summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/scheduler.cpp
blob: 0e2dbf13e1249a86af309976fa2be1be74c0f338 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
//
// SelectThreads, Yield functions originally by TuxSH.
// licensed under GPLv2 or later under exception provided by the author.

#include <algorithm>
#include <set>
#include <unordered_set>
#include <utility>

#include "common/assert.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/scheduler.h"

namespace Kernel {

GlobalScheduler::GlobalScheduler(Core::System& system) : system{system} {}

GlobalScheduler::~GlobalScheduler() = default;

void GlobalScheduler::AddThread(SharedPtr<Thread> thread) {
    thread_list.push_back(std::move(thread));
}

void GlobalScheduler::RemoveThread(const Thread* thread) {
    thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
                      thread_list.end());
}

void GlobalScheduler::UnloadThread(s32 core) {
    Scheduler& sched = system.Scheduler(core);
    sched.UnloadThread();
}

void GlobalScheduler::SelectThread(u32 core) {
    const auto update_thread = [](Thread* thread, Scheduler& sched) {
        if (thread != sched.selected_thread) {
            if (thread == nullptr) {
                ++sched.idle_selection_count;
            }
            sched.selected_thread = thread;
        }
        sched.is_context_switch_pending = sched.selected_thread != sched.current_thread;
        std::atomic_thread_fence(std::memory_order_seq_cst);
    };
    Scheduler& sched = system.Scheduler(core);
    Thread* current_thread = nullptr;
    // Step 1: Get top thread in schedule queue.
    current_thread = scheduled_queue[core].empty() ? nullptr : scheduled_queue[core].front();
    if (current_thread) {
        update_thread(current_thread, sched);
        return;
    }
    // Step 2: Try selecting a suggested thread.
    Thread* winner = nullptr;
    std::set<s32> sug_cores;
    for (auto thread : suggested_queue[core]) {
        s32 this_core = thread->GetProcessorID();
        Thread* thread_on_core = nullptr;
        if (this_core >= 0) {
            thread_on_core = scheduled_queue[this_core].front();
        }
        if (this_core < 0 || thread != thread_on_core) {
            winner = thread;
            break;
        }
        sug_cores.insert(this_core);
    }
    // if we got a suggested thread, select it, else do a second pass.
    if (winner && winner->GetPriority() > 2) {
        if (winner->IsRunning()) {
            UnloadThread(winner->GetProcessorID());
        }
        TransferToCore(winner->GetPriority(), core, winner);
        update_thread(winner, sched);
        return;
    }
    // Step 3: Select a suggested thread from another core
    for (auto& src_core : sug_cores) {
        auto it = scheduled_queue[src_core].begin();
        it++;
        if (it != scheduled_queue[src_core].end()) {
            Thread* thread_on_core = scheduled_queue[src_core].front();
            Thread* to_change = *it;
            if (thread_on_core->IsRunning() || to_change->IsRunning()) {
                UnloadThread(src_core);
            }
            TransferToCore(thread_on_core->GetPriority(), core, thread_on_core);
            current_thread = thread_on_core;
            break;
        }
    }
    update_thread(current_thread, sched);
}

bool GlobalScheduler::YieldThread(Thread* yielding_thread) {
    // Note: caller should use critical section, etc.
    const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
    const u32 priority = yielding_thread->GetPriority();

    // Yield the thread
    const Thread* const winner = scheduled_queue[core_id].front(priority);
    ASSERT_MSG(yielding_thread == winner, "Thread yielding without being in front");
    scheduled_queue[core_id].yield(priority);

    return AskForReselectionOrMarkRedundant(yielding_thread, winner);
}

bool GlobalScheduler::YieldThreadAndBalanceLoad(Thread* yielding_thread) {
    // Note: caller should check if !thread.IsSchedulerOperationRedundant and use critical section,
    // etc.
    const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
    const u32 priority = yielding_thread->GetPriority();

