summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_thread.cpp
blob: e5be849bb8ec4b2a3d9d919ae73904a6fffb508d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
// Copyright 2014 Citra Emulator Project / PPSSPP Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <cinttypes>
#include <optional>
#include <vector>

#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "common/thread_queue_list.h"
#include "core/core.h"
#include "core/cpu_manager.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/memory/memory_layout.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/result.h"
#include "core/memory.h"

#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#endif

namespace Kernel {

bool KThread::IsSignaled() const {
    return signaled;
}

KThread::KThread(KernelCore& kernel) : KSynchronizationObject{kernel} {}
KThread::~KThread() = default;

void KThread::Stop() {
    {
        KScopedSchedulerLock lock(kernel);
        SetState(ThreadState::Terminated);
        signaled = true;
        NotifyAvailable();
        kernel.GlobalHandleTable().Close(global_handle);

        if (owner_process) {
            owner_process->UnregisterThread(this);

            // Mark the TLS slot in the thread's page as free.
            owner_process->FreeTLSRegion(tls_address);
        }
        has_exited = true;
    }
    global_handle = 0;
}

void KThread::Wakeup() {
    KScopedSchedulerLock lock(kernel);
    SetState(ThreadState::Runnable);
}

ResultCode KThread::Start() {
    KScopedSchedulerLock lock(kernel);
    SetState(ThreadState::Runnable);
    return RESULT_SUCCESS;
}

void KThread::CancelWait() {
    KScopedSchedulerLock lock(kernel);
    if (GetState() != ThreadState::Waiting || !is_cancellable) {
        is_sync_cancelled = true;
        return;
    }
    // TODO(Blinkhawk): Implement cancel of server session
    is_sync_cancelled = false;
    SetSynchronizationResults(nullptr, ERR_SYNCHRONIZATION_CANCELED);
    SetState(ThreadState::Runnable);
}

static void ResetThreadContext32(Core::ARM_Interface::ThreadContext32& context, u32 stack_top,
                                 u32 entry_point, u32 arg) {
    context = {};
    context.cpu_registers[0] = arg;
    context.cpu_registers[15] = entry_point;
    context.cpu_registers[13] = stack_top;
}

static void ResetThreadContext64(Core::ARM_Interface::ThreadContext64& context, VAddr stack_top,
                                 VAddr entry_point, u64 arg) {
    context = {};
    context.cpu_registers[0] = arg;
    context.pc = entry_point;
    context.sp = stack_top;
    // TODO(merry): Perform a hardware test to determine the below value.
    context.fpcr = 0;
}

std::shared_ptr<Common::Fiber>& KThread::GetHostContext() {
    return host_context;
}

ResultVal<std::shared_ptr<KThread>> KThread::Create(Core::System& system, ThreadType type_flags,
                                                    std::string name, VAddr entry_point,
                                                    u32 priority, u64 arg, s32 processor_id,
                                                    VAddr stack_top, Process* owner_process) {
    std::function<void(void*)> init_func = Core::CpuManager::GetGuestThreadStartFunc();
    void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
    return Create(system, type_flags, name, entry_point, priority, arg, processor_id, stack_top,
                  owner_process, std::move(init_func), init_func_parameter);
}

ResultVal<std::shared_ptr<KThread>> KThread::Create(Core::System& system, ThreadType type_flags,
                                                    std::string name, VAddr entry_point,
                                                    u32 priority, u64 arg, s32 processor_id,
                                                    VAddr stack_top, Process* owner_process,
                                                    std::function<void(void*)>&& thread_start_func,
                                                    void* thread_start_parameter) {
    auto& kernel = system.Kernel();

    if (owner_process) {
        if (!system.Memory().IsValidVirtualAddress(*owner_process, entry_point)) {
            LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:016X}", name, entry_point);
            // TODO (bunnei): Find the correct error code to use here
            return RESULT_UNKNOWN;
        }
    }

    std::shared_ptr<KThread> thread = std::make_shared<KThread>(kernel);

    thread->thread_id = kernel.CreateNewThreadID();
    thread->thread_state = ThreadState::Initialized;
    thread->entry_point = entry_point;
    thread->stack_top = stack_top;
    thread->disable_count = 1;
    thread->tpidr_el0 = 0;
    thread->current_priority = priority;
    thread->base_priority = priority;
    thread->lock_owner = nullptr;
    thread->schedule_count = -1;
    thread->last_scheduled_tick = 0;
    thread->processor_id = processor_id;
    thread->ideal_core = processor_id;
    thread->affinity_mask.SetAffinity(processor_id, true);
    thread->name = std::move(name);
    thread->global_handle = kernel.GlobalHandleTable().Create(thread).Unwrap();
    thread->owner_process = owner_process;
    thread->type = type_flags;
    thread->signaled = false;

    auto& scheduler = kernel.GlobalSchedulerContext();
    scheduler.AddThread(thread);

    if (owner_process) {
        thread->tls_address = thread->owner_process->CreateTLSRegion();
        thread->owner_process->RegisterThread(thread.get());
    } else {
        thread->tls_address = 0;
    }

