summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/vm_manager.cpp
blob: e0f204b0b61cc567913341107fb6d6c71197cd87 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <iterator>
#include <utility>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
#include "core/memory_hook.h"
#include "core/memory_setup.h"

namespace Kernel {

static const char* GetMemoryStateName(MemoryState state) {
    static constexpr const char* names[] = {
        "Unmapped",         "Io",
        "Normal",           "CodeStatic",
        "CodeMutable",      "Heap",
        "Shared",           "Unknown1",
        "ModuleCodeStatic", "ModuleCodeMutable",
        "IpcBuffer0",       "Stack",
        "ThreadLocal",      "TransferMemoryIsolated",
        "TransferMemory",   "ProcessMemory",
        "Unknown2",         "IpcBuffer1",
        "IpcBuffer3",       "KernelStack",
    };

    return names[ToSvcMemoryState(state)];
}

bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
    ASSERT(base + size == next.base);
    if (permissions != next.permissions || meminfo_state != next.meminfo_state ||
        type != next.type) {
        return false;
    }
    if (type == VMAType::AllocatedMemoryBlock &&
        (backing_block != next.backing_block || offset + size != next.offset)) {
        return false;
    }
    if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
        return false;
    }
    if (type == VMAType::MMIO && paddr + size != next.paddr) {
        return false;
    }
    return true;
}

VMManager::VMManager() {
    // Default to assuming a 39-bit address space. This way we have a sane
    // starting point with executables that don't provide metadata.
    Reset(FileSys::ProgramAddressSpaceType::Is39Bit);
}

VMManager::~VMManager() {
    Reset(FileSys::ProgramAddressSpaceType::Is39Bit);
}

void VMManager::Reset(FileSys::ProgramAddressSpaceType type) {
    Clear();

    InitializeMemoryRegionRanges(type);

    page_table.Resize(address_space_width);

    // Initialize the map with a single free region covering the entire managed space.
    VirtualMemoryArea initial_vma;
    initial_vma.size = address_space_end;
    vma_map.emplace(initial_vma.base, initial_vma);

    UpdatePageTableForVMA(initial_vma);
}

VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
    if (target >= address_space_end) {
        return vma_map.end();
    } else {
        return std::prev(vma_map.upper_bound(target));
    }
}

bool VMManager::IsValidHandle(VMAHandle handle) const {
    return handle != vma_map.cend();
}

ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
                                                          std::shared_ptr<std::vector<u8>> block,
                                                          std::size_t offset, u64 size,
                                                          MemoryState state) {
    ASSERT(block != nullptr);
    ASSERT(offset + size <= block->size());

    // This is the appropriately sized VMA that will turn into our allocation.
    CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
    VirtualMemoryArea& final_vma = vma_handle->second;
    ASSERT(final_vma.size == size);

    auto& system = Core::System::GetInstance();
    system.ArmInterface(0).MapBackingMemory(target, size, block->data() + offset,
                                            VMAPermission::ReadWriteExecute);
    system.ArmInterface(1).MapBackingMemory(target, size, block->data() + offset,
                                            VMAPermission::ReadWriteExecute);
    system.ArmInterface(2).MapBackingMemory(target, size, block->data() + offset,
                                            VMAPermission::ReadWriteExecute);
    system.ArmInterface(3).MapBackingMemory(target, size, block->data() + offset,
                                            VMAPermission::ReadWriteExecute);

    final_vma.type = VMAType::AllocatedMemoryBlock;
    final_vma.permissions = VMAPermission::ReadWrite;
    final_vma.meminfo_state = state;
    final_vma.backing_block = std::move(block);
    final_vma.offset = offset;
    UpdatePageTableForVMA(final_vma);

    return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}

ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* memory, u64 size,
                                                            MemoryState state) {
    ASSERT(memory != nullptr);

