summaryrefslogtreecommitdiffstats
path: root/src/shader_recompiler/backend/glasm/emit_glasm.cpp
blob: e5c96eb7fcef1642f55bafff708c77615ec27f5f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <ranges>
#include <string>
#include <tuple>

#include "shader_recompiler/backend/bindings.h"
#include "shader_recompiler/backend/glasm/emit_context.h"
#include "shader_recompiler/backend/glasm/emit_glasm.h"
#include "shader_recompiler/backend/glasm/emit_glasm_instructions.h"
#include "shader_recompiler/frontend/ir/ir_emitter.h"
#include "shader_recompiler/frontend/ir/program.h"
#include "shader_recompiler/profile.h"

namespace Shader::Backend::GLASM {
namespace {
template <class Func>
struct FuncTraits {};

template <class ReturnType_, class... Args>
struct FuncTraits<ReturnType_ (*)(Args...)> {
    using ReturnType = ReturnType_;

    static constexpr size_t NUM_ARGS = sizeof...(Args);

    template <size_t I>
    using ArgType = std::tuple_element_t<I, std::tuple<Args...>>;
};

template <typename T>
struct Identity {
    Identity(T data_) : data{data_} {}

    T Extract() {
        return data;
    }

    T data;
};

template <bool scalar>
class RegWrapper {
public:
    RegWrapper(EmitContext& ctx, const IR::Value& ir_value) : reg_alloc{ctx.reg_alloc} {
        const Value value{reg_alloc.Peek(ir_value)};
        if (value.type == Type::Register) {
            inst = ir_value.InstRecursive();
            reg = Register{value};
        } else {
            const bool is_long{value.type == Type::F64 || value.type == Type::U64};
            reg = is_long ? reg_alloc.AllocLongReg() : reg_alloc.AllocReg();
        }
        switch (value.type) {
        case Type::Register:
        case Type::Void:
            break;
        case Type::U32:
            ctx.Add("MOV.U {}.x,{};", reg, value.imm_u32);
            break;
        case Type::S32:
            ctx.Add("MOV.S {}.x,{};", reg, value.imm_s32);
            break;
        case Type::F32:
            ctx.Add("MOV.F {}.x,{};", reg, value.imm_f32);
            break;
        case Type::U64:
            ctx.Add("MOV.U64 {}.x,{};", reg, value.imm_u64);
            break;
        case Type::F64:
            ctx.Add("MOV.F64 {}.x,{};", reg, value.imm_f64);
            break;
        }
    }

    auto Extract() {
        if (inst) {
            reg_alloc.Unref(*inst);
        } else {
            reg_alloc.FreeReg(reg);
        }
        return std::conditional_t<scalar, ScalarRegister, Register>{Value{reg}};
    }

private:
    RegAlloc& reg_alloc;
    IR::Inst* inst{};
    Register reg{};
};

template <typename ArgType>
class ValueWrapper {
public:
    ValueWrapper(EmitContext& ctx, const IR::Value& ir_value_)
        : reg_alloc{ctx.reg_alloc}, ir_value{ir_value_}, value{reg_alloc.Peek(ir_value)} {}

    ArgType Extract() {
        if (!ir_value.IsImmediate()) {
            reg_alloc.Unref(*ir_value.InstRecursive());
        }
        return value;
    }

private:
    RegAlloc& reg_alloc;
    const IR::Value& ir_value;
    ArgType value;
};

template <typename ArgType>
auto Arg(EmitContext& ctx, const IR::Value& arg) {
    if constexpr (std::is_same_v<ArgType, Register>) {
        return RegWrapper<false>{ctx, arg};
    } else if constexpr (std::is_same_v<ArgType, ScalarRegister>) {
        return RegWrapper<true>{ctx, arg};
    } else if constexpr (std::is_base_of_v<Value, ArgType>) {
        return ValueWrapper<ArgType>{ctx, arg};
    } else if constexpr (std::is_same_v<ArgType, const IR::Value&>) {
        return Identity<const IR::Value&>{arg};
    } else if constexpr (std::is_same_v<ArgType, u32>) {
        return Identity{arg.U32()};
    } else if constexpr (std::is_same_v<ArgType, IR::Attribute>) {
        return Identity{arg.Attribute()};
    } else if constexpr (std::is_same_v<ArgType, IR::Patch>) {
        return Identity{arg.Patch()};
    } else if constexpr (std::is_same_v<ArgType, IR::Reg>) {
        return Identity{arg.Reg()};
    }
}

