summaryrefslogtreecommitdiffstats
path: root/src/core/hw/gpu.cpp
blob: a4dfb7e43a59d686a7f531cae524f354fea5b9b6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <cstring>
#include <numeric>
#include <type_traits>

#include "common/color.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/vector_math.h"

#include "core/settings.h"
#include "core/memory.h"
#include "core/core_timing.h"

#include "core/hle/service/gsp_gpu.h"
#include "core/hle/service/hid/hid.h"

#include "core/hw/hw.h"
#include "core/hw/gpu.h"

#include "core/tracer/recorder.h"

#include "video_core/command_processor.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
#include "video_core/utils.h"
#include "video_core/video_core.h"

#include "video_core/debug_utils/debug_utils.h"


namespace GPU {

Regs g_regs;

/// True if the current frame was skipped
bool g_skip_frame;
/// 268MHz CPU clocks / 60Hz frames per second
const u64 frame_ticks = 268123480ull / 60;
/// Event id for CoreTiming
static int vblank_event;
/// Total number of frames drawn
static u64 frame_count;
/// True if the last frame was skipped
static bool last_skip_frame;

template <typename T>
inline void Read(T &var, const u32 raw_addr) {
    u32 addr = raw_addr - HW::VADDR_GPU;
    u32 index = addr / 4;

    // Reads other than u32 are untested, so I'd rather have them abort than silently fail
    if (index >= Regs::NumIds() || !std::is_same<T, u32>::value) {
        LOG_ERROR(HW_GPU, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, addr);
        return;
    }

    var = g_regs[addr / 4];
}

static Math::Vec4<u8> DecodePixel(Regs::PixelFormat input_format, const u8* src_pixel) {
    switch (input_format) {
    case Regs::PixelFormat::RGBA8:
        return Color::DecodeRGBA8(src_pixel);

    case Regs::PixelFormat::RGB8:
        return Color::DecodeRGB8(src_pixel);

    case Regs::PixelFormat::RGB565:
        return Color::DecodeRGB565(src_pixel);

    case Regs::PixelFormat::RGB5A1:
        return Color::DecodeRGB5A1(src_pixel);

    case Regs::PixelFormat::RGBA4:
        return Color::DecodeRGBA4(src_pixel);

    default:
        LOG_ERROR(HW_GPU, "Unknown source framebuffer format %x", input_format);
        return {0, 0, 0, 0};
    }
}

MICROPROFILE_DEFINE(GPU_DisplayTransfer, "GPU", "DisplayTransfer", MP_RGB(100, 100, 255));
MICROPROFILE_DEFINE(GPU_CmdlistProcessing, "GPU", "Cmdlist Processing", MP_RGB(100, 255, 100));

template <typename T>
inline void Write(u32 addr, const T data) {
    addr -= HW::VADDR_GPU;
    u32 index = addr / 4;

    // Writes other than u32 are untested, so I'd rather have them abort than silently fail
    if (index >= Regs::NumIds() || !std::is_same<T, u32>::value) {
        LOG_ERROR(HW_GPU, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, addr);
        return;
    }

    g_regs[index] = static_cast<u32>(data);

    switch (index) {

    // Memory fills are triggered once the fill value is written.
    case GPU_REG_INDEX_WORKAROUND(memory_fill_config[0].trigger, 0x00004 + 0x3):
    case GPU_REG_INDEX_WORKAROUND(memory_fill_config[1].trigger, 0x00008 + 0x3):
    {
        const bool is_second_filler = (index != GPU_REG_INDEX(memory_fill_config[0].trigger));
        auto& config = g_regs.memory_fill_config[is_second_filler];

        if (config.trigger) {
            if (config.address_start) { // Some games pass invalid values here
                u8* start = Memory::GetPhysicalPointer(config.GetStartAddress());
                u8* end = Memory::GetPhysicalPointer(config.GetEndAddress());