    // This is the appropriately sized VMA that will turn into our allocation.
    CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
    VirtualMemoryArea& final_vma = vma_handle->second;
    ASSERT(final_vma.size == size);

    auto& system = Core::System::GetInstance();
    system.ArmInterface(0).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
    system.ArmInterface(1).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
    system.ArmInterface(2).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
    system.ArmInterface(3).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);

    final_vma.type = VMAType::BackingMemory;
    final_vma.permissions = VMAPermission::ReadWrite;
    final_vma.meminfo_state = state;
    final_vma.backing_memory = memory;
    UpdatePageTableForVMA(final_vma);

    return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}

ResultVal<VAddr> VMManager::FindFreeRegion(u64 size) const {
    // Find the first Free VMA.
    const VAddr base = GetASLRRegionBaseAddress();
    const VMAHandle vma_handle = std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) {
        if (vma.second.type != VMAType::Free)
            return false;

        const VAddr vma_end = vma.second.base + vma.second.size;
        return vma_end > base && vma_end >= base + size;
    });

    if (vma_handle == vma_map.end()) {
        // TODO(Subv): Find the correct error code here.
        return ResultCode(-1);
    }

    const VAddr target = std::max(base, vma_handle->second.base);
    return MakeResult<VAddr>(target);
}

ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size,
                                                   MemoryState state,
                                                   Memory::MemoryHookPointer mmio_handler) {
    // This is the appropriately sized VMA that will turn into our allocation.
    CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
    VirtualMemoryArea& final_vma = vma_handle->second;
    ASSERT(final_vma.size == size);

    final_vma.type = VMAType::MMIO;
    final_vma.permissions = VMAPermission::ReadWrite;
    final_vma.meminfo_state = state;
    final_vma.paddr = paddr;
    final_vma.mmio_handler = std::move(mmio_handler);
    UpdatePageTableForVMA(final_vma);

    return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}

VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
    VirtualMemoryArea& vma = vma_handle->second;
    vma.type = VMAType::Free;
    vma.permissions = VMAPermission::None;
    vma.meminfo_state = MemoryState::Unmapped;

    vma.backing_block = nullptr;
    vma.offset = 0;
    vma.backing_memory = nullptr;
    vma.paddr = 0;

    UpdatePageTableForVMA(vma);

    return MergeAdjacent(vma_handle);
}

ResultCode VMManager::UnmapRange(VAddr target, u64 size) {
    CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
    const VAddr target_end = target + size;

    const VMAIter end = vma_map.end();
    // The comparison against the end of the range must be done using addresses since VMAs can be
    // merged during this process, causing invalidation of the iterators.
    while (vma != end && vma->second.base < target_end) {
        vma = std::next(Unmap(vma));
    }

    ASSERT(FindVMA(target)->second.size >= size);

    auto& system = Core::System::GetInstance();
    system.ArmInterface(0).UnmapMemory(target, size);
    system.ArmInterface(1).UnmapMemory(target, size);
    system.ArmInterface(2).UnmapMemory(target, size);
    system.ArmInterface(3).UnmapMemory(target, size);

    return RESULT_SUCCESS;
}

VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
    VMAIter iter = StripIterConstness(vma_handle);

    VirtualMemoryArea& vma = iter->second;
    vma.permissions = new_perms;
    UpdatePageTableForVMA(vma);

    return MergeAdjacent(iter);
}

ResultCode VMManager::ReprotectRange(VAddr target, u64 size, VMAPermission new_perms) {
    CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
    const VAddr target_end = target + size;

    const VMAIter end = vma_map.end();
    // The comparison against the end of the range must be done using addresses since VMAs can be
    // merged during this process, causing invalidation of the iterators.
    while (vma != end && vma->second.base < target_end) {
        vma = std::next(StripIterConstness(Reprotect(vma, new_perms)));
    }

    return RESULT_SUCCESS;
}

ResultVal<VAddr> VMManager::HeapAllocate(VAddr target, u64 size, VMAPermission perms) {
    if (target < GetHeapRegionBaseAddress() || target + size > GetHeapRegionEndAddress() ||
        target + size < target) {
        return ERR_INVALID_ADDRESS;
    }

    if (heap_memory == nullptr) {
        // Initialize heap
        heap_memory = std::make_shared<std::vector<u8>>();
        heap_start = heap_end = target;
    } else {
        UnmapRange(heap_start, heap_end - heap_start);
    }

    // If necessary, expand backing vector to cover new heap extents.
    if (target < heap_start) {
        heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
        heap_start = target;
        RefreshMemoryBlockMappings(heap_memory.get());
    }
    if (target + size > heap_end) {
        heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
        heap_end = target + size;
        RefreshMemoryBlockMappings(heap_memory.get());
    }
    ASSERT(heap_end - heap_start == heap_memory->size());