template <auto func, bool is_first_arg_inst>
struct InvokeCall {
    template <typename... Args>
    InvokeCall(EmitContext& ctx, IR::Inst* inst, Args&&... args) {
        if constexpr (is_first_arg_inst) {
            func(ctx, *inst, args.Extract()...);
        } else {
            func(ctx, args.Extract()...);
        }
    }
};

template <auto func, bool is_first_arg_inst, size_t... I>
void Invoke(EmitContext& ctx, IR::Inst* inst, std::index_sequence<I...>) {
    using Traits = FuncTraits<decltype(func)>;
    if constexpr (is_first_arg_inst) {
        InvokeCall<func, is_first_arg_inst>{
            ctx, inst, Arg<typename Traits::template ArgType<I + 2>>(ctx, inst->Arg(I))...};
    } else {
        InvokeCall<func, is_first_arg_inst>{
            ctx, inst, Arg<typename Traits::template ArgType<I + 1>>(ctx, inst->Arg(I))...};
    }
}

template <auto func>
void Invoke(EmitContext& ctx, IR::Inst* inst) {
    using Traits = FuncTraits<decltype(func)>;
    static_assert(Traits::NUM_ARGS >= 1, "Insufficient arguments");
    if constexpr (Traits::NUM_ARGS == 1) {
        Invoke<func, false>(ctx, inst, std::make_index_sequence<0>{});
    } else {
        using FirstArgType = typename Traits::template ArgType<1>;
        static constexpr bool is_first_arg_inst = std::is_same_v<FirstArgType, IR::Inst&>;
        using Indices = std::make_index_sequence<Traits::NUM_ARGS - (is_first_arg_inst ? 2 : 1)>;
        Invoke<func, is_first_arg_inst>(ctx, inst, Indices{});
    }
}

void EmitInst(EmitContext& ctx, IR::Inst* inst) {
    switch (inst->GetOpcode()) {
#define OPCODE(name, result_type, ...)                                                             \
    case IR::Opcode::name:                                                                         \
        return Invoke<&Emit##name>(ctx, inst);
#include "shader_recompiler/frontend/ir/opcodes.inc"
#undef OPCODE
    }
    throw LogicError("Invalid opcode {}", inst->GetOpcode());
}

void Precolor(EmitContext& ctx, const IR::Program& program) {
    for (IR::Block* const block : program.blocks) {
        for (IR::Inst& phi : block->Instructions() | std::views::take_while(IR::IsPhi)) {
            switch (phi.Arg(0).Type()) {
            case IR::Type::U1:
            case IR::Type::U32:
            case IR::Type::F32:
                ctx.reg_alloc.Define(phi);
                break;
            case IR::Type::U64:
            case IR::Type::F64:
                ctx.reg_alloc.LongDefine(phi);
                break;
            default:
                throw NotImplementedException("Phi node type {}", phi.Type());
            }
            const size_t num_args{phi.NumArgs()};
            for (size_t i = 0; i < num_args; ++i) {
                IR::IREmitter{*phi.PhiBlock(i)}.PhiMove(phi, phi.Arg(i));
            }
            // Add reference to the phi node on the phi predecessor to avoid overwritting it
            for (size_t i = 0; i < num_args; ++i) {
                IR::IREmitter{*phi.PhiBlock(i)}.DummyReference(IR::Value{&phi});
            }
        }
    }
}

