summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/hle_ipc.h
blob: 35795fc1dca74af6746d3f535168de05beba8c97 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#pragma once

#include <array>
#include <memory>
#include <vector>
#include <boost/container/small_vector.hpp>
#include "common/common_types.h"
#include "common/swap.h"
#include "core/hle/ipc.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/server_session.h"

namespace Service {
class ServiceFrameworkBase;
}

namespace Kernel {

class HandleTable;
class Process;

/**
 * Interface implemented by HLE Session handlers.
 * This can be provided to a ServerSession in order to hook into several relevant events
 * (such as a new connection or a SyncRequest) so they can be implemented in the emulator.
 */
class SessionRequestHandler : public std::enable_shared_from_this<SessionRequestHandler> {
public:
    virtual ~SessionRequestHandler() = default;

    /**
     * Handles a sync request from the emulated application.
     * @param server_session The ServerSession that was triggered for this sync request,
     * it should be used to differentiate which client (As in ClientSession) we're answering to.
     * TODO(Subv): Use a wrapper structure to hold all the information relevant to
     * this request (ServerSession, Originator thread, Translated command buffer, etc).
     * @returns ResultCode the result code of the translate operation.
     */
    virtual void HandleSyncRequest(SharedPtr<ServerSession> server_session) = 0;

    /**
     * Signals that a client has just connected to this HLE handler and keeps the
     * associated ServerSession alive for the duration of the connection.
     * @param server_session Owning pointer to the ServerSession associated with the connection.
     */
    void ClientConnected(SharedPtr<ServerSession> server_session);

    /**
     * Signals that a client has just disconnected from this HLE handler and releases the
     * associated ServerSession.
     * @param server_session ServerSession associated with the connection.
     */
    void ClientDisconnected(SharedPtr<ServerSession> server_session);

protected:
    /// List of sessions that are connected to this handler.
    /// A ServerSession whose server endpoint is an HLE implementation is kept alive by this list
    // for the duration of the connection.
    std::vector<SharedPtr<ServerSession>> connected_sessions;
};

/**
 * Class containing information about an in-flight IPC request being handled by an HLE service
 * implementation. Services should avoid using old global APIs (e.g. Kernel::GetCommandBuffer()) and
 * when possible use the APIs in this class to service the request.
 *
 * HLE handle protocol
 * ===================
 *
 * To avoid needing HLE services to keep a separate handle table, or having to directly modify the
 * requester's table, a tweaked protocol is used to receive and send handles in requests. The kernel
 * will decode the incoming handles into object pointers and insert a id in the buffer where the
 * handle would normally be. The service then calls GetIncomingHandle() with that id to get the
 * pointer to the object. Similarly, instead of inserting a handle into the command buffer, the
 * service calls AddOutgoingHandle() and stores the returned id where the handle would normally go.
 *
 * The end result is similar to just giving services their own real handle tables, but since these
 * ids are local to a specific context, it avoids requiring services to manage handles for objects
 * across multiple calls and ensuring that unneeded handles are cleaned up.
 */
class HLERequestContext {
public:
    HLERequestContext(SharedPtr<ServerSession> session);
    ~HLERequestContext();

    /// Returns a pointer to the IPC command buffer for this request.
    u32* CommandBuffer() {
        return cmd_buf.data();
    }

    /**
     * Returns the session through which this request was made. This can be used as a map key to
     * access per-client data on services.
     */
    SharedPtr<ServerSession> Session() const {
        return session;
    }

    /**
     * Resolves a object id from the request command buffer into a pointer to an object. See the
     * "HLE handle protocol" section in the class documentation for more details.
     */
    SharedPtr<Object> GetIncomingHandle(u32 id_from_cmdbuf) const;

    /**
     * Adds an outgoing object to the response, returning the id which should be used to reference
     * it. See the "HLE handle protocol" section in the class documentation for more details.
     */
    u32 AddOutgoingHandle(SharedPtr<Object> object);

    /**
     * Discards all Objects from the context, invalidating all ids. This may be called after reading
     * out all incoming objects, so that the buffer memory can be re-used for outgoing handles, but
     * this is not required.
     */
    void ClearIncomingObjects();

    /// Populates this context with data from the requesting process/thread.
    ResultCode PopulateFromIncomingCommandBuffer(const u32_le* src_cmdbuf, Process& src_process,
                                                 HandleTable& src_table);
    /// Writes data from this context back to the requesting process/thread.
    ResultCode WriteToOutgoingCommandBuffer(u32_le* dst_cmdbuf, Process& dst_process,
                                            HandleTable& dst_table) const;

private:
    std::array<u32, IPC::COMMAND_BUFFER_LENGTH> cmd_buf;
    SharedPtr<ServerSession> session;
    // TODO(yuriks): Check common usage of this and optimize size accordingly
    boost::container::small_vector<SharedPtr<Object>, 8> request_handles;
};

} // namespace Kernel