    CASCADE_RESULT(auto vma, MapMemoryBlock(target, heap_memory, target - heap_start, size,
                                            MemoryState::Heap));
    Reprotect(vma, perms);

    heap_used = size;

    return MakeResult<VAddr>(heap_end - size);
}

ResultCode VMManager::HeapFree(VAddr target, u64 size) {
    if (target < GetHeapRegionBaseAddress() || target + size > GetHeapRegionEndAddress() ||
        target + size < target) {
        return ERR_INVALID_ADDRESS;
    }

    if (size == 0) {
        return RESULT_SUCCESS;
    }

    const ResultCode result = UnmapRange(target, size);
    if (result.IsError()) {
        return result;
    }

    heap_used -= size;
    return RESULT_SUCCESS;
}

ResultCode VMManager::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, MemoryState state) {
    const auto vma = FindVMA(src_addr);

    ASSERT_MSG(vma != vma_map.end(), "Invalid memory address");
    ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address");

    // The returned VMA might be a bigger one encompassing the desired address.
    const auto vma_offset = src_addr - vma->first;
    ASSERT_MSG(vma_offset + size <= vma->second.size,
               "Shared memory exceeds bounds of mapped block");

    const std::shared_ptr<std::vector<u8>>& backing_block = vma->second.backing_block;
    const std::size_t backing_block_offset = vma->second.offset + vma_offset;

    CASCADE_RESULT(auto new_vma,
                   MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size, state));
    // Protect mirror with permissions from old region
    Reprotect(new_vma, vma->second.permissions);
    // Remove permissions from old region
    Reprotect(vma, VMAPermission::None);

    return RESULT_SUCCESS;
}

void VMManager::RefreshMemoryBlockMappings(const std::vector<u8>* block) {
    // If this ever proves to have a noticeable performance impact, allow users of the function to
    // specify a specific range of addresses to limit the scan to.
    for (const auto& p : vma_map) {
        const VirtualMemoryArea& vma = p.second;
        if (block == vma.backing_block.get()) {
            UpdatePageTableForVMA(vma);
        }
    }
}

void VMManager::LogLayout() const {
    for (const auto& p : vma_map) {
        const VirtualMemoryArea& vma = p.second;
        LOG_DEBUG(Kernel, "{:016X} - {:016X} size: {:016X} {}{}{} {}", vma.base,
                  vma.base + vma.size, vma.size,
                  (u8)vma.permissions & (u8)VMAPermission::Read ? 'R' : '-',
                  (u8)vma.permissions & (u8)VMAPermission::Write ? 'W' : '-',
                  (u8)vma.permissions & (u8)VMAPermission::Execute ? 'X' : '-',
                  GetMemoryStateName(vma.meminfo_state));
    }
}

VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) {
    // This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
    // non-const access to its container.
    return vma_map.erase(iter, iter); // Erases an empty range of elements
}

ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u64 size) {
    ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size);
    ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", base);

    VMAIter vma_handle = StripIterConstness(FindVMA(base));
    if (vma_handle == vma_map.end()) {
        // Target address is outside the range managed by the kernel
        return ERR_INVALID_ADDRESS;
    }

    const VirtualMemoryArea& vma = vma_handle->second;
    if (vma.type != VMAType::Free) {
        // Region is already allocated
        return ERR_INVALID_ADDRESS_STATE;
    }

    const VAddr start_in_vma = base - vma.base;
    const VAddr end_in_vma = start_in_vma + size;

    if (end_in_vma > vma.size) {
        // Requested allocation doesn't fit inside VMA
        return ERR_INVALID_ADDRESS_STATE;
    }

    if (end_in_vma != vma.size) {
        // Split VMA at the end of the allocated region
        SplitVMA(vma_handle, end_in_vma);
    }
    if (start_in_vma != 0) {
        // Split VMA at the start of the allocated region
        vma_handle = SplitVMA(vma_handle, start_in_vma);
    }

    return MakeResult<VMAIter>(vma_handle);
}

ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u64 size) {
    ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size);
    ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", target);

    const VAddr target_end = target + size;
    ASSERT(target_end >= target);
    ASSERT(target_end <= address_space_end);
    ASSERT(size > 0);

