summaryrefslogtreecommitdiffstats
path: root/src/core/hid/motion_input.cpp
blob: b60478dbbc2ee8a89864bef215aa4e8a5c6d65ed (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <cmath>

#include "common/math_util.h"
#include "core/hid/motion_input.h"

namespace Core::HID {

MotionInput::MotionInput() {
    // Initialize PID constants with default values
    SetPID(0.3f, 0.005f, 0.0f);
    SetGyroThreshold(ThresholdStandard);
    ResetQuaternion();
    ResetRotations();
}

void MotionInput::SetPID(f32 new_kp, f32 new_ki, f32 new_kd) {
    kp = new_kp;
    ki = new_ki;
    kd = new_kd;
}

void MotionInput::SetAcceleration(const Common::Vec3f& acceleration) {
    accel = acceleration;

    accel.x = std::clamp(accel.x, -AccelMaxValue, AccelMaxValue);
    accel.y = std::clamp(accel.y, -AccelMaxValue, AccelMaxValue);
    accel.z = std::clamp(accel.z, -AccelMaxValue, AccelMaxValue);
}

void MotionInput::SetGyroscope(const Common::Vec3f& gyroscope) {
    gyro = gyroscope - gyro_bias;

    gyro.x = std::clamp(gyro.x, -GyroMaxValue, GyroMaxValue);
    gyro.y = std::clamp(gyro.y, -GyroMaxValue, GyroMaxValue);
    gyro.z = std::clamp(gyro.z, -GyroMaxValue, GyroMaxValue);

    // Auto adjust drift to minimize drift
    if (!IsMoving(IsAtRestRelaxed)) {
        gyro_bias = (gyro_bias * 0.9999f) + (gyroscope * 0.0001f);
    }

    if (gyro.Length() < gyro_threshold * user_gyro_threshold) {
        gyro = {};
    } else {
        only_accelerometer = false;
    }
}

void MotionInput::SetQuaternion(const Common::Quaternion<f32>& quaternion) {
    quat = quaternion;
}

void MotionInput::SetEulerAngles(const Common::Vec3f& euler_angles) {
    const float cr = std::cos(euler_angles.x * 0.5f);
    const float sr = std::sin(euler_angles.x * 0.5f);
    const float cp = std::cos(euler_angles.y * 0.5f);
    const float sp = std::sin(euler_angles.y * 0.5f);
    const float cy = std::cos(euler_angles.z * 0.5f);
    const float sy = std::sin(euler_angles.z * 0.5f);

    quat.w = cr * cp * cy + sr * sp * sy;
    quat.xyz.x = sr * cp * cy - cr * sp * sy;
    quat.xyz.y = cr * sp * cy + sr * cp * sy;
    quat.xyz.z = cr * cp * sy - sr * sp * cy;
}

void MotionInput::SetGyroBias(const Common::Vec3f& bias) {
    gyro_bias = bias;
}

void MotionInput::SetGyroThreshold(f32 threshold) {
    gyro_threshold = threshold;
}

void MotionInput::SetUserGyroThreshold(f32 threshold) {
    user_gyro_threshold = threshold / ThresholdStandard;
}

void MotionInput::EnableReset(bool reset) {
    reset_enabled = reset;
}

void MotionInput::ResetRotations() {
    rotations = {};
}

void MotionInput::ResetQuaternion() {
    quat = {{0.0f, 0.0f, -1.0f}, 0.0f};
}

bool MotionInput::IsMoving(f32 sensitivity) const {
    return gyro.Length() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f;
}

bool MotionInput::IsCalibrated(f32 sensitivity) const {
    return real_error.Length() < sensitivity;
}

void MotionInput::UpdateRotation(u64 elapsed_time) {
    const auto sample_period = static_cast<f32>(elapsed_time) / 1000000.0f;
    if (sample_period > 0.1f) {
        return;
    }
    rotations += gyro * sample_period;
}

