summaryrefslogtreecommitdiffstats
path: root/src/core/hle/service/nvdrv/devices/nvhost_nvdec_common.cpp
blob: 1403a39d0fef45b0fab66e0b34a5d10824465b49 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright 2020 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <cstring>

#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/service/nvdrv/devices/nvhost_nvdec_common.h"
#include "core/hle/service/nvdrv/devices/nvmap.h"
#include "core/hle/service/nvdrv/syncpoint_manager.h"
#include "core/memory.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_base.h"

namespace Service::Nvidia::Devices {

namespace {
// Copies count amount of type T from the input vector into the dst vector.
// Returns the number of bytes written into dst.
template <typename T>
std::size_t SliceVectors(const std::vector<u8>& input, std::vector<T>& dst, std::size_t count,
                         std::size_t offset) {
    if (dst.empty()) {
        return 0;
    }
    const size_t bytes_copied = count * sizeof(T);
    std::memcpy(dst.data(), input.data() + offset, bytes_copied);
    return bytes_copied;
}

// Writes the data in src to an offset into the dst vector. The offset is specified in bytes
// Returns the number of bytes written into dst.
template <typename T>
std::size_t WriteVectors(std::vector<u8>& dst, const std::vector<T>& src, std::size_t offset) {
    if (src.empty()) {
        return 0;
    }
    const size_t bytes_copied = src.size() * sizeof(T);
    std::memcpy(dst.data() + offset, src.data(), bytes_copied);
    return bytes_copied;
}
} // Anonymous namespace

nvhost_nvdec_common::nvhost_nvdec_common(Core::System& system_, std::shared_ptr<nvmap> nvmap_dev_,
                                         SyncpointManager& syncpoint_manager_)
    : nvdevice{system_}, nvmap_dev{std::move(nvmap_dev_)}, syncpoint_manager{syncpoint_manager_} {}
nvhost_nvdec_common::~nvhost_nvdec_common() = default;

NvResult nvhost_nvdec_common::SetNVMAPfd(const std::vector<u8>& input) {
    IoctlSetNvmapFD params{};
    std::memcpy(&params, input.data(), sizeof(IoctlSetNvmapFD));
    LOG_DEBUG(Service_NVDRV, "called, fd={}", params.nvmap_fd);

    nvmap_fd = params.nvmap_fd;
    return NvResult::Success;
}

NvResult nvhost_nvdec_common::Submit(const std::vector<u8>& input, std::vector<u8>& output) {
    IoctlSubmit params{};
    std::memcpy(&params, input.data(), sizeof(IoctlSubmit));
    LOG_DEBUG(Service_NVDRV, "called NVDEC Submit, cmd_buffer_count={}", params.cmd_buffer_count);

    // Instantiate param buffers
    std::vector<CommandBuffer> command_buffers(params.cmd_buffer_count);
    std::vector<Reloc> relocs(params.relocation_count);
    std::vector<u32> reloc_shifts(params.relocation_count);
    std::vector<SyncptIncr> syncpt_increments(params.syncpoint_count);
    std::vector<SyncptIncr> wait_checks(params.syncpoint_count);
    std::vector<Fence> fences(params.fence_count);

    // Slice input into their respective buffers
    std::size_t offset = sizeof(IoctlSubmit);
    offset += SliceVectors(input, command_buffers, params.cmd_buffer_count, offset);
    offset += SliceVectors(input, relocs, params.relocation_count, offset);
    offset += SliceVectors(input, reloc_shifts, params.relocation_count, offset);
    offset += SliceVectors(input, syncpt_increments, params.syncpoint_count, offset);
    offset += SliceVectors(input, wait_checks, params.syncpoint_count, offset);
    offset += SliceVectors(input, fences, params.fence_count, offset);

