1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "common/common_types.h"
#include "common/log.h"
#include "core/core.h"
#include "core/mem_map.h"
#include "core/hle/hle.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/service/gsp.h"
#include "core/hw/gpu.h"
#include "video_core/video_core.h"
namespace GPU {
RegisterSet<u32, Regs> g_regs;
u32 g_cur_line = 0; ///< Current vertical screen line
u64 g_last_ticks = 0; ///< Last CPU ticks
/**
* Sets whether the framebuffers are in the GSP heap (FCRAM) or VRAM
* @param
*/
void SetFramebufferLocation(const FramebufferLocation mode) {
switch (mode) {
case FRAMEBUFFER_LOCATION_FCRAM:
{
auto& framebuffer_top = g_regs.Get<Regs::FramebufferTop>();
auto& framebuffer_sub = g_regs.Get<Regs::FramebufferBottom>();
framebuffer_top.address_left1 = PADDR_TOP_LEFT_FRAME1;
framebuffer_top.address_left2 = PADDR_TOP_LEFT_FRAME2;
framebuffer_top.address_right1 = PADDR_TOP_RIGHT_FRAME1;
framebuffer_top.address_right2 = PADDR_TOP_RIGHT_FRAME2;
framebuffer_sub.address_left1 = PADDR_SUB_FRAME1;
//framebuffer_sub.address_left2 = unknown;
framebuffer_sub.address_right1 = PADDR_SUB_FRAME2;
//framebuffer_sub.address_right2 = unknown;
break;
}
case FRAMEBUFFER_LOCATION_VRAM:
{
auto& framebuffer_top = g_regs.Get<Regs::FramebufferTop>();
auto& framebuffer_sub = g_regs.Get<Regs::FramebufferBottom>();
framebuffer_top.address_left1 = PADDR_VRAM_TOP_LEFT_FRAME1;
framebuffer_top.address_left2 = PADDR_VRAM_TOP_LEFT_FRAME2;
framebuffer_top.address_right1 = PADDR_VRAM_TOP_RIGHT_FRAME1;
framebuffer_top.address_right2 = PADDR_VRAM_TOP_RIGHT_FRAME2;
framebuffer_sub.address_left1 = PADDR_VRAM_SUB_FRAME1;
//framebuffer_sub.address_left2 = unknown;
framebuffer_sub.address_right1 = PADDR_VRAM_SUB_FRAME2;
//framebuffer_sub.address_right2 = unknown;
break;
}
}
}
/**
* Gets the location of the framebuffers
* @return Location of framebuffers as FramebufferLocation enum
*/
FramebufferLocation GetFramebufferLocation(u32 address) {
if ((address & ~Memory::VRAM_MASK) == Memory::VRAM_PADDR) {
return FRAMEBUFFER_LOCATION_VRAM;
} else if ((address & ~Memory::FCRAM_MASK) == Memory::FCRAM_PADDR) {
return FRAMEBUFFER_LOCATION_FCRAM;
} else {
ERROR_LOG(GPU, "unknown framebuffer location!");
}
return FRAMEBUFFER_LOCATION_UNKNOWN;
}
u32 GetFramebufferAddr(const u32 address) {
switch (GetFramebufferLocation(address)) {
case FRAMEBUFFER_LOCATION_FCRAM:
return Memory::VirtualAddressFromPhysical_FCRAM(address);
case FRAMEBUFFER_LOCATION_VRAM:
return Memory::VirtualAddressFromPhysical_VRAM(address);
default:
ERROR_LOG(GPU, "unknown framebuffer location");
}
return 0;
}
/**
* Gets a read-only pointer to a framebuffer in memory
* @param address Physical address of framebuffer
* @return Returns const pointer to raw framebuffer
*/
const u8* GetFramebufferPointer(const u32 address) {
u32 addr = GetFramebufferAddr(address);
return (addr != 0) ? Memory::GetPointer(addr) : nullptr;
}
template <typename T>
inline void Read(T &var, const u32 raw_addr) {
u32 addr = raw_addr - 0x1EF00000;
int index = addr / 4;
// Reads other than u32 are untested, so I'd rather have them abort than silently fail
if (index >= Regs::NumIds || !std::is_same<T,u32>::value)
{
ERROR_LOG(GPU, "unknown Read%d @ 0x%08X", sizeof(var) * 8, addr);
return;
}
var = g_regs[static_cast<Regs::Id>(addr / 4)];
}
template <typename T>
inline void Write(u32 addr, const T data) {
addr -= 0x1EF00000;
int index = addr / 4;
// Writes other than u32 are untested, so I'd rather have them abort than silently fail
if (index >= Regs::NumIds || !std::is_same<T,u32>::value)
{
ERROR_LOG(GPU, "unknown Write%d 0x%08X @ 0x%08X", sizeof(data) * 8, data, addr);
return;
}
g_regs[static_cast<Regs::Id>(index)] = data;
switch (static_cast<Regs::Id>(index)) {
// Memory fills are triggered once the fill value is written.