// Based on Madgwick's implementation of Mayhony's AHRS algorithm.
// https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU/blob/master/x-IMU%20IMU%20and%20AHRS%20Algorithms/x-IMU%20IMU%20and%20AHRS%20Algorithms/AHRS/MahonyAHRS.cs
void MotionInput::UpdateOrientation(u64 elapsed_time) {
    if (!IsCalibrated(0.1f)) {
        ResetOrientation();
    }
    // Short name local variable for readability
    f32 q1 = quat.w;
    f32 q2 = quat.xyz[0];
    f32 q3 = quat.xyz[1];
    f32 q4 = quat.xyz[2];
    const auto sample_period = static_cast<f32>(elapsed_time) / 1000000.0f;

    // Ignore invalid elapsed time
    if (sample_period > 0.1f) {
        return;
    }

    const auto normal_accel = accel.Normalized();
    auto rad_gyro = gyro * Common::PI * 2;
    const f32 swap = rad_gyro.x;
    rad_gyro.x = rad_gyro.y;
    rad_gyro.y = -swap;
    rad_gyro.z = -rad_gyro.z;

    // Clear gyro values if there is no gyro present
    if (only_accelerometer) {
        rad_gyro.x = 0;
        rad_gyro.y = 0;
        rad_gyro.z = 0;
    }

    // Ignore drift correction if acceleration is not reliable
    if (accel.Length() >= 0.75f && accel.Length() <= 1.25f) {
        const f32 ax = -normal_accel.x;
        const f32 ay = normal_accel.y;
        const f32 az = -normal_accel.z;

        // Estimated direction of gravity
        const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
        const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
        const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;

        // Error is cross product between estimated direction and measured direction of gravity
        const Common::Vec3f new_real_error = {
            az * vx - ax * vz,
            ay * vz - az * vy,
            ax * vy - ay * vx,
        };

        derivative_error = new_real_error - real_error;
        real_error = new_real_error;

        // Prevent integral windup
        if (ki != 0.0f && !IsCalibrated(0.05f)) {
            integral_error += real_error;
        } else {
            integral_error = {};
        }

        // Apply feedback terms
        if (!only_accelerometer) {
            rad_gyro += kp * real_error;
            rad_gyro += ki * integral_error;
            rad_gyro += kd * derivative_error;
        } else {
            // Give more weight to accelerometer values to compensate for the lack of gyro
            rad_gyro += 35.0f * kp * real_error;
            rad_gyro += 10.0f * ki * integral_error;
            rad_gyro += 10.0f * kd * derivative_error;

            // Emulate gyro values for games that need them
            gyro.x = -rad_gyro.y;
            gyro.y = rad_gyro.x;
            gyro.z = -rad_gyro.z;
            UpdateRotation(elapsed_time);
        }
    }

    const f32 gx = rad_gyro.y;
    const f32 gy = rad_gyro.x;
    const f32 gz = rad_gyro.z;

    // Integrate rate of change of quaternion
    const f32 pa = q2;
    const f32 pb = q3;
    const f32 pc = q4;
    q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
    q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
    q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
    q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);

    quat.w = q1;
    quat.xyz[0] = q2;
    quat.xyz[1] = q3;
    quat.xyz[2] = q4;
    quat = quat.Normalized();
}

std::array<Common::Vec3f, 3> MotionInput::GetOrientation() const {
    const Common::Quaternion<float> quad{
        .xyz = {-quat.xyz[1], -quat.xyz[0], -quat.w},
        .w = -quat.xyz[2],
    };
    const std::array<float, 16> matrix4x4 = quad.ToMatrix();

    return {Common::Vec3f(matrix4x4[0], matrix4x4[1], -matrix4x4[2]),
            Common::Vec3f(matrix4x4[4], matrix4x4[5], -matrix4x4[6]),
            Common::Vec3f(-matrix4x4[8], -matrix4x4[9], matrix4x4[10])};
}

