summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/process.cpp
blob: 2cd1cfc145c1fe306cb9e03a43d86cfa3251c40f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/logging/log.h"
#include "common/make_unique.h"

#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"

namespace Kernel {

SharedPtr<CodeSet> CodeSet::Create(std::string name, u64 program_id) {
    SharedPtr<CodeSet> codeset(new CodeSet);

    codeset->name = std::move(name);
    codeset->program_id = program_id;

    return codeset;
}

CodeSet::CodeSet() {}
CodeSet::~CodeSet() {}

u32 Process::next_process_id;

SharedPtr<Process> Process::Create(SharedPtr<CodeSet> code_set) {
    SharedPtr<Process> process(new Process);

    process->codeset = std::move(code_set);
    process->flags.raw = 0;
    process->flags.memory_region = MemoryRegion::APPLICATION;
    Memory::InitLegacyAddressSpace(process->vm_manager);

    return process;
}

void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) {
    for (size_t i = 0; i < len; ++i) {
        u32 descriptor = kernel_caps[i];
        u32 type = descriptor >> 20;

        if (descriptor == 0xFFFFFFFF) {
            // Unused descriptor entry
            continue;
        } else if ((type & 0xF00) == 0xE00) { // 0x0FFF
            // Allowed interrupts list
            LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
        } else if ((type & 0xF80) == 0xF00) { // 0x07FF
            // Allowed syscalls mask
            unsigned int index = ((descriptor >> 24) & 7) * 24;
            u32 bits = descriptor & 0xFFFFFF;

            while (bits && index < svc_access_mask.size()) {
                svc_access_mask.set(index, bits & 1);
                ++index; bits >>= 1;
            }
        } else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
            // Handle table size
            handle_table_size = descriptor & 0x3FF;
        } else if ((type & 0xFF8) == 0xFF0) { // 0x007F
            // Misc. flags
            flags.raw = descriptor & 0xFFFF;
        } else if ((type & 0xFFE) == 0xFF8) { // 0x001F
            // Mapped memory range
            if (i+1 >= len || ((kernel_caps[i+1] >> 20) & 0xFFE) != 0xFF8) {
                LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
                continue;
            }
            u32 end_desc = kernel_caps[i+1];
            ++i; // Skip over the second descriptor on the next iteration

            AddressMapping mapping;
            mapping.address = descriptor << 12;
            mapping.size = (end_desc << 12) - mapping.address;
            mapping.writable = (descriptor & (1 << 20)) != 0;
            mapping.unk_flag = (end_desc & (1 << 20)) != 0;

            address_mappings.push_back(mapping);
        } else if ((type & 0xFFF) == 0xFFE) { // 0x000F
            // Mapped memory page
            AddressMapping mapping;
            mapping.address = descriptor << 12;
            mapping.size = Memory::PAGE_SIZE;
            mapping.writable = true; // TODO: Not sure if correct
            mapping.unk_flag = false;
        } else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
            // Kernel version
            kernel_version = descriptor & 0xFFFF;

            int minor = kernel_version & 0xFF;
            int major = (kernel_version >> 8) & 0xFF;
            LOG_DEBUG(Loader, "ExHeader kernel version: %d.%d", major, minor);
        } else {
            LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x%08X", descriptor);
        }
    }
}

void Process::Run(s32 main_thread_priority, u32 stack_size) {
    auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) {
        auto vma = vm_manager.MapMemoryBlock(segment.addr, codeset->memory,
                segment.offset, segment.size, memory_state).Unwrap();
        vm_manager.Reprotect(vma, permissions);
    };

    // Map CodeSet segments
    MapSegment(codeset->code,   VMAPermission::ReadExecute, MemoryState::Code);
    MapSegment(codeset->rodata, VMAPermission::Read,        MemoryState::Code);
    MapSegment(codeset->data,   VMAPermission::ReadWrite,   MemoryState::Private);

