summaryrefslogtreecommitdiffstats
path: root/src/core/memory.cpp
blob: 4753c63a780c85ac1068dca73438d98a676d56ab (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <array>
#include <cstring>

#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/swap.h"

#include "core/hle/kernel/process.h"
#include "core/memory.h"
#include "core/memory_setup.h"
#include "core/mmio.h"

namespace Memory {

enum class PageType {
    /// Page is unmapped and should cause an access error.
    Unmapped,
    /// Page is mapped to regular memory. This is the only type you can get pointers to.
    Memory,
    /// Page is mapped to a I/O region. Writing and reading to this page is handled by functions.
    Special,
};

struct SpecialRegion {
    VAddr base;
    u32 size;
    MMIORegionPointer handler;
};

/**
 * A (reasonably) fast way of allowing switchable and remappable process address spaces. It loosely
 * mimics the way a real CPU page table works, but instead is optimized for minimal decoding and
 * fetching requirements when accessing. In the usual case of an access to regular memory, it only
 * requires an indexed fetch and a check for NULL.
 */
struct PageTable {
    static const size_t NUM_ENTRIES = 1 << (32 - PAGE_BITS);

    /**
     * Array of memory pointers backing each page. An entry can only be non-null if the
     * corresponding entry in the `attributes` array is of type `Memory`.
     */
    std::array<u8*, NUM_ENTRIES> pointers;

    /**
     * Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of type `Special`.
     */
    std::vector<SpecialRegion> special_regions;

    /**
     * Array of fine grained page attributes. If it is set to any value other than `Memory`, then
     * the corresponding entry in `pointers` MUST be set to null.
     */
    std::array<PageType, NUM_ENTRIES> attributes;
};

/// Singular page table used for the singleton process
static PageTable main_page_table;
/// Currently active page table
static PageTable* current_page_table = &main_page_table;

static void MapPages(u32 base, u32 size, u8* memory, PageType type) {
    LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, (base + size) * PAGE_SIZE);

    u32 end = base + size;

    while (base != end) {
        ASSERT_MSG(base < PageTable::NUM_ENTRIES, "out of range mapping at %08X", base);

        current_page_table->attributes[base] = type;
        current_page_table->pointers[base] = memory;

        base += 1;
        if (memory != nullptr)
            memory += PAGE_SIZE;
    }
}

void InitMemoryMap() {
    main_page_table.pointers.fill(nullptr);
    main_page_table.attributes.fill(PageType::Unmapped);
}

void MapMemoryRegion(VAddr base, u32 size, u8* target) {
    ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
    ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
    MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
}

void MapIoRegion(VAddr base, u32 size, MMIORegionPointer mmio_handler) {
    ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
    ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
    MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);

    current_page_table->special_regions.emplace_back(SpecialRegion{base, size, mmio_handler});
}

void UnmapRegion(VAddr base, u32 size) {
    ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
    ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
    MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
}

/**
 * This function should only be called for virtual addreses with attribute `PageType::Special`.
 */
static MMIORegionPointer GetMMIOHandler(VAddr vaddr) {
    for (const auto& region : current_page_table->special_regions) {
        if (vaddr >= region.base && vaddr < (region.base + region.size)) {
            return region.handler;
        }
    }
    ASSERT_MSG(false, "Mapped IO page without a handler @ %08X", vaddr);
    return nullptr; // Should never happen
}

template<typename T>
T ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr);

template <typename T>
T Read(const VAddr vaddr) {
    const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
    if (page_pointer) {
        T value;
        std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T));
        return value;
    }

    PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
    switch (type) {
    case PageType::Unmapped:
        LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%08X", sizeof(T) * 8, vaddr);
        return 0;
    case PageType::Memory:
        ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
        break;
    case PageType::Special:
        return ReadMMIO<T>(GetMMIOHandler(vaddr), vaddr);
    default:
        UNREACHABLE();
    }
}

template<typename T>
void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const T data);

template <typename T>
void Write(const VAddr vaddr, const T data) {
    u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
    if (page_pointer) {
        std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
        return;
    }

    PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
    switch (type) {
    case PageType::Unmapped:
        LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32) data, vaddr);
        return;
    case PageType::Memory:
        ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
        break;
    case PageType::Special:
        WriteMMIO<T>(GetMMIOHandler(vaddr), vaddr, data);
        break;
    default:
        UNREACHABLE();
    }
}

u8* GetPointer(const VAddr vaddr) {
    u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
    if (page_pointer) {
        return page_pointer + (vaddr & PAGE_MASK);
    }

    LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
    return nullptr;
}

u8* GetPhysicalPointer(PAddr address) {
    return GetPointer(PhysicalToVirtualAddress(address));
}

u8 Read8(const VAddr addr) {
    return Read<u8>(addr);
}

u16 Read16(const VAddr addr) {
    return Read<u16_le>(addr);
}

u32 Read32(const VAddr addr) {
    return Read<u32_le>(addr);
}

u64 Read64(const VAddr addr) {
    return Read<u64_le>(addr);
}

void Write8(const VAddr addr, const u8 data) {
    Write<u8>(addr, data);
}

void Write16(const VAddr addr, const u16 data) {
    Write<u16_le>(addr, data);
}

void Write32(const VAddr addr, const u32 data) {
    Write<u32_le>(addr, data);
}

void Write64(const VAddr addr, const u64 data) {
    Write<u64_le>(addr, data);
}

void WriteBlock(const VAddr addr, const u8* data, const size_t size) {
    for (u32 offset = 0; offset < size; offset++) {
        Write8(addr + offset, data[offset]);
    }
}

template<>
u8 ReadMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr) {
    return mmio_handler->Read8(addr);
}

template<>
u16 ReadMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr) {
    return mmio_handler->Read16(addr);
}

template<>
u32 ReadMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr) {
    return mmio_handler->Read32(addr);
}

template<>
u64 ReadMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr) {
    return mmio_handler->Read64(addr);
}

template<>
void WriteMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr, const u8 data) {
    mmio_handler->Write8(addr, data);
}

template<>
void WriteMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr, const u16 data) {
    mmio_handler->Write16(addr, data);
}

template<>
void WriteMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr, const u32 data) {
    mmio_handler->Write32(addr, data);
}

template<>
void WriteMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr, const u64 data) {
    mmio_handler->Write64(addr, data);
}

PAddr VirtualToPhysicalAddress(const VAddr addr) {
    if (addr == 0) {
        return 0;
    } else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
        return addr - VRAM_VADDR + VRAM_PADDR;
    } else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
        return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR;
    } else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) {
        return addr - DSP_RAM_VADDR + DSP_RAM_PADDR;
    } else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) {
        return addr - IO_AREA_VADDR + IO_AREA_PADDR;
    } else if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) {
        return addr - NEW_LINEAR_HEAP_VADDR + FCRAM_PADDR;
    }

    LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%08X", addr);
    // To help with debugging, set bit on address so that it's obviously invalid.
    return addr | 0x80000000;
}

VAddr PhysicalToVirtualAddress(const PAddr addr) {
    if (addr == 0) {
        return 0;
    } else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) {
        return addr - VRAM_PADDR + VRAM_VADDR;
    } else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) {
        return addr - FCRAM_PADDR + Kernel::g_current_process->GetLinearHeapBase();
    } else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) {
        return addr - DSP_RAM_PADDR + DSP_RAM_VADDR;
    } else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) {
        return addr - IO_AREA_PADDR + IO_AREA_VADDR;
    }

    LOG_ERROR(HW_Memory, "Unknown physical address @ 0x%08X", addr);
    // To help with debugging, set bit on address so that it's obviously invalid.
    return addr | 0x80000000;
}

} // namespace