Common::Vec3f MotionInput::GetAcceleration() const {
    return accel;
}

Common::Vec3f MotionInput::GetGyroscope() const {
    return gyro;
}

Common::Vec3f MotionInput::GetGyroBias() const {
    return gyro_bias;
}

Common::Quaternion<f32> MotionInput::GetQuaternion() const {
    return quat;
}

Common::Vec3f MotionInput::GetRotations() const {
    return rotations;
}

Common::Vec3f MotionInput::GetEulerAngles() const {
    // roll (x-axis rotation)
    const float sinr_cosp = 2 * (quat.w * quat.xyz.x + quat.xyz.y * quat.xyz.z);
    const float cosr_cosp = 1 - 2 * (quat.xyz.x * quat.xyz.x + quat.xyz.y * quat.xyz.y);

    // pitch (y-axis rotation)
    const float sinp = std::sqrt(1 + 2 * (quat.w * quat.xyz.y - quat.xyz.x * quat.xyz.z));
    const float cosp = std::sqrt(1 - 2 * (quat.w * quat.xyz.y - quat.xyz.x * quat.xyz.z));

    // yaw (z-axis rotation)
    const float siny_cosp = 2 * (quat.w * quat.xyz.z + quat.xyz.x * quat.xyz.y);
    const float cosy_cosp = 1 - 2 * (quat.xyz.y * quat.xyz.y + quat.xyz.z * quat.xyz.z);

    return {
        std::atan2(sinr_cosp, cosr_cosp),
        2 * std::atan2(sinp, cosp) - Common::PI / 2,
        std::atan2(siny_cosp, cosy_cosp),
    };
}

void MotionInput::ResetOrientation() {
    if (!reset_enabled || only_accelerometer) {
        return;
    }
    if (!IsMoving(IsAtRestRelaxed) && accel.z <= -0.9f) {
        ++reset_counter;
        if (reset_counter > 900) {
            quat.w = 0;
            quat.xyz[0] = 0;
            quat.xyz[1] = 0;
            quat.xyz[2] = -1;
            SetOrientationFromAccelerometer();
            integral_error = {};
            reset_counter = 0;
        }
    } else {
        reset_counter = 0;
    }
}

void MotionInput::SetOrientationFromAccelerometer() {
    int iterations = 0;
    const f32 sample_period = 0.015f;

    const auto normal_accel = accel.Normalized();

    while (!IsCalibrated(0.01f) && ++iterations < 100) {
        // Short name local variable for readability
        f32 q1 = quat.w;
        f32 q2 = quat.xyz[0];
        f32 q3 = quat.xyz[1];
        f32 q4 = quat.xyz[2];

        Common::Vec3f rad_gyro;
        const f32 ax = -normal_accel.x;
        const f32 ay = normal_accel.y;
        const f32 az = -normal_accel.z;

        // Estimated direction of gravity
        const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
        const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
        const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;

        // Error is cross product between estimated direction and measured direction of gravity
        const Common::Vec3f new_real_error = {
            az * vx - ax * vz,
            ay * vz - az * vy,
            ax * vy - ay * vx,
        };

        derivative_error = new_real_error - real_error;
        real_error = new_real_error;

        rad_gyro += 10.0f * kp * real_error;
        rad_gyro += 5.0f * ki * integral_error;
        rad_gyro += 10.0f * kd * derivative_error;

        const f32 gx = rad_gyro.y;
        const f32 gy = rad_gyro.x;
        const f32 gz = rad_gyro.z;

        // Integrate rate of change of quaternion
        const f32 pa = q2;
        const f32 pb = q3;
        const f32 pc = q4;
        q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
        q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
        q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
        q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);

        quat.w = q1;
        quat.xyz[0] = q2;
        quat.xyz[1] = q3;
        quat.xyz[2] = q4;
        quat = quat.Normalized();
    }
}
} // namespace Core::HID