    // Yield the thread
    ASSERT_MSG(yielding_thread == scheduled_queue[core_id].front(priority),
               "Thread yielding without being in front");
    scheduled_queue[core_id].yield(priority);

    std::array<Thread*, NUM_CPU_CORES> current_threads;
    for (u32 i = 0; i < NUM_CPU_CORES; i++) {
        current_threads[i] = scheduled_queue[i].empty() ? nullptr : scheduled_queue[i].front();
    }

    Thread* next_thread = scheduled_queue[core_id].front(priority);
    Thread* winner = nullptr;
    for (auto& thread : suggested_queue[core_id]) {
        const s32 source_core = thread->GetProcessorID();
        if (source_core >= 0) {
            if (current_threads[source_core] != nullptr) {
                if (thread == current_threads[source_core] ||
                    current_threads[source_core]->GetPriority() < min_regular_priority) {
                    continue;
                }
            }
        }
        if (next_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks() ||
            next_thread->GetPriority() < thread->GetPriority()) {
            if (thread->GetPriority() <= priority) {
                winner = thread;
                break;
            }
        }
    }

    if (winner != nullptr) {
        if (winner != yielding_thread) {
            if (winner->IsRunning()) {
                UnloadThread(winner->GetProcessorID());
            }
            TransferToCore(winner->GetPriority(), core_id, winner);
        }
    } else {
        winner = next_thread;
    }

    return AskForReselectionOrMarkRedundant(yielding_thread, winner);
}

bool GlobalScheduler::YieldThreadAndWaitForLoadBalancing(Thread* yielding_thread) {
    // Note: caller should check if !thread.IsSchedulerOperationRedundant and use critical section,
    // etc.
    Thread* winner = nullptr;
    const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());

    // Remove the thread from its scheduled mlq, put it on the corresponding "suggested" one instead
    TransferToCore(yielding_thread->GetPriority(), -1, yielding_thread);

    // If the core is idle, perform load balancing, excluding the threads that have just used this
    // function...
    if (scheduled_queue[core_id].empty()) {
        // Here, "current_threads" is calculated after the ""yield"", unlike yield -1
        std::array<Thread*, NUM_CPU_CORES> current_threads;
        for (u32 i = 0; i < NUM_CPU_CORES; i++) {
            current_threads[i] = scheduled_queue[i].empty() ? nullptr : scheduled_queue[i].front();
        }
        for (auto& thread : suggested_queue[core_id]) {
            const s32 source_core = thread->GetProcessorID();
            if (source_core < 0 || thread == current_threads[source_core]) {
                continue;
            }
            if (current_threads[source_core] == nullptr ||
                current_threads[source_core]->GetPriority() >= min_regular_priority) {
                winner = thread;
            }
            break;
        }
        if (winner != nullptr) {
            if (winner != yielding_thread) {
                if (winner->IsRunning()) {
                    UnloadThread(winner->GetProcessorID());
                }
                TransferToCore(winner->GetPriority(), core_id, winner);
            }
        } else {
            winner = yielding_thread;
        }
    }

    return AskForReselectionOrMarkRedundant(yielding_thread, winner);
}

void GlobalScheduler::PreemptThreads() {
    for (std::size_t core_id = 0; core_id < NUM_CPU_CORES; core_id++) {
        const u32 priority = preemption_priorities[core_id];

        if (scheduled_queue[core_id].size(priority) > 0) {
            scheduled_queue[core_id].front(priority)->IncrementYieldCount();
            scheduled_queue[core_id].yield(priority);
            if (scheduled_queue[core_id].size(priority) > 1) {
                scheduled_queue[core_id].front(priority)->IncrementYieldCount();
            }
        }

        Thread* current_thread =
            scheduled_queue[core_id].empty() ? nullptr : scheduled_queue[core_id].front();
        Thread* winner = nullptr;
        for (auto& thread : suggested_queue[core_id]) {
            const s32 source_core = thread->GetProcessorID();
            if (thread->GetPriority() != priority) {
                continue;
            }
            if (source_core >= 0) {
                Thread* next_thread = scheduled_queue[source_core].empty()
                                          ? nullptr
                                          : scheduled_queue[source_core].front();
                if (next_thread != nullptr && next_thread->GetPriority() < 2) {
                    break;
                }
                if (next_thread == thread) {
                    continue;
                }
            }
            if (current_thread != nullptr &&
                current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) {
                winner = thread;
                break;
            }
        }