    // Allocate and map stack
    vm_manager.MapMemoryBlock(Memory::HEAP_VADDR_END - stack_size,
            std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size, MemoryState::Locked
            ).Unwrap();

    vm_manager.LogLayout(Log::Level::Debug);
    Kernel::SetupMainThread(codeset->entrypoint, main_thread_priority);
}

ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms) {
    if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) {
        return ERR_INVALID_ADDRESS;
    }

    if (heap_memory == nullptr) {
        // Initialize heap
        heap_memory = std::make_shared<std::vector<u8>>();
        heap_start = heap_end = target;
    }

    // If necessary, expand backing vector to cover new heap extents.
    if (target < heap_start) {
        heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
        heap_start = target;
        vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
    }
    if (target + size > heap_end) {
        heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
        heap_end = target + size;
        vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
    }
    ASSERT(heap_end - heap_start == heap_memory->size());

    CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start, size, MemoryState::Private));
    vm_manager.Reprotect(vma, perms);

    return MakeResult<VAddr>(heap_end - size);
}

ResultCode Process::HeapFree(VAddr target, u32 size) {
    if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END || target + size < target) {
        return ERR_INVALID_ADDRESS;
    }

    ResultCode result = vm_manager.UnmapRange(target, size);
    if (result.IsError()) return result;

    return RESULT_SUCCESS;
}

ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
    if (linear_heap_memory == nullptr) {
        // Initialize heap
        linear_heap_memory = std::make_shared<std::vector<u8>>();
    }

    VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size();
    // Games and homebrew only ever seem to pass 0 here (which lets the kernel decide the address),
    // but explicit addresses are also accepted and respected.
    if (target == 0) {
        target = heap_end;
    }

    if (target < Memory::LINEAR_HEAP_VADDR || target + size > Memory::LINEAR_HEAP_VADDR_END ||
        target > heap_end || target + size < target) {

        return ERR_INVALID_ADDRESS;
    }

    // Expansion of the linear heap is only allowed if you do an allocation immediatelly at its
    // end. It's possible to free gaps in the middle of the heap and then reallocate them later,
    // but expansions are only allowed at the end.
    if (target == heap_end) {
        linear_heap_memory->insert(linear_heap_memory->end(), size, 0);
        vm_manager.RefreshMemoryBlockMappings(linear_heap_memory.get());
    }

    size_t offset = target - Memory::LINEAR_HEAP_VADDR;
    CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, linear_heap_memory, offset, size, MemoryState::Continuous));
    vm_manager.Reprotect(vma, perms);

    return MakeResult<VAddr>(target);
}

ResultCode Process::LinearFree(VAddr target, u32 size) {
    if (linear_heap_memory == nullptr || target < Memory::LINEAR_HEAP_VADDR ||
        target + size > Memory::LINEAR_HEAP_VADDR_END || target + size < target) {

        return ERR_INVALID_ADDRESS;
    }

    VAddr heap_end = Memory::LINEAR_HEAP_VADDR + (u32)linear_heap_memory->size();
    if (target + size > heap_end) {
        return ERR_INVALID_ADDRESS_STATE;
    }

    ResultCode result = vm_manager.UnmapRange(target, size);
    if (result.IsError()) return result;

    if (target + size == heap_end) {
        // End of linear heap has been freed, so check what's the last allocated block in it and
        // reduce the size.
        auto vma = vm_manager.FindVMA(target);
        ASSERT(vma != vm_manager.vma_map.end());
        ASSERT(vma->second.type == VMAType::Free);
        VAddr new_end = vma->second.base;
        if (new_end >= Memory::LINEAR_HEAP_VADDR) {
            linear_heap_memory->resize(new_end - Memory::LINEAR_HEAP_VADDR);
        }
    }

    return RESULT_SUCCESS;
}

Kernel::Process::Process() {}
Kernel::Process::~Process() {}

SharedPtr<Process> g_current_process;

}