    ResetThreadContext32(thread->context_32, static_cast<u32>(stack_top),
                         static_cast<u32>(entry_point), static_cast<u32>(arg));
    ResetThreadContext64(thread->context_64, stack_top, entry_point, arg);

    thread->host_context =
        std::make_shared<Common::Fiber>(std::move(thread_start_func), thread_start_parameter);

    return MakeResult<std::shared_ptr<KThread>>(std::move(thread));
}

void KThread::SetBasePriority(u32 priority) {
    ASSERT(Svc::HighestThreadPriority <= priority && priority <= Svc::LowestThreadPriority);

    KScopedSchedulerLock lock(kernel);

    // Change our base priority.
    base_priority = priority;

    // Perform a priority restoration.
    RestorePriority(kernel, this);
}

void KThread::SetSynchronizationResults(KSynchronizationObject* object, ResultCode result) {
    signaling_object = object;
    signaling_result = result;
}

VAddr KThread::GetCommandBufferAddress() const {
    // Offset from the start of TLS at which the IPC command buffer begins.
    constexpr u64 command_header_offset = 0x80;
    return GetTLSAddress() + command_header_offset;
}

void KThread::SetState(ThreadState state) {
    KScopedSchedulerLock sl(kernel);

    // Clear debugging state
    SetMutexWaitAddressForDebugging({});
    SetWaitReasonForDebugging({});

    const ThreadState old_state = thread_state;
    thread_state =
        static_cast<ThreadState>((old_state & ~ThreadState::Mask) | (state & ThreadState::Mask));
    if (thread_state != old_state) {
        KScheduler::OnThreadStateChanged(kernel, this, old_state);
    }
}

void KThread::AddWaiterImpl(KThread* thread) {
    ASSERT(kernel.GlobalSchedulerContext().IsLocked());

    // Find the right spot to insert the waiter.
    auto it = waiter_list.begin();
    while (it != waiter_list.end()) {
        if (it->GetPriority() > thread->GetPriority()) {
            break;
        }
        it++;
    }

    // Keep track of how many kernel waiters we have.
    if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
        ASSERT((num_kernel_waiters++) >= 0);
    }

    // Insert the waiter.
    waiter_list.insert(it, *thread);
    thread->SetLockOwner(this);
}

void KThread::RemoveWaiterImpl(KThread* thread) {
    ASSERT(kernel.GlobalSchedulerContext().IsLocked());

    // Keep track of how many kernel waiters we have.
    if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
        ASSERT((num_kernel_waiters--) > 0);
    }

    // Remove the waiter.
    waiter_list.erase(waiter_list.iterator_to(*thread));
    thread->SetLockOwner(nullptr);
}

void KThread::RestorePriority(KernelCore& kernel, KThread* thread) {
    ASSERT(kernel.GlobalSchedulerContext().IsLocked());

    while (true) {
        // We want to inherit priority where possible.
        s32 new_priority = thread->GetBasePriority();
        if (thread->HasWaiters()) {
            new_priority = std::min(new_priority, thread->waiter_list.front().GetPriority());
        }

        // If the priority we would inherit is not different from ours, don't do anything.
        if (new_priority == thread->GetPriority()) {
            return;
        }

        // Ensure we don't violate condition variable red black tree invariants.
        if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
            BeforeUpdatePriority(kernel, cv_tree, thread);
        }

        // Change the priority.
        const s32 old_priority = thread->GetPriority();
        thread->SetPriority(new_priority);

        // Restore the condition variable, if relevant.
        if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
            AfterUpdatePriority(kernel, cv_tree, thread);
        }

        // Update the scheduler.
        KScheduler::OnThreadPriorityChanged(kernel, thread, old_priority);

        // Keep the lock owner up to date.
        KThread* lock_owner = thread->GetLockOwner();
        if (lock_owner == nullptr) {
            return;
        }

        // Update the thread in the lock owner's sorted list, and continue inheriting.
        lock_owner->RemoveWaiterImpl(thread);
        lock_owner->AddWaiterImpl(thread);
        thread = lock_owner;
    }
}

void KThread::AddWaiter(KThread* thread) {
    AddWaiterImpl(thread);
    RestorePriority(kernel, this);
}

void KThread::RemoveWaiter(KThread* thread) {
    RemoveWaiterImpl(thread);
    RestorePriority(kernel, this);
}

KThread* KThread::RemoveWaiterByKey(s32* out_num_waiters, VAddr key) {
    ASSERT(kernel.GlobalSchedulerContext().IsLocked());

    s32 num_waiters{};
    KThread* next_lock_owner{};
    auto it = waiter_list.begin();
    while (it != waiter_list.end()) {
        if (it->GetAddressKey() == key) {
            KThread* thread = std::addressof(*it);