                // TODO: Consider always accelerating and returning vector of
                //       regions that the accelerated fill did not cover to
                //       reduce/eliminate the fill that the cpu has to do.
                //       This would also mean that the flush below is not needed.
                //       Fill should first flush all surfaces that touch but are
                //       not completely within the fill range.
                //       Then fill all completely covered surfaces, and return the
                //       regions that were between surfaces or within the touching
                //       ones for cpu to manually fill here.
                if (!VideoCore::g_renderer->Rasterizer()->AccelerateFill(config)) {
                    Memory::RasterizerFlushAndInvalidateRegion(config.GetStartAddress(), config.GetEndAddress() - config.GetStartAddress());

                    if (config.fill_24bit) {
                        // fill with 24-bit values
                        for (u8* ptr = start; ptr < end; ptr += 3) {
                            ptr[0] = config.value_24bit_r;
                            ptr[1] = config.value_24bit_g;
                            ptr[2] = config.value_24bit_b;
                        }
                    } else if (config.fill_32bit) {
                        // fill with 32-bit values
                        if (end > start) {
                            u32 value = config.value_32bit;
                            size_t len = (end - start) / sizeof(u32);
                            for (size_t i = 0; i < len; ++i)
                                memcpy(&start[i * sizeof(u32)], &value, sizeof(u32));
                        }
                    } else {
                        // fill with 16-bit values
                        u16 value_16bit = config.value_16bit.Value();
                        for (u8* ptr = start; ptr < end; ptr += sizeof(u16))
                            memcpy(ptr, &value_16bit, sizeof(u16));
                    }
                }

                LOG_TRACE(HW_GPU, "MemoryFill from 0x%08x to 0x%08x", config.GetStartAddress(), config.GetEndAddress());

                if (!is_second_filler) {
                    GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC0);
                } else {
                    GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC1);
                }
            }

            // Reset "trigger" flag and set the "finish" flag
            // NOTE: This was confirmed to happen on hardware even if "address_start" is zero.
            config.trigger.Assign(0);
            config.finished.Assign(1);
        }
        break;
    }

    case GPU_REG_INDEX(display_transfer_config.trigger):
    {
        MICROPROFILE_SCOPE(GPU_DisplayTransfer);

        const auto& config = g_regs.display_transfer_config;
        if (config.trigger & 1) {

            if (Pica::g_debug_context)
                Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::IncomingDisplayTransfer, nullptr);

            if (!VideoCore::g_renderer->Rasterizer()->AccelerateDisplayTransfer(config)) {
                u8* src_pointer = Memory::GetPhysicalPointer(config.GetPhysicalInputAddress());
                u8* dst_pointer = Memory::GetPhysicalPointer(config.GetPhysicalOutputAddress());

                if (config.is_texture_copy) {
                    u32 input_width = config.texture_copy.input_width * 16;
                    u32 input_gap = config.texture_copy.input_gap * 16;
                    u32 output_width = config.texture_copy.output_width * 16;
                    u32 output_gap = config.texture_copy.output_gap * 16;

                    size_t contiguous_input_size = config.texture_copy.size / input_width * (input_width + input_gap);
                    Memory::RasterizerFlushRegion(config.GetPhysicalInputAddress(), static_cast<u32>(contiguous_input_size));

                    size_t contiguous_output_size = config.texture_copy.size / output_width * (output_width + output_gap);
                    Memory::RasterizerFlushAndInvalidateRegion(config.GetPhysicalOutputAddress(), static_cast<u32>(contiguous_output_size));

                    u32 remaining_size = config.texture_copy.size;
                    u32 remaining_input = input_width;
                    u32 remaining_output = output_width;
                    while (remaining_size > 0) {
                        u32 copy_size = std::min({ remaining_input, remaining_output, remaining_size });

                        std::memcpy(dst_pointer, src_pointer, copy_size);
                        src_pointer += copy_size;
                        dst_pointer += copy_size;

                        remaining_input -= copy_size;
                        remaining_output -= copy_size;
                        remaining_size -= copy_size;

