summaryrefslogtreecommitdiffstats
path: root/src/core/arm/unicorn/arm_unicorn.cpp
blob: 4e02b7cd44b405ad2fc67faa4bc6cf6ad8c5d3a2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <unicorn/arm64.h>
#include "common/assert.h"
#include "common/microprofile.h"
#include "core/arm/unicorn/arm_unicorn.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/svc.h"

namespace Core {

// Load Unicorn DLL once on Windows using RAII
#ifdef _MSC_VER
#include <unicorn_dynload.h>
struct LoadDll {
private:
    LoadDll() {
        ASSERT(uc_dyn_load(NULL, 0));
    }
    ~LoadDll() {
        ASSERT(uc_dyn_free());
    }
    static LoadDll g_load_dll;
};
LoadDll LoadDll::g_load_dll;
#endif

#define CHECKED(expr)                                                                              \
    do {                                                                                           \
        if (auto _cerr = (expr)) {                                                                 \
            ASSERT_MSG(false, "Call " #expr " failed with error: {} ({})\n", _cerr,                \
                       uc_strerror(_cerr));                                                        \
        }                                                                                          \
    } while (0)

static void CodeHook(uc_engine* uc, uint64_t address, uint32_t size, void* user_data) {
    GDBStub::BreakpointAddress bkpt =
        GDBStub::GetNextBreakpointFromAddress(address, GDBStub::BreakpointType::Execute);
    if (GDBStub::IsMemoryBreak() ||
        (bkpt.type != GDBStub::BreakpointType::None && address == bkpt.address)) {
        auto core = static_cast<ARM_Unicorn*>(user_data);
        core->RecordBreak(bkpt);
        uc_emu_stop(uc);
    }
}

static void InterruptHook(uc_engine* uc, u32 intNo, void* user_data) {
    u32 esr{};
    CHECKED(uc_reg_read(uc, UC_ARM64_REG_ESR, &esr));

    auto ec = esr >> 26;
    auto iss = esr & 0xFFFFFF;

    switch (ec) {
    case 0x15: // SVC
        Kernel::CallSVC(iss);
        break;
    }
}

static bool UnmappedMemoryHook(uc_engine* uc, uc_mem_type type, u64 addr, int size, u64 value,
                               void* user_data) {
    ARM_Interface::ThreadContext ctx{};
    Core::CurrentArmInterface().SaveContext(ctx);
    ASSERT_MSG(false, "Attempted to read from unmapped memory: 0x{:X}, pc=0x{:X}, lr=0x{:X}", addr,
               ctx.pc, ctx.cpu_registers[30]);
    return {};
}

ARM_Unicorn::ARM_Unicorn() {
    CHECKED(uc_open(UC_ARCH_ARM64, UC_MODE_ARM, &uc));

    auto fpv = 3 << 20;
    CHECKED(uc_reg_write(uc, UC_ARM64_REG_CPACR_EL1, &fpv));

    uc_hook hook{};
    CHECKED(uc_hook_add(uc, &hook, UC_HOOK_INTR, (void*)InterruptHook, this, 0, -1));
    CHECKED(uc_hook_add(uc, &hook, UC_HOOK_MEM_INVALID, (void*)UnmappedMemoryHook, this, 0, -1));
    if (GDBStub::IsServerEnabled()) {
        CHECKED(uc_hook_add(uc, &hook, UC_HOOK_CODE, (void*)CodeHook, this, 0, -1));
        last_bkpt_hit = false;
    }
}

ARM_Unicorn::~ARM_Unicorn() {
    CHECKED(uc_close(uc));
}

void ARM_Unicorn::MapBackingMemory(VAddr address, std::size_t size, u8* memory,
                                   Kernel::VMAPermission perms) {
    CHECKED(uc_mem_map_ptr(uc, address, size, static_cast<u32>(perms), memory));
}

void ARM_Unicorn::UnmapMemory(VAddr address, std::size_t size) {
    CHECKED(uc_mem_unmap(uc, address, size));
}

void ARM_Unicorn::SetPC(u64 pc) {
    CHECKED(uc_reg_write(uc, UC_ARM64_REG_PC, &pc));
}

u64 ARM_Unicorn::GetPC() const {
    u64 val{};
    CHECKED(uc_reg_read(uc, UC_ARM64_REG_PC, &val));
    return val;
}

u64 ARM_Unicorn::GetReg(int regn) const {
    u64 val{};
    auto treg = UC_ARM64_REG_SP;
    if (regn <= 28) {
        treg = (uc_arm64_reg)(UC_ARM64_REG_X0 + regn);
    } else if (regn < 31) {
        treg = (uc_arm64_reg)(UC_ARM64_REG_X29 + regn - 29);
    }
    CHECKED(uc_reg_read(uc, treg, &val));
    return val;
}

void ARM_Unicorn::SetReg(int regn, u64 val) {
    auto treg = UC_ARM64_REG_SP;
    if (regn <= 28) {
        treg = (uc_arm64_reg)(UC_ARM64_REG_X0 + regn);
    } else if (regn < 31) {
        treg = (uc_arm64_reg)(UC_ARM64_REG_X29 + regn - 29);
    }
    CHECKED(uc_reg_write(uc, treg, &val));
}

u128 ARM_Unicorn::GetExtReg(int /*index*/) const {
    UNIMPLEMENTED();
    static constexpr u128 res{};
    return res;
}

void ARM_Unicorn::SetExtReg(int /*index*/, u128 /*value*/) {
    UNIMPLEMENTED();
}

u32 ARM_Unicorn::GetVFPReg(int /*index*/) const {
    UNIMPLEMENTED();
    return {};
}

void ARM_Unicorn::SetVFPReg(int /*index*/, u32 /*value*/) {
    UNIMPLEMENTED();
}

u32 ARM_Unicorn::GetCPSR() const {
    u64 nzcv{};
    CHECKED(uc_reg_read(uc, UC_ARM64_REG_NZCV, &nzcv));
    return static_cast<u32>(nzcv);
}

void ARM_Unicorn::SetCPSR(u32 cpsr) {
    u64 nzcv = cpsr;
    CHECKED(uc_reg_write(uc, UC_ARM64_REG_NZCV, &nzcv));
}