            // Keep track of how many kernel waiters we have.
            if (Memory::IsKernelAddressKey(thread->GetAddressKey())) {
                ASSERT((num_kernel_waiters--) > 0);
            }
            it = waiter_list.erase(it);

            // Update the next lock owner.
            if (next_lock_owner == nullptr) {
                next_lock_owner = thread;
                next_lock_owner->SetLockOwner(nullptr);
            } else {
                next_lock_owner->AddWaiterImpl(thread);
            }
            num_waiters++;
        } else {
            it++;
        }
    }

    // Do priority updates, if we have a next owner.
    if (next_lock_owner) {
        RestorePriority(kernel, this);
        RestorePriority(kernel, next_lock_owner);
    }

    // Return output.
    *out_num_waiters = num_waiters;
    return next_lock_owner;
}

ResultCode KThread::SetActivity(ThreadActivity value) {
    KScopedSchedulerLock lock(kernel);

    auto sched_status = GetState();

    if (sched_status != ThreadState::Runnable && sched_status != ThreadState::Waiting) {
        return ERR_INVALID_STATE;
    }

    if (IsTerminationRequested()) {
        return RESULT_SUCCESS;
    }

    if (value == ThreadActivity::Paused) {
        if ((pausing_state & static_cast<u32>(ThreadSchedFlags::ThreadPauseFlag)) != 0) {
            return ERR_INVALID_STATE;
        }
        AddSchedulingFlag(ThreadSchedFlags::ThreadPauseFlag);
    } else {
        if ((pausing_state & static_cast<u32>(ThreadSchedFlags::ThreadPauseFlag)) == 0) {
            return ERR_INVALID_STATE;
        }
        RemoveSchedulingFlag(ThreadSchedFlags::ThreadPauseFlag);
    }
    return RESULT_SUCCESS;
}

ResultCode KThread::Sleep(s64 nanoseconds) {
    Handle event_handle{};
    {
        KScopedSchedulerLockAndSleep lock(kernel, event_handle, this, nanoseconds);
        SetState(ThreadState::Waiting);
        SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Sleep);
    }

    if (event_handle != InvalidHandle) {
        auto& time_manager = kernel.TimeManager();
        time_manager.UnscheduleTimeEvent(event_handle);
    }
    return RESULT_SUCCESS;
}

void KThread::AddSchedulingFlag(ThreadSchedFlags flag) {
    const auto old_state = GetRawState();
    pausing_state |= static_cast<u32>(flag);
    const auto base_scheduling = GetState();
    thread_state = base_scheduling | static_cast<ThreadState>(pausing_state);
    KScheduler::OnThreadStateChanged(kernel, this, old_state);
}

void KThread::RemoveSchedulingFlag(ThreadSchedFlags flag) {
    const auto old_state = GetRawState();
    pausing_state &= ~static_cast<u32>(flag);
    const auto base_scheduling = GetState();
    thread_state = base_scheduling | static_cast<ThreadState>(pausing_state);
    KScheduler::OnThreadStateChanged(kernel, this, old_state);
}

ResultCode KThread::SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask) {
    KScopedSchedulerLock lock(kernel);
    const auto HighestSetCore = [](u64 mask, u32 max_cores) {
        for (s32 core = static_cast<s32>(max_cores - 1); core >= 0; core--) {
            if (((mask >> core) & 1) != 0) {
                return core;
            }
        }
        return -1;
    };

    const bool use_override = affinity_override_count != 0;
    if (new_core == Svc::IdealCoreNoUpdate) {
        new_core = use_override ? ideal_core_override : ideal_core;
        if ((new_affinity_mask & (1ULL << new_core)) == 0) {
            LOG_ERROR(Kernel, "New affinity mask is incorrect! new_core={}, new_affinity_mask={}",
                      new_core, new_affinity_mask);
            return ERR_INVALID_COMBINATION;
        }
    }
    if (use_override) {
        ideal_core_override = new_core;
    } else {
        const auto old_affinity_mask = affinity_mask;
        affinity_mask.SetAffinityMask(new_affinity_mask);
        ideal_core = new_core;
        if (old_affinity_mask.GetAffinityMask() != new_affinity_mask) {
            const s32 old_core = processor_id;
            if (processor_id >= 0 && !affinity_mask.GetAffinity(processor_id)) {
                if (static_cast<s32>(ideal_core) < 0) {
                    processor_id = HighestSetCore(affinity_mask.GetAffinityMask(),
                                                  Core::Hardware::NUM_CPU_CORES);
                } else {
                    processor_id = ideal_core;
                }
            }
            KScheduler::OnThreadAffinityMaskChanged(kernel, this, old_affinity_mask, old_core);
        }
    }
    return RESULT_SUCCESS;
}

} // namespace Kernel