        if (winner != nullptr) {
            if (winner->IsRunning()) {
                UnloadThread(winner->GetProcessorID());
            }
            TransferToCore(winner->GetPriority(), s32(core_id), winner);
            current_thread =
                winner->GetPriority() <= current_thread->GetPriority() ? winner : current_thread;
        }

        if (current_thread != nullptr && current_thread->GetPriority() > priority) {
            for (auto& thread : suggested_queue[core_id]) {
                const s32 source_core = thread->GetProcessorID();
                if (thread->GetPriority() < priority) {
                    continue;
                }
                if (source_core >= 0) {
                    Thread* next_thread = scheduled_queue[source_core].empty()
                                              ? nullptr
                                              : scheduled_queue[source_core].front();
                    if (next_thread != nullptr && next_thread->GetPriority() < 2) {
                        break;
                    }
                    if (next_thread == thread) {
                        continue;
                    }
                }
                if (current_thread != nullptr &&
                    current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) {
                    winner = thread;
                    break;
                }
            }

            if (winner != nullptr) {
                if (winner->IsRunning()) {
                    UnloadThread(winner->GetProcessorID());
                }
                TransferToCore(winner->GetPriority(), s32(core_id), winner);
                current_thread = winner;
            }
        }

        is_reselection_pending.store(true, std::memory_order_release);
    }
}

void GlobalScheduler::Suggest(u32 priority, u32 core, Thread* thread) {
    suggested_queue[core].add(thread, priority);
}

void GlobalScheduler::Unsuggest(u32 priority, u32 core, Thread* thread) {
    suggested_queue[core].remove(thread, priority);
}

void GlobalScheduler::Schedule(u32 priority, u32 core, Thread* thread) {
    ASSERT_MSG(thread->GetProcessorID() == s32(core), "Thread must be assigned to this core.");
    scheduled_queue[core].add(thread, priority);
}

void GlobalScheduler::SchedulePrepend(u32 priority, u32 core, Thread* thread) {
    ASSERT_MSG(thread->GetProcessorID() == s32(core), "Thread must be assigned to this core.");
    scheduled_queue[core].add(thread, priority, false);
}

void GlobalScheduler::Reschedule(u32 priority, u32 core, Thread* thread) {
    scheduled_queue[core].remove(thread, priority);
    scheduled_queue[core].add(thread, priority);
}

void GlobalScheduler::Unschedule(u32 priority, u32 core, Thread* thread) {
    scheduled_queue[core].remove(thread, priority);
}

void GlobalScheduler::TransferToCore(u32 priority, s32 destination_core, Thread* thread) {
    const bool schedulable = thread->GetPriority() < THREADPRIO_COUNT;
    const s32 source_core = thread->GetProcessorID();
    if (source_core == destination_core || !schedulable) {
        return;
    }
    thread->SetProcessorID(destination_core);
    if (source_core >= 0) {
        Unschedule(priority, source_core, thread);
    }
    if (destination_core >= 0) {
        Unsuggest(priority, destination_core, thread);
        Schedule(priority, destination_core, thread);
    }
    if (source_core >= 0) {
        Suggest(priority, source_core, thread);
    }
}

bool GlobalScheduler::AskForReselectionOrMarkRedundant(Thread* current_thread,
                                                       const Thread* winner) {
    if (current_thread == winner) {
        current_thread->IncrementYieldCount();
        return true;
    } else {
        is_reselection_pending.store(true, std::memory_order_release);
        return false;
    }
}

void GlobalScheduler::Shutdown() {
    for (std::size_t core = 0; core < NUM_CPU_CORES; core++) {
        scheduled_queue[core].clear();
        suggested_queue[core].clear();
    }
    thread_list.clear();
}

Scheduler::Scheduler(Core::System& system, Core::ARM_Interface& cpu_core, u32 core_id)
    : system(system), cpu_core(cpu_core), core_id(core_id) {}

Scheduler::~Scheduler() = default;

bool Scheduler::HaveReadyThreads() const {
    return system.GlobalScheduler().HaveReadyThreads(core_id);
}

