summaryrefslogtreecommitdiffstats
path: root/src/core/hid/input_converter.cpp
blob: 5834622e92ac2d675eb02c1cc5ec9caa9ed73d90 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included

#include <random>

#include "common/input.h"
#include "core/hid/input_converter.h"

namespace Core::HID {

Input::BatteryStatus TransformToBattery(const Input::CallbackStatus& callback) {
    Input::BatteryStatus battery{};
    switch (callback.type) {
    case Input::InputType::Analog:
    case Input::InputType::Trigger: {
        const auto value = TransformToTrigger(callback).analog.value;
        battery = Input::BatteryLevel::Empty;
        if (value > 0.2f) {
            battery = Input::BatteryLevel::Critical;
        }
        if (value > 0.4f) {
            battery = Input::BatteryLevel::Low;
        }
        if (value > 0.6f) {
            battery = Input::BatteryLevel::Medium;
        }
        if (value > 0.8f) {
            battery = Input::BatteryLevel::Full;
        }
        if (value >= 1.0f) {
            battery = Input::BatteryLevel::Charging;
        }
        break;
    }
    case Input::InputType::Battery:
        battery = callback.battery_status;
        break;
    default:
        LOG_ERROR(Input, "Conversion from type {} to battery not implemented", callback.type);
        break;
    }

    return battery;
}

Input::ButtonStatus TransformToButton(const Input::CallbackStatus& callback) {
    Input::ButtonStatus status{};
    switch (callback.type) {
    case Input::InputType::Analog:
    case Input::InputType::Trigger:
        status.value = TransformToTrigger(callback).pressed;
        break;
    case Input::InputType::Button:
        status = callback.button_status;
        break;
    default:
        LOG_ERROR(Input, "Conversion from type {} to button not implemented", callback.type);
        break;
    }

    if (status.inverted) {
        status.value = !status.value;
    }

    return status;
}

Input::MotionStatus TransformToMotion(const Input::CallbackStatus& callback) {
    Input::MotionStatus status{};
    switch (callback.type) {
    case Input::InputType::Button: {
        if (TransformToButton(callback).value) {
            std::random_device device;
            std::mt19937 gen(device());
            std::uniform_int_distribution<s16> distribution(-1000, 1000);
            Input::AnalogProperties properties{
                .deadzone = 0.0,
                .range = 1.0f,
                .offset = 0.0,
            };
            status.accel.x = {
                .value = 0,
                .raw_value = static_cast<f32>(distribution(gen)) * 0.001f,
                .properties = properties,
            };
            status.accel.y = {
                .value = 0,
                .raw_value = static_cast<f32>(distribution(gen)) * 0.001f,
                .properties = properties,
            };
            status.accel.z = {
                .value = 0,
                .raw_value = static_cast<f32>(distribution(gen)) * 0.001f,
                .properties = properties,
            };
            status.gyro.x = {
                .value = 0,
                .raw_value = static_cast<f32>(distribution(gen)) * 0.001f,
                .properties = properties,
            };
            status.gyro.y = {
                .value = 0,
                .raw_value = static_cast<f32>(distribution(gen)) * 0.001f,
                .properties = properties,
            };
            status.gyro.z = {
                .value = 0,
                .raw_value = static_cast<f32>(distribution(gen)) * 0.001f,
                .properties = properties,
            };
        }
        break;
    }
    case Input::InputType::Motion:
        status = callback.motion_status;
        break;
    default:
        LOG_ERROR(Input, "Conversion from type {} to motion not implemented", callback.type);
        break;
    }
    SanitizeAnalog(status.accel.x, false);
    SanitizeAnalog(status.accel.y, false);
    SanitizeAnalog(status.accel.z, false);
    SanitizeAnalog(status.gyro.x, false);
    SanitizeAnalog(status.gyro.y, false);
    SanitizeAnalog(status.gyro.z, false);

    return status;
}

Input::StickStatus TransformToStick(const Input::CallbackStatus& callback) {
    Input::StickStatus status{};

    switch (callback.type) {
    case Input::InputType::Stick:
        status = callback.stick_status;
        break;
    default:
        LOG_ERROR(Input, "Conversion from type {} to stick not implemented", callback.type);
        break;
    }

    SanitizeStick(status.x, status.y, true);
    const Input::AnalogProperties& properties_x = status.x.properties;
    const Input::AnalogProperties& properties_y = status.y.properties;
    const float x = status.x.value;
    const float y = status.y.value;

    // Set directional buttons
    status.right = x > properties_x.threshold;
    status.left = x < -properties_x.threshold;
    status.up = y > properties_y.threshold;
    status.down = y < -properties_y.threshold;

    return status;
}

Input::TouchStatus TransformToTouch(const Input::CallbackStatus& callback) {
    Input::TouchStatus status{};

    switch (callback.type) {
    case Input::InputType::Touch:
        status = callback.touch_status;
        break;
    default:
        LOG_ERROR(Input, "Conversion from type {} to touch not implemented", callback.type);
        break;
    }

