summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_condition_variable.cpp
blob: f0ad8b39018ac0b097b4da3de3b04ce8fb7fdaa1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <vector>

#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/svc_common.h"
#include "core/hle/kernel/svc_results.h"
#include "core/memory.h"

namespace Kernel {

namespace {

bool ReadFromUser(Core::System& system, u32* out, VAddr address) {
    *out = system.Memory().Read32(address);
    return true;
}

bool WriteToUser(Core::System& system, VAddr address, const u32* p) {
    system.Memory().Write32(address, *p);
    return true;
}

bool UpdateLockAtomic(Core::System& system, u32* out, VAddr address, u32 if_zero,
                      u32 new_orr_mask) {
    auto& monitor = system.Monitor();
    const auto current_core = system.CurrentCoreIndex();

    // Load the value from the address.
    const auto expected = monitor.ExclusiveRead32(current_core, address);

    // Orr in the new mask.
    u32 value = expected | new_orr_mask;

    // If the value is zero, use the if_zero value, otherwise use the newly orr'd value.
    if (!expected) {
        value = if_zero;
    }

    // Try to store.
    if (!monitor.ExclusiveWrite32(current_core, address, value)) {
        // If we failed to store, try again.
        return UpdateLockAtomic(system, out, address, if_zero, new_orr_mask);
    }

    // We're done.
    *out = expected;
    return true;
}

} // namespace

KConditionVariable::KConditionVariable(Core::System& system_)
    : system{system_}, kernel{system.Kernel()} {}

KConditionVariable::~KConditionVariable() = default;

ResultCode KConditionVariable::SignalToAddress(VAddr addr) {
    KThread* owner_thread = kernel.CurrentScheduler()->GetCurrentThread();

    // Signal the address.
    {
        KScopedSchedulerLock sl(kernel);

        // Remove waiter thread.
        s32 num_waiters{};
        KThread* next_owner_thread =
            owner_thread->RemoveWaiterByKey(std::addressof(num_waiters), addr);

        // Determine the next tag.
        u32 next_value{};
        if (next_owner_thread) {
            next_value = next_owner_thread->GetAddressKeyValue();
            if (num_waiters > 1) {
                next_value |= Svc::HandleWaitMask;
            }

            next_owner_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
            next_owner_thread->Wakeup();
        }

        // Write the value to userspace.
        if (!WriteToUser(system, addr, std::addressof(next_value))) {
            if (next_owner_thread) {
                next_owner_thread->SetSyncedObject(nullptr, Svc::ResultInvalidCurrentMemory);
            }

            return Svc::ResultInvalidCurrentMemory;
        }
    }

    return RESULT_SUCCESS;
}

ResultCode KConditionVariable::WaitForAddress(Handle handle, VAddr addr, u32 value) {
    KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();

    // Wait for the address.
    {
        std::shared_ptr<KThread> owner_thread;
        ASSERT(!owner_thread);
        {
            KScopedSchedulerLock sl(kernel);
            cur_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);

            // Check if the thread should terminate.
            R_UNLESS(!cur_thread->IsTerminationRequested(), Svc::ResultTerminationRequested);

            {
                // Read the tag from userspace.
                u32 test_tag{};
                R_UNLESS(ReadFromUser(system, std::addressof(test_tag), addr),
                         Svc::ResultInvalidCurrentMemory);

                // If the tag isn't the handle (with wait mask), we're done.
                R_UNLESS(test_tag == (handle | Svc::HandleWaitMask), RESULT_SUCCESS);

                // Get the lock owner thread.
                owner_thread = kernel.CurrentProcess()->GetHandleTable().Get<KThread>(handle);
                R_UNLESS(owner_thread, Svc::ResultInvalidHandle);

                // Update the lock.
                cur_thread->SetAddressKey(addr, value);
                owner_thread->AddWaiter(cur_thread);
                cur_thread->SetState(ThreadState::Waiting);
                cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
                cur_thread->SetMutexWaitAddressForDebugging(addr);
            }
        }
        ASSERT(owner_thread);
    }

    // Remove the thread as a waiter from the lock owner.
    {
        KScopedSchedulerLock sl(kernel);
        KThread* owner_thread = cur_thread->GetLockOwner();
        if (owner_thread != nullptr) {
            owner_thread->RemoveWaiter(cur_thread);
        }
    }

    // Get the wait result.
    KSynchronizationObject* dummy{};
    return cur_thread->GetWaitResult(std::addressof(dummy));
}

KThread* KConditionVariable::SignalImpl(KThread* thread) {
    // Check pre-conditions.
    ASSERT(kernel.GlobalSchedulerContext().IsLocked());

    // Update the tag.
    VAddr address = thread->GetAddressKey();
    u32 own_tag = thread->GetAddressKeyValue();

    u32 prev_tag{};
    bool can_access{};
    {
        // TODO(bunnei): We should disable interrupts here via KScopedInterruptDisable.
        // TODO(bunnei): We should call CanAccessAtomic(..) here.
        can_access = true;
        if (can_access) {
            UpdateLockAtomic(system, std::addressof(prev_tag), address, own_tag,
                             Svc::HandleWaitMask);
        }
    }