Thread* Scheduler::GetCurrentThread() const {
    return current_thread.get();
}

Thread* Scheduler::GetSelectedThread() const {
    return selected_thread.get();
}

void Scheduler::SelectThreads() {
    system.GlobalScheduler().SelectThread(core_id);
}

u64 Scheduler::GetLastContextSwitchTicks() const {
    return last_context_switch_time;
}

void Scheduler::TryDoContextSwitch() {
    if (is_context_switch_pending) {
        SwitchContext();
    }
}

void Scheduler::UnloadThread() {
    Thread* const previous_thread = GetCurrentThread();
    Process* const previous_process = system.Kernel().CurrentProcess();

    UpdateLastContextSwitchTime(previous_thread, previous_process);

    // Save context for previous thread
    if (previous_thread) {
        cpu_core.SaveContext(previous_thread->GetContext());
        // Save the TPIDR_EL0 system register in case it was modified.
        previous_thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());

        if (previous_thread->GetStatus() == ThreadStatus::Running) {
            // This is only the case when a reschedule is triggered without the current thread
            // yielding execution (i.e. an event triggered, system core time-sliced, etc)
            previous_thread->SetStatus(ThreadStatus::Ready);
        }
        previous_thread->SetIsRunning(false);
    }
    current_thread = nullptr;
}

void Scheduler::SwitchContext() {
    Thread* const previous_thread = GetCurrentThread();
    Thread* const new_thread = GetSelectedThread();

    is_context_switch_pending = false;
    if (new_thread == previous_thread) {
        return;
    }

    Process* const previous_process = system.Kernel().CurrentProcess();

    UpdateLastContextSwitchTime(previous_thread, previous_process);

    // Save context for previous thread
    if (previous_thread) {
        cpu_core.SaveContext(previous_thread->GetContext());
        // Save the TPIDR_EL0 system register in case it was modified.
        previous_thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0());

        if (previous_thread->GetStatus() == ThreadStatus::Running) {
            // This is only the case when a reschedule is triggered without the current thread
            // yielding execution (i.e. an event triggered, system core time-sliced, etc)
            previous_thread->SetStatus(ThreadStatus::Ready);
        }
        previous_thread->SetIsRunning(false);
    }

    // Load context of new thread
    if (new_thread) {
        ASSERT_MSG(new_thread->GetProcessorID() == s32(this->core_id),
                   "Thread must be assigned to this core.");
        ASSERT_MSG(new_thread->GetStatus() == ThreadStatus::Ready,
                   "Thread must be ready to become running.");

        // Cancel any outstanding wakeup events for this thread
        new_thread->CancelWakeupTimer();
        current_thread = new_thread;
        new_thread->SetStatus(ThreadStatus::Running);
        new_thread->SetIsRunning(true);

        auto* const thread_owner_process = current_thread->GetOwnerProcess();
        if (previous_process != thread_owner_process) {
            system.Kernel().MakeCurrentProcess(thread_owner_process);
        }

        cpu_core.LoadContext(new_thread->GetContext());
        cpu_core.SetTlsAddress(new_thread->GetTLSAddress());
        cpu_core.SetTPIDR_EL0(new_thread->GetTPIDR_EL0());
        cpu_core.ClearExclusiveState();
    } else {
        current_thread = nullptr;
        // Note: We do not reset the current process and current page table when idling because
        // technically we haven't changed processes, our threads are just paused.
    }
}

void Scheduler::UpdateLastContextSwitchTime(Thread* thread, Process* process) {
    const u64 prev_switch_ticks = last_context_switch_time;
    const u64 most_recent_switch_ticks = system.CoreTiming().GetTicks();
    const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;

    if (thread != nullptr) {
        thread->UpdateCPUTimeTicks(update_ticks);
    }

    if (process != nullptr) {
        process->UpdateCPUTimeTicks(update_ticks);
    }

    last_context_switch_time = most_recent_switch_ticks;
}

void Scheduler::Shutdown() {
    current_thread = nullptr;
    selected_thread = nullptr;
}

} // namespace Kernel