summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/process.cpp
blob: 06a673b9b9f6cb32d4aeaf42ced48a2e67183931 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <memory>
#include <random>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
#include "core/settings.h"

namespace Kernel {

CodeSet::CodeSet() = default;
CodeSet::~CodeSet() = default;

SharedPtr<Process> Process::Create(KernelCore& kernel, std::string&& name) {
    SharedPtr<Process> process(new Process(kernel));

    process->name = std::move(name);
    process->resource_limit = kernel.GetSystemResourceLimit();
    process->status = ProcessStatus::Created;
    process->program_id = 0;
    process->process_id = kernel.CreateNewProcessID();
    process->capabilities.InitializeForMetadatalessProcess();

    std::mt19937 rng(Settings::values.rng_seed.value_or(0));
    std::uniform_int_distribution<u64> distribution;
    std::generate(process->random_entropy.begin(), process->random_entropy.end(),
                  [&] { return distribution(rng); });

    kernel.AppendNewProcess(process);
    return process;
}

SharedPtr<ResourceLimit> Process::GetResourceLimit() const {
    return resource_limit;
}

ResultCode Process::ClearSignalState() {
    if (status == ProcessStatus::Exited) {
        LOG_ERROR(Kernel, "called on a terminated process instance.");
        return ERR_INVALID_STATE;
    }

    if (!is_signaled) {
        LOG_ERROR(Kernel, "called on a process instance that isn't signaled.");
        return ERR_INVALID_STATE;
    }

    is_signaled = false;
    return RESULT_SUCCESS;
}

ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) {
    program_id = metadata.GetTitleID();
    ideal_processor = metadata.GetMainThreadCore();
    is_64bit_process = metadata.Is64BitProgram();

    vm_manager.Reset(metadata.GetAddressSpaceType());

    const auto& caps = metadata.GetKernelCapabilities();
    return capabilities.InitializeForUserProcess(caps.data(), caps.size(), vm_manager);
}

void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {
    // Allocate and map the main thread stack
    // TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part
    // of the user address space.
    vm_manager
        .MapMemoryBlock(vm_manager.GetTLSIORegionEndAddress() - stack_size,
                        std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size,
                        MemoryState::Stack)
        .Unwrap();

    vm_manager.LogLayout();
    ChangeStatus(ProcessStatus::Running);

    Kernel::SetupMainThread(kernel, entry_point, main_thread_priority, *this);
}

void Process::PrepareForTermination() {
    ChangeStatus(ProcessStatus::Exiting);

    const auto stop_threads = [this](const std::vector<SharedPtr<Thread>>& thread_list) {
        for (auto& thread : thread_list) {
            if (thread->GetOwnerProcess() != this)
                continue;

            if (thread == GetCurrentThread())
                continue;

            // TODO(Subv): When are the other running/ready threads terminated?
            ASSERT_MSG(thread->GetStatus() == ThreadStatus::WaitSynchAny ||
                           thread->GetStatus() == ThreadStatus::WaitSynchAll,
                       "Exiting processes with non-waiting threads is currently unimplemented");

            thread->Stop();
        }
    };

    const auto& system = Core::System::GetInstance();
    stop_threads(system.Scheduler(0).GetThreadList());
    stop_threads(system.Scheduler(1).GetThreadList());
    stop_threads(system.Scheduler(2).GetThreadList());
    stop_threads(system.Scheduler(3).GetThreadList());

    ChangeStatus(ProcessStatus::Exited);
}

/**
 * Finds a free location for the TLS section of a thread.
 * @param tls_slots The TLS page array of the thread's owner process.
 * Returns a tuple of (page, slot, alloc_needed) where:
 * page: The index of the first allocated TLS page that has free slots.
 * slot: The index of the first free slot in the indicated page.
 * alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
 */
static std::tuple<std::size_t, std::size_t, bool> FindFreeThreadLocalSlot(
    const std::vector<std::bitset<8>>& tls_slots) {
    // Iterate over all the allocated pages, and try to find one where not all slots are used.
    for (std::size_t page = 0; page < tls_slots.size(); ++page) {
        const auto& page_tls_slots = tls_slots[page];
        if (!page_tls_slots.all()) {
            // We found a page with at least one free slot, find which slot it is
            for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) {
                if (!page_tls_slots.test(slot)) {
                    return std::make_tuple(page, slot, false);
                }
            }
        }
    }

    return std::make_tuple(0, 0, true);
}

VAddr Process::MarkNextAvailableTLSSlotAsUsed(Thread& thread) {
    auto [available_page, available_slot, needs_allocation] = FindFreeThreadLocalSlot(tls_slots);
    const VAddr tls_begin = vm_manager.GetTLSIORegionBaseAddress();

    if (needs_allocation) {
        tls_slots.emplace_back(0); // The page is completely available at the start
        available_page = tls_slots.size() - 1;
        available_slot = 0; // Use the first slot in the new page

        // Allocate some memory from the end of the linear heap for this region.
        auto& tls_memory = thread.GetTLSMemory();
        tls_memory->insert(tls_memory->end(), Memory::PAGE_SIZE, 0);

        vm_manager.RefreshMemoryBlockMappings(tls_memory.get());

        vm_manager.MapMemoryBlock(tls_begin + available_page * Memory::PAGE_SIZE, tls_memory, 0,
                                  Memory::PAGE_SIZE, MemoryState::ThreadLocal);
    }

    tls_slots[available_page].set(available_slot);

    return tls_begin + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE;
}

void Process::FreeTLSSlot(VAddr tls_address) {
    const VAddr tls_base = tls_address - vm_manager.GetTLSIORegionBaseAddress();
    const VAddr tls_page = tls_base / Memory::PAGE_SIZE;
    const VAddr tls_slot = (tls_base % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;

    tls_slots[tls_page].reset(tls_slot);
}

void Process::LoadModule(CodeSet module_, VAddr base_addr) {
    const auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
                                MemoryState memory_state) {
        const auto vma = vm_manager
                             .MapMemoryBlock(segment.addr + base_addr, module_.memory,
                                             segment.offset, segment.size, memory_state)
                             .Unwrap();
        vm_manager.Reprotect(vma, permissions);
    };

    // Map CodeSet segments
    MapSegment(module_.CodeSegment(), VMAPermission::ReadExecute, MemoryState::CodeStatic);
    MapSegment(module_.RODataSegment(), VMAPermission::Read, MemoryState::CodeMutable);
    MapSegment(module_.DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeMutable);

    // Clear instruction cache in CPU JIT
    Core::System::GetInstance().ArmInterface(0).ClearInstructionCache();
    Core::System::GetInstance().ArmInterface(1).ClearInstructionCache();
    Core::System::GetInstance().ArmInterface(2).ClearInstructionCache();
    Core::System::GetInstance().ArmInterface(3).ClearInstructionCache();
}

Kernel::Process::Process(KernelCore& kernel) : WaitObject{kernel} {}
Kernel::Process::~Process() {}

void Process::Acquire(Thread* thread) {
    ASSERT_MSG(!ShouldWait(thread), "Object unavailable!");
}

bool Process::ShouldWait(Thread* thread) const {
    return !is_signaled;
}

void Process::ChangeStatus(ProcessStatus new_status) {
    if (status == new_status) {
        return;
    }

    status = new_status;
    is_signaled = true;
    WakeupAllWaitingThreads();
}

} // namespace Kernel