    SanitizeAnalog(status.x, true);
    SanitizeAnalog(status.y, true);
    float& x = status.x.value;
    float& y = status.y.value;

    // Adjust if value is inverted
    x = status.x.properties.inverted ? 1.0f + x : x;
    y = status.y.properties.inverted ? 1.0f + y : y;

    // clamp value
    x = std::clamp(x, 0.0f, 1.0f);
    y = std::clamp(y, 0.0f, 1.0f);

    if (status.pressed.inverted) {
        status.pressed.value = !status.pressed.value;
    }

    return status;
}

Input::TriggerStatus TransformToTrigger(const Input::CallbackStatus& callback) {
    Input::TriggerStatus status{};
    float& raw_value = status.analog.raw_value;
    bool calculate_button_value = true;

    switch (callback.type) {
    case Input::InputType::Analog:
        status.analog.properties = callback.analog_status.properties;
        raw_value = callback.analog_status.raw_value;
        break;
    case Input::InputType::Button:
        status.analog.properties.range = 1.0f;
        status.analog.properties.inverted = callback.button_status.inverted;
        raw_value = callback.button_status.value ? 1.0f : 0.0f;
        break;
    case Input::InputType::Trigger:
        status = callback.trigger_status;
        calculate_button_value = false;
        break;
    default:
        LOG_ERROR(Input, "Conversion from type {} to trigger not implemented", callback.type);
        break;
    }

    SanitizeAnalog(status.analog, true);
    const Input::AnalogProperties& properties = status.analog.properties;
    float& value = status.analog.value;

    // Set button status
    if (calculate_button_value) {
        status.pressed = value > properties.threshold;
    }

    // Adjust if value is inverted
    value = properties.inverted ? 1.0f + value : value;

    // clamp value
    value = std::clamp(value, 0.0f, 1.0f);

    return status;
}

void SanitizeAnalog(Input::AnalogStatus& analog, bool clamp_value) {
    const Input::AnalogProperties& properties = analog.properties;
    float& raw_value = analog.raw_value;
    float& value = analog.value;

    if (!std::isnormal(raw_value)) {
        raw_value = 0;
    }

    // Apply center offset
    raw_value -= properties.offset;

    // Set initial values to be formated
    value = raw_value;

    // Calculate vector size
    const float r = std::abs(value);

    // Return zero if value is smaller than the deadzone
    if (r <= properties.deadzone || properties.deadzone == 1.0f) {
        analog.value = 0;
        return;
    }

    // Adjust range of value
    const float deadzone_factor =
        1.0f / r * (r - properties.deadzone) / (1.0f - properties.deadzone);
    value = value * deadzone_factor / properties.range;

    // Invert direction if needed
    if (properties.inverted) {
        value = -value;
    }

    // Clamp value
    if (clamp_value) {
        value = std::clamp(value, -1.0f, 1.0f);
    }
}

void SanitizeStick(Input::AnalogStatus& analog_x, Input::AnalogStatus& analog_y, bool clamp_value) {
    const Input::AnalogProperties& properties_x = analog_x.properties;
    const Input::AnalogProperties& properties_y = analog_y.properties;
    float& raw_x = analog_x.raw_value;
    float& raw_y = analog_y.raw_value;
    float& x = analog_x.value;
    float& y = analog_y.value;

    if (!std::isnormal(raw_x)) {
        raw_x = 0;
    }
    if (!std::isnormal(raw_y)) {
        raw_y = 0;
    }

    // Apply center offset
    raw_x += properties_x.offset;
    raw_y += properties_y.offset;

    // Apply X scale correction from offset
    if (std::abs(properties_x.offset) < 0.5f) {
        if (raw_x > 0) {
            raw_x /= 1 + properties_x.offset;
        } else {
            raw_x /= 1 - properties_x.offset;
        }
    }

    // Apply Y scale correction from offset
    if (std::abs(properties_y.offset) < 0.5f) {
        if (raw_y > 0) {
            raw_y /= 1 + properties_y.offset;
        } else {
            raw_y /= 1 - properties_y.offset;
        }
    }

    // Invert direction if needed
    raw_x = properties_x.inverted ? -raw_x : raw_x;
    raw_y = properties_y.inverted ? -raw_y : raw_y;

    // Set initial values to be formated
    x = raw_x;
    y = raw_y;

    // Calculate vector size
    float r = x * x + y * y;
    r = std::sqrt(r);

    // TODO(German77): Use deadzone and range of both axis

    // Return zero if values are smaller than the deadzone
    if (r <= properties_x.deadzone || properties_x.deadzone >= 1.0f) {
        x = 0;
        y = 0;
        return;
    }

    // Adjust range of joystick
    const float deadzone_factor =
        1.0f / r * (r - properties_x.deadzone) / (1.0f - properties_x.deadzone);
    x = x * deadzone_factor / properties_x.range;
    y = y * deadzone_factor / properties_x.range;
    r = r * deadzone_factor / properties_x.range;

    // Normalize joystick
    if (clamp_value && r > 1.0f) {
        x /= r;
        y /= r;
    }
}

} // namespace Core::HID