void EmitCode(EmitContext& ctx, const IR::Program& program) {
    const auto eval{
        [&](const IR::U1& cond) { return ScalarS32{ctx.reg_alloc.Consume(IR::Value{cond})}; }};
    for (const IR::AbstractSyntaxNode& node : program.syntax_list) {
        switch (node.type) {
        case IR::AbstractSyntaxNode::Type::Block:
            for (IR::Inst& inst : node.block->Instructions()) {
                EmitInst(ctx, &inst);
            }
            break;
        case IR::AbstractSyntaxNode::Type::If:
            ctx.Add("MOV.S.CC RC,{};"
                    "IF NE.x;",
                    eval(node.if_node.cond));
            break;
        case IR::AbstractSyntaxNode::Type::EndIf:
            ctx.Add("ENDIF;");
            break;
        case IR::AbstractSyntaxNode::Type::Loop:
            ctx.Add("REP;");
            break;
        case IR::AbstractSyntaxNode::Type::Repeat:
            if (node.repeat.cond.IsImmediate()) {
                if (node.repeat.cond.U1()) {
                    ctx.Add("ENDREP;");
                } else {
                    ctx.Add("BRK;"
                            "ENDREP;");
                }
            } else {
                ctx.Add("MOV.S.CC RC,{};"
                        "BRK (EQ.x);"
                        "ENDREP;",
                        eval(node.repeat.cond));
            }
            break;
        case IR::AbstractSyntaxNode::Type::Break:
            if (node.break_node.cond.IsImmediate()) {
                if (node.break_node.cond.U1()) {
                    ctx.Add("BRK;");
                }
            } else {
                ctx.Add("MOV.S.CC RC,{};"
                        "BRK (NE.x);",
                        eval(node.break_node.cond));
            }
            break;
        case IR::AbstractSyntaxNode::Type::Return:
        case IR::AbstractSyntaxNode::Type::Unreachable:
            ctx.Add("RET;");
            break;
        }
    }
}

void SetupOptions(std::string& header, Info info) {
    // TODO: Track the shared atomic ops
    header += "OPTION NV_internal;"
              "OPTION NV_shader_storage_buffer;"
              "OPTION NV_gpu_program_fp64;"
              "OPTION NV_bindless_texture;"
              "OPTION ARB_derivative_control;";
    if (info.uses_int64_bit_atomics) {
        header += "OPTION NV_shader_atomic_int64;";
    }
    if (info.uses_atomic_f32_add) {
        header += "OPTION NV_shader_atomic_float;";
    }
    if (info.uses_atomic_f16x2_add || info.uses_atomic_f16x2_min || info.uses_atomic_f16x2_max) {
        header += "OPTION NV_shader_atomic_fp16_vector;";
    }
    if (info.uses_subgroup_invocation_id || info.uses_subgroup_mask || info.uses_subgroup_vote) {
        header += "OPTION NV_shader_thread_group;";
    }
    if (info.uses_subgroup_shuffles) {
        header += "OPTION NV_shader_thread_shuffle;";
    }
}

std::string_view StageHeader(Stage stage) {
    switch (stage) {
    case Stage::VertexA:
    case Stage::VertexB:
        return "!!NVvp5.0\n";
    case Stage::TessellationControl:
        return "!!NVtcs5.0\n";
    case Stage::TessellationEval:
        return "!!NVtes5.0\n";
    case Stage::Geometry:
        return "!!NVgp5.0\n";
    case Stage::Fragment:
        return "!!NVfp5.0\n";
    case Stage::Compute:
        return "!!NVcp5.0\n";
    }
    throw InvalidArgument("Invalid stage {}", stage);
}
} // Anonymous namespace

std::string EmitGLASM(const Profile&, IR::Program& program, Bindings&) {
    EmitContext ctx{program};
    Precolor(ctx, program);
    EmitCode(ctx, program);
    std::string header{StageHeader(program.stage)};
    SetupOptions(header, program.info);
    switch (program.stage) {
    case Stage::Compute:
        header += fmt::format("GROUP_SIZE {} {} {};", program.workgroup_size[0],
                              program.workgroup_size[1], program.workgroup_size[2]);
        break;
    default:
        break;
    }
    if (program.shared_memory_size > 0) {
        header += fmt::format("SHARED_MEMORY {};", program.shared_memory_size);
        header += fmt::format("SHARED shared_mem[]={{program.sharedmem}};");
    }
    header += "TEMP ";
    for (size_t index = 0; index < ctx.reg_alloc.NumUsedRegisters(); ++index) {
        header += fmt::format("R{},", index);
    }
    if (program.local_memory_size > 0) {
        header += fmt::format("lmem[{}],", program.local_memory_size);
    }
    header += "RC;"
              "LONG TEMP ";
    for (size_t index = 0; index < ctx.reg_alloc.NumUsedLongRegisters(); ++index) {
        header += fmt::format("D{},", index);
    }
    header += "DC;";
    ctx.code.insert(0, header);
    ctx.code += "END";
    return ctx.code;
}

} // namespace Shader::Backend::GLASM