                        if (remaining_input == 0) {
                            remaining_input = input_width;
                            src_pointer += input_gap;
                        }
                        if (remaining_output == 0) {
                            remaining_output = output_width;
                            dst_pointer += output_gap;
                        }
                    }

                    LOG_TRACE(HW_GPU, "TextureCopy: 0x%X bytes from 0x%08X(%u+%u)-> 0x%08X(%u+%u), flags 0x%08X",
                        config.texture_copy.size,
                        config.GetPhysicalInputAddress(), input_width, input_gap,
                        config.GetPhysicalOutputAddress(), output_width, output_gap,
                        config.flags);

                    GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PPF);
                    break;
                }

                if (config.scaling > config.ScaleXY) {
                    LOG_CRITICAL(HW_GPU, "Unimplemented display transfer scaling mode %u", config.scaling.Value());
                    UNIMPLEMENTED();
                    break;
                }

                if (config.input_linear && config.scaling != config.NoScale) {
                    LOG_CRITICAL(HW_GPU, "Scaling is only implemented on tiled input");
                    UNIMPLEMENTED();
                    break;
                }

                int horizontal_scale = config.scaling != config.NoScale ? 1 : 0;
                int vertical_scale = config.scaling == config.ScaleXY ? 1 : 0;

                u32 output_width = config.output_width >> horizontal_scale;
                u32 output_height = config.output_height >> vertical_scale;

                u32 input_size = config.input_width * config.input_height * GPU::Regs::BytesPerPixel(config.input_format);
                u32 output_size = output_width * output_height * GPU::Regs::BytesPerPixel(config.output_format);

                Memory::RasterizerFlushRegion(config.GetPhysicalInputAddress(), input_size);
                Memory::RasterizerFlushAndInvalidateRegion(config.GetPhysicalOutputAddress(), output_size);

                for (u32 y = 0; y < output_height; ++y) {
                    for (u32 x = 0; x < output_width; ++x) {
                        Math::Vec4<u8> src_color;

                        // Calculate the [x,y] position of the input image
                        // based on the current output position and the scale
                        u32 input_x = x << horizontal_scale;
                        u32 input_y = y << vertical_scale;

                        if (config.flip_vertically) {
                            // Flip the y value of the output data,
                            // we do this after calculating the [x,y] position of the input image
                            // to account for the scaling options.
                            y = output_height - y - 1;
                        }

                        u32 dst_bytes_per_pixel = GPU::Regs::BytesPerPixel(config.output_format);
                        u32 src_bytes_per_pixel = GPU::Regs::BytesPerPixel(config.input_format);
                        u32 src_offset;
                        u32 dst_offset;

                        if (config.input_linear) {
                            if (!config.dont_swizzle) {
                                // Interpret the input as linear and the output as tiled
                                u32 coarse_y = y & ~7;
                                u32 stride = output_width * dst_bytes_per_pixel;

                                src_offset = (input_x + input_y * config.input_width) * src_bytes_per_pixel;
                                dst_offset = VideoCore::GetMortonOffset(x, y, dst_bytes_per_pixel) + coarse_y * stride;
                            } else {
                                // Both input and output are linear
                                src_offset = (input_x + input_y * config.input_width) * src_bytes_per_pixel;
                                dst_offset = (x + y * output_width) * dst_bytes_per_pixel;
                            }
                        } else {
                            if (!config.dont_swizzle) {
                                // Interpret the input as tiled and the output as linear
                                u32 coarse_y = input_y & ~7;
                                u32 stride = config.input_width * src_bytes_per_pixel;

                                src_offset = VideoCore::GetMortonOffset(input_x, input_y, src_bytes_per_pixel) + coarse_y * stride;
                                dst_offset = (x + y * output_width) * dst_bytes_per_pixel;
                            } else {
                                // Both input and output are tiled
                                u32 out_coarse_y = y & ~7;
                                u32 out_stride = output_width * dst_bytes_per_pixel;

                                u32 in_coarse_y = input_y & ~7;
                                u32 in_stride = config.input_width * src_bytes_per_pixel;