    KThread* thread_to_close = nullptr;
    if (can_access) {
        if (prev_tag == InvalidHandle) {
            // If nobody held the lock previously, we're all good.
            thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
            thread->Wakeup();
        } else {
            // Get the previous owner.
            auto owner_thread = kernel.CurrentProcess()->GetHandleTable().Get<KThread>(
                prev_tag & ~Svc::HandleWaitMask);

            if (owner_thread) {
                // Add the thread as a waiter on the owner.
                owner_thread->AddWaiter(thread);
                thread_to_close = owner_thread.get();
            } else {
                // The lock was tagged with a thread that doesn't exist.
                thread->SetSyncedObject(nullptr, Svc::ResultInvalidState);
                thread->Wakeup();
            }
        }
    } else {
        // If the address wasn't accessible, note so.
        thread->SetSyncedObject(nullptr, Svc::ResultInvalidCurrentMemory);
        thread->Wakeup();
    }

    return thread_to_close;
}

void KConditionVariable::Signal(u64 cv_key, s32 count) {
    // Prepare for signaling.
    constexpr int MaxThreads = 16;

    // TODO(bunnei): This should just be Thread once we implement KAutoObject instead of using
    // std::shared_ptr.
    std::vector<std::shared_ptr<KThread>> thread_list;
    std::array<KThread*, MaxThreads> thread_array;
    s32 num_to_close{};

    // Perform signaling.
    s32 num_waiters{};
    {
        KScopedSchedulerLock sl(kernel);

        auto it = thread_tree.nfind_light({cv_key, -1});
        while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
               (it->GetConditionVariableKey() == cv_key)) {
            KThread* target_thread = std::addressof(*it);

            if (KThread* thread = SignalImpl(target_thread); thread != nullptr) {
                if (num_to_close < MaxThreads) {
                    thread_array[num_to_close++] = thread;
                } else {
                    thread_list.push_back(SharedFrom(thread));
                }
            }

            it = thread_tree.erase(it);
            target_thread->ClearConditionVariable();
            ++num_waiters;
        }

        // If we have no waiters, clear the has waiter flag.
        if (it == thread_tree.end() || it->GetConditionVariableKey() != cv_key) {
            const u32 has_waiter_flag{};
            WriteToUser(system, cv_key, std::addressof(has_waiter_flag));
        }
    }

    // Close threads in the array.
    for (auto i = 0; i < num_to_close; ++i) {
        thread_array[i]->Close();
    }

    // Close threads in the list.
    for (auto it = thread_list.begin(); it != thread_list.end(); it = thread_list.erase(it)) {
        (*it)->Close();
    }
}

ResultCode KConditionVariable::Wait(VAddr addr, u64 key, u32 value, s64 timeout) {
    // Prepare to wait.
    KThread* cur_thread = kernel.CurrentScheduler()->GetCurrentThread();

    {
        KScopedSchedulerLockAndSleep slp{kernel, cur_thread, timeout};

        // Set the synced object.
        cur_thread->SetSyncedObject(nullptr, Svc::ResultTimedOut);

        // Check that the thread isn't terminating.
        if (cur_thread->IsTerminationRequested()) {
            slp.CancelSleep();
            return Svc::ResultTerminationRequested;
        }

        // Update the value and process for the next owner.
        {
            // Remove waiter thread.
            s32 num_waiters{};
            KThread* next_owner_thread =
                cur_thread->RemoveWaiterByKey(std::addressof(num_waiters), addr);

            // Update for the next owner thread.
            u32 next_value{};
            if (next_owner_thread != nullptr) {
                // Get the next tag value.
                next_value = next_owner_thread->GetAddressKeyValue();
                if (num_waiters > 1) {
                    next_value |= Svc::HandleWaitMask;
                }

                // Wake up the next owner.
                next_owner_thread->SetSyncedObject(nullptr, RESULT_SUCCESS);
                next_owner_thread->Wakeup();
            }

            // Write to the cv key.
            {
                const u32 has_waiter_flag = 1;
                WriteToUser(system, key, std::addressof(has_waiter_flag));
                // TODO(bunnei): We should call DataMemoryBarrier(..) here.
            }

            // Write the value to userspace.
            if (!WriteToUser(system, addr, std::addressof(next_value))) {
                slp.CancelSleep();
                return Svc::ResultInvalidCurrentMemory;
            }
        }

        // Update condition variable tracking.
        {
            cur_thread->SetConditionVariable(std::addressof(thread_tree), addr, key, value);
            thread_tree.insert(*cur_thread);
        }

        // If the timeout is non-zero, set the thread as waiting.
        if (timeout != 0) {
            cur_thread->SetState(ThreadState::Waiting);
            cur_thread->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::ConditionVar);
            cur_thread->SetMutexWaitAddressForDebugging(addr);
        }
    }

    // Cancel the timer wait.
    kernel.TimeManager().UnscheduleTimeEvent(cur_thread);

    // Remove from the condition variable.
    {
        KScopedSchedulerLock sl(kernel);

        if (KThread* owner = cur_thread->GetLockOwner(); owner != nullptr) {
            owner->RemoveWaiter(cur_thread);
        }

        if (cur_thread->IsWaitingForConditionVariable()) {
            thread_tree.erase(thread_tree.iterator_to(*cur_thread));
            cur_thread->ClearConditionVariable();
        }
    }

    // Get the result.
    KSynchronizationObject* dummy{};
    return cur_thread->GetWaitResult(std::addressof(dummy));
}

} // namespace Kernel