// NOTE: This is not verified.
case Regs::MemoryFill + 3:
case Regs::MemoryFill + 7:
{
const auto& config = g_regs.Get<Regs::MemoryFill>(static_cast<Regs::Id>(index - 3));
// TODO: Not sure if this check should be done at GSP level instead
if (config.address_start) {
// TODO: Not sure if this algorithm is correct, particularly because it doesn't use the size member at all
u32* start = (u32*)Memory::GetPointer(config.GetStartAddress());
u32* end = (u32*)Memory::GetPointer(config.GetEndAddress());
for (u32* ptr = start; ptr < end; ++ptr)
*ptr = bswap32(config.value); // TODO: This is just a workaround to missing framebuffer format emulation
DEBUG_LOG(GPU, "MemoryFill from 0x%08x to 0x%08x", config.GetStartAddress(), config.GetEndAddress());
}
break;
}
case Regs::DisplayTransfer + 6:
{
const auto& config = g_regs.Get<Regs::DisplayTransfer>();
if (config.trigger & 1) {
u8* source_pointer = Memory::GetPointer(config.GetPhysicalInputAddress());
u8* dest_pointer = Memory::GetPointer(config.GetPhysicalOutputAddress());
for (int y = 0; y < config.output_height; ++y) {
// TODO: Why does the register seem to hold twice the framebuffer width?
for (int x = 0; x < config.output_width / 2; ++x) {
struct {
int r, g, b, a;
} source_color = { 0, 0, 0, 0 };
switch (config.input_format) {
case Regs::FramebufferFormat::RGBA8:
{
// TODO: Most likely got the component order messed up.
u8* srcptr = source_pointer + x * 4 + y * config.input_width * 4 / 2;
source_color.r = srcptr[0]; // blue
source_color.g = srcptr[1]; // green
source_color.b = srcptr[2]; // red
source_color.a = srcptr[3]; // alpha
break;
}
default:
ERROR_LOG(GPU, "Unknown source framebuffer format %x", config.input_format.Value());
break;
}
switch (config.output_format) {
/*case Regs::FramebufferFormat::RGBA8:
{
// TODO: Untested
u8* dstptr = (u32*)(dest_pointer + x * 4 + y * config.output_width * 4);
dstptr[0] = source_color.r;
dstptr[1] = source_color.g;
dstptr[2] = source_color.b;
dstptr[3] = source_color.a;
break;
}*/
case Regs::FramebufferFormat::RGB8:
{
// TODO: Most likely got the component order messed up.
u8* dstptr = dest_pointer + x * 3 + y * config.output_width * 3 / 2;
dstptr[0] = source_color.r; // blue
dstptr[1] = source_color.g; // green
dstptr[2] = source_color.b; // red
break;
}
default:
ERROR_LOG(GPU, "Unknown destination framebuffer format %x", config.output_format.Value());
break;
}
}
}
DEBUG_LOG(GPU, "DisplayTriggerTransfer: 0x%08x bytes from 0x%08x(%dx%d)-> 0x%08x(%dx%d), dst format %x",
config.output_height * config.output_width * 4,
config.GetPhysicalInputAddress(), (int)config.input_width, (int)config.input_height,
config.GetPhysicalOutputAddress(), (int)config.output_width, (int)config.output_height,
config.output_format.Value());
}
break;
}
case Regs::CommandProcessor + 4:
{
const auto& config = g_regs.Get<Regs::CommandProcessor>();
if (config.trigger & 1)
{
// u32* buffer = (u32*)Memory::GetPointer(config.address << 3);
ERROR_LOG(GPU, "Beginning 0x%08x bytes of commands from address 0x%08x", config.size, config.address << 3);
// TODO: Process command list!
}
break;
}
default:
break;
}
}
// Explicitly instantiate template functions because we aren't defining this in the header:
template void Read<u64>(u64 &var, const u32 addr);
template void Read<u32>(u32 &var, const u32 addr);
template void Read<u16>(u16 &var, const u32 addr);
template void Read<u8>(u8 &var, const u32 addr);
template void Write<u64>(u32 addr, const u64 data);
template void Write<u32>(u32 addr, const u32 data);
template void Write<u16>(u32 addr, const u16 data);
template void Write<u8>(u32 addr, const u8 data);
/// Update hardware
void Update() {
u64 current_ticks = Core::g_app_core->GetTicks();
// Synchronize line...
if ((current_ticks - g_last_ticks) >= GPU::kFrameTicks / 400) {
GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC0);
g_cur_line++;
g_last_ticks = current_ticks;
}
// Synchronize frame...
if (g_cur_line >= 400) {
g_cur_line = 0;
GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC1);
VideoCore::g_renderer->SwapBuffers();
Kernel::WaitCurrentThread(WAITTYPE_VBLANK);
HLE::Reschedule(__func__);
}
}
/// Initialize hardware
void Init() {
g_cur_line = 0;
g_last_ticks = Core::g_app_core->GetTicks();
// SetFramebufferLocation(FRAMEBUFFER_LOCATION_FCRAM);
SetFramebufferLocation(FRAMEBUFFER_LOCATION_VRAM);
auto& framebuffer_top = g_regs.Get<Regs::FramebufferTop>();
auto& framebuffer_sub = g_regs.Get<Regs::FramebufferBottom>();
// TODO: Width should be 240 instead?
framebuffer_top.width = 480;
framebuffer_top.height = 400;
framebuffer_top.stride = 480*3;
framebuffer_top.color_format = Regs::FramebufferFormat::RGB8;
framebuffer_top.active_fb = 0;
framebuffer_sub.width = 480;
framebuffer_sub.height = 400;
framebuffer_sub.stride = 480*3;
framebuffer_sub.color_format = Regs::FramebufferFormat::RGB8;
framebuffer_sub.active_fb = 0;
NOTICE_LOG(GPU, "initialized OK");
}
/// Shutdown hardware
void Shutdown() {
NOTICE_LOG(GPU, "shutdown OK");
}
} // namespace
|