                                src_offset = VideoCore::GetMortonOffset(input_x, input_y, src_bytes_per_pixel) + in_coarse_y * in_stride;
                                dst_offset = VideoCore::GetMortonOffset(x, y, dst_bytes_per_pixel) + out_coarse_y * out_stride;
                            }
                        }

                        const u8* src_pixel = src_pointer + src_offset;
                        src_color = DecodePixel(config.input_format, src_pixel);
                        if (config.scaling == config.ScaleX) {
                            Math::Vec4<u8> pixel = DecodePixel(config.input_format, src_pixel + src_bytes_per_pixel);
                            src_color = ((src_color + pixel) / 2).Cast<u8>();
                        } else if (config.scaling == config.ScaleXY) {
                            Math::Vec4<u8> pixel1 = DecodePixel(config.input_format, src_pixel + 1 * src_bytes_per_pixel);
                            Math::Vec4<u8> pixel2 = DecodePixel(config.input_format, src_pixel + 2 * src_bytes_per_pixel);
                            Math::Vec4<u8> pixel3 = DecodePixel(config.input_format, src_pixel + 3 * src_bytes_per_pixel);
                            src_color = (((src_color + pixel1) + (pixel2 + pixel3)) / 4).Cast<u8>();
                        }

                        u8* dst_pixel = dst_pointer + dst_offset;
                        switch (config.output_format) {
                        case Regs::PixelFormat::RGBA8:
                            Color::EncodeRGBA8(src_color, dst_pixel);
                            break;

                        case Regs::PixelFormat::RGB8:
                            Color::EncodeRGB8(src_color, dst_pixel);
                            break;

                        case Regs::PixelFormat::RGB565:
                            Color::EncodeRGB565(src_color, dst_pixel);
                            break;

                        case Regs::PixelFormat::RGB5A1:
                            Color::EncodeRGB5A1(src_color, dst_pixel);
                            break;

                        case Regs::PixelFormat::RGBA4:
                            Color::EncodeRGBA4(src_color, dst_pixel);
                            break;

                        default:
                            LOG_ERROR(HW_GPU, "Unknown destination framebuffer format %x", config.output_format.Value());
                            break;
                        }
                    }
                }

                LOG_TRACE(HW_GPU, "DisplayTriggerTransfer: 0x%08x bytes from 0x%08x(%ux%u)-> 0x%08x(%ux%u), dst format %x, flags 0x%08X",
                      config.output_height * output_width * GPU::Regs::BytesPerPixel(config.output_format),
                      config.GetPhysicalInputAddress(), config.input_width.Value(), config.input_height.Value(),
                      config.GetPhysicalOutputAddress(), output_width, output_height,
                      config.output_format.Value(), config.flags);
            }

            g_regs.display_transfer_config.trigger = 0;
            GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PPF);
        }
        break;
    }

    // Seems like writing to this register triggers processing
    case GPU_REG_INDEX(command_processor_config.trigger):
    {
        const auto& config = g_regs.command_processor_config;
        if (config.trigger & 1)
        {
            MICROPROFILE_SCOPE(GPU_CmdlistProcessing);

            u32* buffer = (u32*)Memory::GetPhysicalPointer(config.GetPhysicalAddress());

            if (Pica::g_debug_context && Pica::g_debug_context->recorder) {
                Pica::g_debug_context->recorder->MemoryAccessed((u8*)buffer, config.size * sizeof(u32), config.GetPhysicalAddress());
            }

            Pica::CommandProcessor::ProcessCommandList(buffer, config.size);

            g_regs.command_processor_config.trigger = 0;
        }
        break;
    }

    default:
        break;
    }

    // Notify tracer about the register write
    // This is happening *after* handling the write to make sure we properly catch all memory reads.
    if (Pica::g_debug_context && Pica::g_debug_context->recorder) {
        // addr + GPU VBase - IO VBase + IO PBase
        Pica::g_debug_context->recorder->RegisterWritten<T>(addr + 0x1EF00000 - 0x1EC00000 + 0x10100000, data);
    }
}