    VMAIter begin_vma = StripIterConstness(FindVMA(target));
    const VMAIter i_end = vma_map.lower_bound(target_end);
    if (std::any_of(begin_vma, i_end,
                    [](const auto& entry) { return entry.second.type == VMAType::Free; })) {
        return ERR_INVALID_ADDRESS_STATE;
    }

    if (target != begin_vma->second.base) {
        begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
    }

    VMAIter end_vma = StripIterConstness(FindVMA(target_end));
    if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
        end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
    }

    return MakeResult<VMAIter>(begin_vma);
}

VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
    VirtualMemoryArea& old_vma = vma_handle->second;
    VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA

    // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
    // a bug. This restriction might be removed later.
    ASSERT(offset_in_vma < old_vma.size);
    ASSERT(offset_in_vma > 0);

    old_vma.size = offset_in_vma;
    new_vma.base += offset_in_vma;
    new_vma.size -= offset_in_vma;

    switch (new_vma.type) {
    case VMAType::Free:
        break;
    case VMAType::AllocatedMemoryBlock:
        new_vma.offset += offset_in_vma;
        break;
    case VMAType::BackingMemory:
        new_vma.backing_memory += offset_in_vma;
        break;
    case VMAType::MMIO:
        new_vma.paddr += offset_in_vma;
        break;
    }

    ASSERT(old_vma.CanBeMergedWith(new_vma));

    return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
}

VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
    const VMAIter next_vma = std::next(iter);
    if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
        iter->second.size += next_vma->second.size;
        vma_map.erase(next_vma);
    }

    if (iter != vma_map.begin()) {
        VMAIter prev_vma = std::prev(iter);
        if (prev_vma->second.CanBeMergedWith(iter->second)) {
            prev_vma->second.size += iter->second.size;
            vma_map.erase(iter);
            iter = prev_vma;
        }
    }

    return iter;
}

void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
    switch (vma.type) {
    case VMAType::Free:
        Memory::UnmapRegion(page_table, vma.base, vma.size);
        break;
    case VMAType::AllocatedMemoryBlock:
        Memory::MapMemoryRegion(page_table, vma.base, vma.size,
                                vma.backing_block->data() + vma.offset);
        break;
    case VMAType::BackingMemory:
        Memory::MapMemoryRegion(page_table, vma.base, vma.size, vma.backing_memory);
        break;
    case VMAType::MMIO:
        Memory::MapIoRegion(page_table, vma.base, vma.size, vma.mmio_handler);
        break;
    }
}

void VMManager::InitializeMemoryRegionRanges(FileSys::ProgramAddressSpaceType type) {
    u64 map_region_size = 0;
    u64 heap_region_size = 0;
    u64 new_map_region_size = 0;
    u64 tls_io_region_size = 0;

    switch (type) {
    case FileSys::ProgramAddressSpaceType::Is32Bit:
    case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
        address_space_width = 32;
        code_region_base = 0x200000;
        code_region_end = code_region_base + 0x3FE00000;
        aslr_region_base = 0x200000;
        aslr_region_end = aslr_region_base + 0xFFE00000;
        if (type == FileSys::ProgramAddressSpaceType::Is32Bit) {
            map_region_size = 0x40000000;
            heap_region_size = 0x40000000;
        } else {
            map_region_size = 0;
            heap_region_size = 0x80000000;
        }
        break;
    case FileSys::ProgramAddressSpaceType::Is36Bit:
        address_space_width = 36;
        code_region_base = 0x8000000;
        code_region_end = code_region_base + 0x78000000;
        aslr_region_base = 0x8000000;
        aslr_region_end = aslr_region_base + 0xFF8000000;
        map_region_size = 0x180000000;
        heap_region_size = 0x180000000;
        break;
    case FileSys::ProgramAddressSpaceType::Is39Bit:
        address_space_width = 39;
        code_region_base = 0x8000000;
        code_region_end = code_region_base + 0x80000000;
        aslr_region_base = 0x8000000;
        aslr_region_end = aslr_region_base + 0x7FF8000000;
        map_region_size = 0x1000000000;
        heap_region_size = 0x180000000;
        new_map_region_size = 0x80000000;
        tls_io_region_size = 0x1000000000;
        break;
    default:
        UNREACHABLE_MSG("Invalid address space type specified: {}", static_cast<u32>(type));
        return;
    }