    auto& gpu = system.GPU();
    if (gpu.UseNvdec()) {
        for (std::size_t i = 0; i < syncpt_increments.size(); i++) {
            const SyncptIncr& syncpt_incr = syncpt_increments[i];
            fences[i].id = syncpt_incr.id;
            fences[i].value =
                syncpoint_manager.IncreaseSyncpoint(syncpt_incr.id, syncpt_incr.increments);
        }
    }
    for (const auto& cmd_buffer : command_buffers) {
        const auto object = nvmap_dev->GetObject(cmd_buffer.memory_id);
        ASSERT_OR_EXECUTE(object, return NvResult::InvalidState;);
        Tegra::ChCommandHeaderList cmdlist(cmd_buffer.word_count);
        system.Memory().ReadBlock(object->addr + cmd_buffer.offset, cmdlist.data(),
                                  cmdlist.size() * sizeof(u32));
        gpu.PushCommandBuffer(cmdlist);
    }
    if (gpu.UseNvdec()) {
        fences[0].value = syncpoint_manager.IncreaseSyncpoint(fences[0].id, 1);
        Tegra::ChCommandHeaderList cmdlist{{(4 << 28) | fences[0].id}};
        gpu.PushCommandBuffer(cmdlist);
    }
    std::memcpy(output.data(), &params, sizeof(IoctlSubmit));
    // Some games expect command_buffers to be written back
    offset = sizeof(IoctlSubmit);
    offset += WriteVectors(output, command_buffers, offset);
    offset += WriteVectors(output, relocs, offset);
    offset += WriteVectors(output, reloc_shifts, offset);
    offset += WriteVectors(output, syncpt_increments, offset);
    offset += WriteVectors(output, wait_checks, offset);
    offset += WriteVectors(output, fences, offset);

    return NvResult::Success;
}

NvResult nvhost_nvdec_common::GetSyncpoint(const std::vector<u8>& input, std::vector<u8>& output) {
    IoctlGetSyncpoint params{};
    std::memcpy(&params, input.data(), sizeof(IoctlGetSyncpoint));
    LOG_DEBUG(Service_NVDRV, "called GetSyncpoint, id={}", params.param);

    if (device_syncpoints[params.param] == 0 && system.GPU().UseNvdec()) {
        device_syncpoints[params.param] = syncpoint_manager.AllocateSyncpoint();
    }
    params.value = device_syncpoints[params.param];
    std::memcpy(output.data(), &params, sizeof(IoctlGetSyncpoint));

    return NvResult::Success;
}

NvResult nvhost_nvdec_common::GetWaitbase(const std::vector<u8>& input, std::vector<u8>& output) {
    IoctlGetWaitbase params{};
    std::memcpy(&params, input.data(), sizeof(IoctlGetWaitbase));
    params.value = 0; // Seems to be hard coded at 0
    std::memcpy(output.data(), &params, sizeof(IoctlGetWaitbase));
    return NvResult::Success;
}

NvResult nvhost_nvdec_common::MapBuffer(const std::vector<u8>& input, std::vector<u8>& output) {
    IoctlMapBuffer params{};
    std::memcpy(&params, input.data(), sizeof(IoctlMapBuffer));
    std::vector<MapBufferEntry> cmd_buffer_handles(params.num_entries);

    SliceVectors(input, cmd_buffer_handles, params.num_entries, sizeof(IoctlMapBuffer));

    auto& gpu = system.GPU();