// Explicitly instantiate template functions because we aren't defining this in the header:

template void Read<u64>(u64 &var, const u32 addr);
template void Read<u32>(u32 &var, const u32 addr);
template void Read<u16>(u16 &var, const u32 addr);
template void Read<u8>(u8 &var, const u32 addr);

template void Write<u64>(u32 addr, const u64 data);
template void Write<u32>(u32 addr, const u32 data);
template void Write<u16>(u32 addr, const u16 data);
template void Write<u8>(u32 addr, const u8 data);

/// Update hardware
static void VBlankCallback(u64 userdata, int cycles_late) {
    frame_count++;
    last_skip_frame = g_skip_frame;
    g_skip_frame = (frame_count & Settings::values.frame_skip) != 0;

    // Swap buffers based on the frameskip mode, which is a little bit tricky. When
    // a frame is being skipped, nothing is being rendered to the internal framebuffer(s).
    // So, we should only swap frames if the last frame was rendered. The rules are:
    //  - If frameskip == 0 (disabled), always swap buffers
    //  - If frameskip == 1, swap buffers every other frame (starting from the first frame)
    //  - If frameskip > 1, swap buffers every frameskip^n frames (starting from the second frame)
    if ((((Settings::values.frame_skip != 1) ^ last_skip_frame) && last_skip_frame != g_skip_frame) ||
            Settings::values.frame_skip == 0) {
        VideoCore::g_renderer->SwapBuffers();
    }

    // Signal to GSP that GPU interrupt has occurred
    // TODO(yuriks): hwtest to determine if PDC0 is for the Top screen and PDC1 for the Sub
    // screen, or if both use the same interrupts and these two instead determine the
    // beginning and end of the VBlank period. If needed, split the interrupt firing into
    // two different intervals.
    GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC0);
    GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PDC1);

    // Check for user input updates
    Service::HID::Update();

    // Reschedule recurrent event
    CoreTiming::ScheduleEvent(frame_ticks - cycles_late, vblank_event);
}

/// Initialize hardware
void Init() {
    memset(&g_regs, 0, sizeof(g_regs));

    auto& framebuffer_top = g_regs.framebuffer_config[0];
    auto& framebuffer_sub = g_regs.framebuffer_config[1];

    // Setup default framebuffer addresses (located in VRAM)
    // .. or at least these are the ones used by system applets.
    // There's probably a smarter way to come up with addresses
    // like this which does not require hardcoding.
    framebuffer_top.address_left1  = 0x181E6000;
    framebuffer_top.address_left2  = 0x1822C800;
    framebuffer_top.address_right1 = 0x18273000;
    framebuffer_top.address_right2 = 0x182B9800;
    framebuffer_sub.address_left1  = 0x1848F000;
    framebuffer_sub.address_left2  = 0x184C7800;

    framebuffer_top.width.Assign(240);
    framebuffer_top.height.Assign(400);
    framebuffer_top.stride = 3 * 240;
    framebuffer_top.color_format.Assign(Regs::PixelFormat::RGB8);
    framebuffer_top.active_fb = 0;

    framebuffer_sub.width.Assign(240);
    framebuffer_sub.height.Assign(320);
    framebuffer_sub.stride = 3 * 240;
    framebuffer_sub.color_format.Assign(Regs::PixelFormat::RGB8);
    framebuffer_sub.active_fb = 0;

    last_skip_frame = false;
    g_skip_frame = false;
    frame_count = 0;

    vblank_event = CoreTiming::RegisterEvent("GPU::VBlankCallback", VBlankCallback);
    CoreTiming::ScheduleEvent(frame_ticks, vblank_event);

    LOG_DEBUG(HW_GPU, "initialized OK");
}

/// Shutdown hardware
void Shutdown() {
    LOG_DEBUG(HW_GPU, "shutdown OK");
}

} // namespace