VAddr ARM_Unicorn::GetTlsAddress() const {
    u64 base{};
    CHECKED(uc_reg_read(uc, UC_ARM64_REG_TPIDRRO_EL0, &base));
    return base;
}

void ARM_Unicorn::SetTlsAddress(VAddr base) {
    CHECKED(uc_reg_write(uc, UC_ARM64_REG_TPIDRRO_EL0, &base));
}

u64 ARM_Unicorn::GetTPIDR_EL0() const {
    u64 value{};
    CHECKED(uc_reg_read(uc, UC_ARM64_REG_TPIDR_EL0, &value));
    return value;
}

void ARM_Unicorn::SetTPIDR_EL0(u64 value) {
    CHECKED(uc_reg_write(uc, UC_ARM64_REG_TPIDR_EL0, &value));
}

void ARM_Unicorn::Run() {
    if (GDBStub::IsServerEnabled()) {
        ExecuteInstructions(std::max(4000000, 0));
    } else {
        ExecuteInstructions(std::max(CoreTiming::GetDowncount(), 0));
    }
}

void ARM_Unicorn::Step() {
    ExecuteInstructions(1);
}

MICROPROFILE_DEFINE(ARM_Jit_Unicorn, "ARM JIT", "Unicorn", MP_RGB(255, 64, 64));

void ARM_Unicorn::ExecuteInstructions(int num_instructions) {
    MICROPROFILE_SCOPE(ARM_Jit_Unicorn);
    CHECKED(uc_emu_start(uc, GetPC(), 1ULL << 63, 0, num_instructions));
    CoreTiming::AddTicks(num_instructions);
    if (GDBStub::IsServerEnabled()) {
        if (last_bkpt_hit) {
            uc_reg_write(uc, UC_ARM64_REG_PC, &last_bkpt.address);
        }
        Kernel::Thread* thread = Kernel::GetCurrentThread();
        SaveContext(thread->context);
        if (last_bkpt_hit || GDBStub::GetCpuStepFlag()) {
            last_bkpt_hit = false;
            GDBStub::Break();
            GDBStub::SendTrap(thread, 5);
        }
    }
}

void ARM_Unicorn::SaveContext(ThreadContext& ctx) {
    int uregs[32];
    void* tregs[32];

    CHECKED(uc_reg_read(uc, UC_ARM64_REG_SP, &ctx.sp));
    CHECKED(uc_reg_read(uc, UC_ARM64_REG_PC, &ctx.pc));
    CHECKED(uc_reg_read(uc, UC_ARM64_REG_NZCV, &ctx.cpsr));

    for (auto i = 0; i < 29; ++i) {
        uregs[i] = UC_ARM64_REG_X0 + i;
        tregs[i] = &ctx.cpu_registers[i];
    }
    uregs[29] = UC_ARM64_REG_X29;
    tregs[29] = (void*)&ctx.cpu_registers[29];
    uregs[30] = UC_ARM64_REG_X30;
    tregs[30] = (void*)&ctx.cpu_registers[30];

    CHECKED(uc_reg_read_batch(uc, uregs, tregs, 31));

    for (int i = 0; i < 32; ++i) {
        uregs[i] = UC_ARM64_REG_Q0 + i;
        tregs[i] = &ctx.fpu_registers[i];
    }

    CHECKED(uc_reg_read_batch(uc, uregs, tregs, 32));
}

void ARM_Unicorn::LoadContext(const ThreadContext& ctx) {
    int uregs[32];
    void* tregs[32];

    CHECKED(uc_reg_write(uc, UC_ARM64_REG_SP, &ctx.sp));
    CHECKED(uc_reg_write(uc, UC_ARM64_REG_PC, &ctx.pc));
    CHECKED(uc_reg_write(uc, UC_ARM64_REG_NZCV, &ctx.cpsr));

    for (int i = 0; i < 29; ++i) {
        uregs[i] = UC_ARM64_REG_X0 + i;
        tregs[i] = (void*)&ctx.cpu_registers[i];
    }
    uregs[29] = UC_ARM64_REG_X29;
    tregs[29] = (void*)&ctx.cpu_registers[29];
    uregs[30] = UC_ARM64_REG_X30;
    tregs[30] = (void*)&ctx.cpu_registers[30];

    CHECKED(uc_reg_write_batch(uc, uregs, tregs, 31));

    for (auto i = 0; i < 32; ++i) {
        uregs[i] = UC_ARM64_REG_Q0 + i;
        tregs[i] = (void*)&ctx.fpu_registers[i];
    }

    CHECKED(uc_reg_write_batch(uc, uregs, tregs, 32));
}

void ARM_Unicorn::PrepareReschedule() {
    CHECKED(uc_emu_stop(uc));
}

void ARM_Unicorn::ClearExclusiveState() {}

void ARM_Unicorn::ClearInstructionCache() {}

void ARM_Unicorn::RecordBreak(GDBStub::BreakpointAddress bkpt) {
    last_bkpt = bkpt;
    last_bkpt_hit = true;
}

} // namespace Core