ast.src_reg + element), vertex);
            }
        }
        return;
    }
    if (ast.patch != 0) {
        throw NotImplementedException("Indexed tessellation patch store");
    }
    HandleIndexed(*this, ast.index_reg, num_elements, [&](u32 element, IR::U32 final_offset) {
        ir.SetAttributeIndexed(final_offset, F(ast.src_reg + element), vertex);
    });
}

void TranslatorVisitor::IPA(u64 insn) {
    // IPA is the instruction used to read varyings from a fragment shader.
    // gl_FragCoord is mapped to the gl_Position attribute.
    // It yields unknown results when used outside of the fragment shader stage.
    union {
        u64 raw;
        BitField<0, 8, IR::Reg> dest_reg;
        BitField<8, 8, IR::Reg> index_reg;
        BitField<20, 8, IR::Reg> multiplier;
        BitField<30, 8, IR::Attribute> attribute;
        BitField<38, 1, u64> idx;
        BitField<51, 1, u64> sat;
        BitField<52, 2, SampleMode> sample_mode;
        BitField<54, 2, InterpolationMode> interpolation_mode;
    } const ipa{insn};

    // Indexed IPAs are used for indexed varyings.
    // For example:
    //
    // in vec4 colors[4];
    // uniform int idx;
    // void main() {
    //     gl_FragColor = colors[idx];
    // }
    const bool is_indexed{ipa.idx != 0 && ipa.index_reg != IR::Reg::RZ};
    const IR::Attribute attribute{ipa.attribute};
    IR::F32 value{is_indexed ? ir.GetAttributeIndexed(X(ipa.index_reg))
                             : ir.GetAttribute(attribute)};
    if (IR::IsGeneric(attribute)) {
        const ProgramHeader& sph{env.SPH()};
        const u32 attr_index{IR::GenericAttributeIndex(attribute)};
        const u32 element{static_cast<u32>(attribute) % 4};
        const std::array input_map{sph.ps.GenericInputMap(attr_index)};
        const bool is_perspective{input_map[element] == Shader::PixelImap::Perspective};
        if (is_perspective) {
            const IR::F32 position_w{ir.GetAttribute(IR::Attribute::PositionW)};
            value = ir.FPMul(value, position_w);
        }
    }
    if (ipa.interpolation_mode == InterpolationMode::Multiply) {
        value = ir.FPMul(value, F(ipa.multiplier));
    }

    // Saturated IPAs are generally generated out of clamped varyings.
    // For example: clamp(some_varying, 0.0, 1.0)
    const bool is_saturated{ipa.sat != 0};
    if (is_saturated) {
        if (attribute == IR::Attribute::FrontFace) {
            throw NotImplementedException("IPA.SAT on FrontFace");
        }
        value = ir.FPSaturate(value);
    }

    F(ipa.dest_reg, value);
}

} // namespace Shader::Maxwell