    address_space_base = 0;
    address_space_end = 1ULL << address_space_width;

    map_region_base = code_region_end;
    map_region_end = map_region_base + map_region_size;

    heap_region_base = map_region_end;
    heap_region_end = heap_region_base + heap_region_size;

    new_map_region_base = heap_region_end;
    new_map_region_end = new_map_region_base + new_map_region_size;

    tls_io_region_base = new_map_region_end;
    tls_io_region_end = tls_io_region_base + tls_io_region_size;

    if (new_map_region_size == 0) {
        new_map_region_base = address_space_base;
        new_map_region_end = address_space_end;
    }
}

void VMManager::Clear() {
    ClearVMAMap();
    ClearPageTable();
}

void VMManager::ClearVMAMap() {
    vma_map.clear();
}

void VMManager::ClearPageTable() {
    std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr);
    page_table.special_regions.clear();
    std::fill(page_table.attributes.begin(), page_table.attributes.end(),
              Memory::PageType::Unmapped);
}

u64 VMManager::GetTotalMemoryUsage() const {
    LOG_WARNING(Kernel, "(STUBBED) called");
    return 0xF8000000;
}

u64 VMManager::GetTotalHeapUsage() const {
    return heap_used;
}

VAddr VMManager::GetAddressSpaceBaseAddress() const {
    return address_space_base;
}

VAddr VMManager::GetAddressSpaceEndAddress() const {
    return address_space_end;
}

u64 VMManager::GetAddressSpaceSize() const {
    return address_space_end - address_space_base;
}

u64 VMManager::GetAddressSpaceWidth() const {
    return address_space_width;
}

VAddr VMManager::GetASLRRegionBaseAddress() const {
    return aslr_region_base;
}

VAddr VMManager::GetASLRRegionEndAddress() const {
    return aslr_region_end;
}

u64 VMManager::GetASLRRegionSize() const {
    return aslr_region_end - aslr_region_base;
}

bool VMManager::IsWithinASLRRegion(VAddr begin, u64 size) const {
    const VAddr range_end = begin + size;
    const VAddr aslr_start = GetASLRRegionBaseAddress();
    const VAddr aslr_end = GetASLRRegionEndAddress();

    if (aslr_start > begin || begin > range_end || range_end - 1 > aslr_end - 1) {
        return false;
    }

    if (range_end > heap_region_base && heap_region_end > begin) {
        return false;
    }

    if (range_end > map_region_base && map_region_end > begin) {
        return false;
    }

    return true;
}

VAddr VMManager::GetCodeRegionBaseAddress() const {
    return code_region_base;
}

VAddr VMManager::GetCodeRegionEndAddress() const {
    return code_region_end;
}

u64 VMManager::GetCodeRegionSize() const {
    return code_region_end - code_region_base;
}

VAddr VMManager::GetHeapRegionBaseAddress() const {
    return heap_region_base;
}

VAddr VMManager::GetHeapRegionEndAddress() const {
    return heap_region_end;
}

u64 VMManager::GetHeapRegionSize() const {
    return heap_region_end - heap_region_base;
}

VAddr VMManager::GetMapRegionBaseAddress() const {
    return map_region_base;
}

VAddr VMManager::GetMapRegionEndAddress() const {
    return map_region_end;
}

u64 VMManager::GetMapRegionSize() const {
    return map_region_end - map_region_base;
}

VAddr VMManager::GetNewMapRegionBaseAddress() const {
    return new_map_region_base;
}

VAddr VMManager::GetNewMapRegionEndAddress() const {
    return new_map_region_end;
}

u64 VMManager::GetNewMapRegionSize() const {
    return new_map_region_end - new_map_region_base;
}

VAddr VMManager::GetTLSIORegionBaseAddress() const {
    return tls_io_region_base;
}

VAddr VMManager::GetTLSIORegionEndAddress() const {
    return tls_io_region_end;
}

u64 VMManager::GetTLSIORegionSize() const {
    return tls_io_region_end - tls_io_region_base;
}

} // namespace Kernel