    for (auto& cmd_buffer : cmd_buffer_handles) {
        auto object{nvmap_dev->GetObject(cmd_buffer.map_handle)};
        if (!object) {
            LOG_ERROR(Service_NVDRV, "invalid cmd_buffer nvmap_handle={:X}", cmd_buffer.map_handle);
            std::memcpy(output.data(), &params, output.size());
            return NvResult::InvalidState;
        }
        if (object->dma_map_addr == 0) {
            // NVDEC and VIC memory is in the 32-bit address space
            // MapAllocate32 will attempt to map a lower 32-bit value in the shared gpu memory space
            const GPUVAddr low_addr = gpu.MemoryManager().MapAllocate32(object->addr, object->size);
            object->dma_map_addr = static_cast<u32>(low_addr);
            // Ensure that the dma_map_addr is indeed in the lower 32-bit address space.
            ASSERT(object->dma_map_addr == low_addr);
        }
        if (!object->dma_map_addr) {
            LOG_ERROR(Service_NVDRV, "failed to map size={}", object->size);
        } else {
            cmd_buffer.map_address = object->dma_map_addr;
            AddBufferMap(object->dma_map_addr, object->size, object->addr,
                         object->status == nvmap::Object::Status::Allocated);
        }
    }
    std::memcpy(output.data(), &params, sizeof(IoctlMapBuffer));
    std::memcpy(output.data() + sizeof(IoctlMapBuffer), cmd_buffer_handles.data(),
                cmd_buffer_handles.size() * sizeof(MapBufferEntry));

    return NvResult::Success;
}

NvResult nvhost_nvdec_common::UnmapBuffer(const std::vector<u8>& input, std::vector<u8>& output) {
    IoctlMapBuffer params{};
    std::memcpy(&params, input.data(), sizeof(IoctlMapBuffer));
    std::vector<MapBufferEntry> cmd_buffer_handles(params.num_entries);
    SliceVectors(input, cmd_buffer_handles, params.num_entries, sizeof(IoctlMapBuffer));

    auto& gpu = system.GPU();

    for (auto& cmd_buffer : cmd_buffer_handles) {
        const auto object{nvmap_dev->GetObject(cmd_buffer.map_handle)};
        if (!object) {
            LOG_ERROR(Service_NVDRV, "invalid cmd_buffer nvmap_handle={:X}", cmd_buffer.map_handle);
            std::memcpy(output.data(), &params, output.size());
            return NvResult::InvalidState;
        }
        if (const auto size{RemoveBufferMap(object->dma_map_addr)}; size) {
            gpu.MemoryManager().Unmap(object->dma_map_addr, *size);
        } else {
            // This occurs quite frequently, however does not seem to impact functionality
            LOG_DEBUG(Service_NVDRV, "invalid offset=0x{:X} dma=0x{:X}", object->addr,
                      object->dma_map_addr);
        }
        object->dma_map_addr = 0;
    }
    std::memset(output.data(), 0, output.size());
    return NvResult::Success;
}

NvResult nvhost_nvdec_common::SetSubmitTimeout(const std::vector<u8>& input,
                                               std::vector<u8>& output) {
    std::memcpy(&submit_timeout, input.data(), input.size());
    LOG_WARNING(Service_NVDRV, "(STUBBED) called");
    return NvResult::Success;
}

std::optional<nvhost_nvdec_common::BufferMap> nvhost_nvdec_common::FindBufferMap(
    GPUVAddr gpu_addr) const {
    const auto it = std::find_if(
        buffer_mappings.begin(), buffer_mappings.upper_bound(gpu_addr), [&](const auto& entry) {
            return (gpu_addr >= entry.second.StartAddr() && gpu_addr < entry.second.EndAddr());
        });

    ASSERT(it != buffer_mappings.end());
    return it->second;
}

void nvhost_nvdec_common::AddBufferMap(GPUVAddr gpu_addr, std::size_t size, VAddr cpu_addr,
                                       bool is_allocated) {
    buffer_mappings.insert_or_assign(gpu_addr, BufferMap{gpu_addr, size, cpu_addr, is_allocated});
}

std::optional<std::size_t> nvhost_nvdec_common::RemoveBufferMap(GPUVAddr gpu_addr) {
    const auto iter{buffer_mappings.find(gpu_addr)};
    if (iter == buffer_mappings.end()) {
        return std::nullopt;
    }
    std::size_t size = 0;
    if (iter->second.IsAllocated()) {
        size = iter->second.Size();
    }
    buffer_mappings.erase(iter);
    return size;
}

} // namespace Service::Nvidia::Devices