1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
// Copyright 2016 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cstring>
#include <dynarmic/dynarmic.h>
#include "common/assert.h"
#include "common/microprofile.h"
#include "core/arm/dynarmic/arm_dynarmic.h"
#include "core/arm/dyncom/arm_dyncom_interpreter.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/svc.h"
#include "core/memory.h"
static void InterpreterFallback(u32 pc, Dynarmic::Jit* jit, void* user_arg) {
ARMul_State* state = static_cast<ARMul_State*>(user_arg);
state->Reg = jit->Regs();
state->Cpsr = jit->Cpsr();
state->Reg[15] = pc;
state->ExtReg = jit->ExtRegs();
state->VFP[VFP_FPSCR] = jit->Fpscr();
state->NumInstrsToExecute = 1;
InterpreterMainLoop(state);
bool is_thumb = (state->Cpsr & (1 << 5)) != 0;
state->Reg[15] &= (is_thumb ? 0xFFFFFFFE : 0xFFFFFFFC);
jit->Regs() = state->Reg;
jit->Cpsr() = state->Cpsr;
jit->ExtRegs() = state->ExtReg;
jit->SetFpscr(state->VFP[VFP_FPSCR]);
}
static bool IsReadOnlyMemory(u32 vaddr) {
// TODO(bunnei): ImplementMe
return false;
}
static Dynarmic::UserCallbacks GetUserCallbacks(ARMul_State* interpeter_state) {
Dynarmic::UserCallbacks user_callbacks{};
user_callbacks.InterpreterFallback = &InterpreterFallback;
user_callbacks.user_arg = static_cast<void*>(interpeter_state);
user_callbacks.CallSVC = &SVC::CallSVC;
user_callbacks.IsReadOnlyMemory = &IsReadOnlyMemory;
user_callbacks.MemoryRead8 = &Memory::Read8;
user_callbacks.MemoryRead16 = &Memory::Read16;
user_callbacks.MemoryRead32 = &Memory::Read32;
user_callbacks.MemoryRead64 = &Memory::Read64;
user_callbacks.MemoryWrite8 = &Memory::Write8;
user_callbacks.MemoryWrite16 = &Memory::Write16;
user_callbacks.MemoryWrite32 = &Memory::Write32;
user_callbacks.MemoryWrite64 = &Memory::Write64;
user_callbacks.page_table = Memory::GetCurrentPageTablePointers();
return user_callbacks;
}
ARM_Dynarmic::ARM_Dynarmic(PrivilegeMode initial_mode) {
interpreter_state = std::make_unique<ARMul_State>(initial_mode);
jit = std::make_unique<Dynarmic::Jit>(GetUserCallbacks(interpreter_state.get()));
}
void ARM_Dynarmic::SetPC(u32 pc) {
jit->Regs()[15] = pc;
}
u32 ARM_Dynarmic::GetPC() const {
return jit->Regs()[15];
}
u32 ARM_Dynarmic::GetReg(int index) const {
return jit->Regs()[index];
}
void ARM_Dynarmic::SetReg(int index, u32 value) {
jit->Regs()[index] = value;
}
u32 ARM_Dynarmic::GetVFPReg(int index) const {
return jit->ExtRegs()[index];
}
void ARM_Dynarmic::SetVFPReg(int index, u32 value) {
jit->ExtRegs()[index] = value;
}
u32 ARM_Dynarmic::GetVFPSystemReg(VFPSystemRegister reg) const {
if (reg == VFP_FPSCR) {
return jit->Fpscr();
}
// Dynarmic does not implement and/or expose other VFP registers, fallback to interpreter state
return interpreter_state->VFP[reg];
}
void ARM_Dynarmic::SetVFPSystemReg(VFPSystemRegister reg, u32 value) {
if (reg == VFP_FPSCR) {
jit->SetFpscr(value);
}
// Dynarmic does not implement and/or expose other VFP registers, fallback to interpreter state
interpreter_state->VFP[reg] = value;
}
u32 ARM_Dynarmic::GetCPSR() const {
return jit->Cpsr();
}
void ARM_Dynarmic::SetCPSR(u32 cpsr) {
jit->Cpsr() = cpsr;
}
u32 ARM_Dynarmic::GetCP15Register(CP15Register reg) {
return interpreter_state->CP15[reg];
}
void ARM_Dynarmic::SetCP15Register(CP15Register reg, u32 value) {
interpreter_state->CP15[reg] = value;
}
void ARM_Dynarmic::AddTicks(u64 ticks) {
down_count -= ticks;
if (down_count < 0) {
CoreTiming::Advance();
}
}
MICROPROFILE_DEFINE(ARM_Jit, "ARM JIT", "ARM JIT", MP_RGB(255, 64, 64));
void ARM_Dynarmic::ExecuteInstructions(int num_instructions) {
MICROPROFILE_SCOPE(ARM_Jit);
unsigned ticks_executed = jit->Run(static_cast<unsigned>(num_instructions));
AddTicks(ticks_executed);
}
void ARM_Dynarmic::SaveContext(Core::ThreadContext& ctx) {
memcpy(ctx.cpu_registers, jit->Regs().data(), sizeof(ctx.cpu_registers));
memcpy(ctx.fpu_registers, jit->ExtRegs().data(), sizeof(ctx.fpu_registers));
ctx.sp = jit->Regs()[13];
ctx.lr = jit->Regs()[14];
ctx.pc = jit->Regs()[15];
ctx.cpsr = jit->Cpsr();
ctx.fpscr = jit->Fpscr();
ctx.fpexc = interpreter_state->VFP[VFP_FPEXC];
}
void ARM_Dynarmic::LoadContext(const Core::ThreadContext& ctx) {
memcpy(jit->Regs().data(), ctx.cpu_registers, sizeof(ctx.cpu_registers));
memcpy(jit->ExtRegs().data(), ctx.fpu_registers, sizeof(ctx.fpu_registers));
jit->Regs()[13] = ctx.sp;
jit->Regs()[14] = ctx.lr;
jit->Regs()[15] = ctx.pc;
jit->Cpsr() = ctx.cpsr;
jit->SetFpscr(ctx.fpscr);
interpreter_state->VFP[VFP_FPEXC] = ctx.fpexc;
}
void ARM_Dynarmic::PrepareReschedule() {
if (jit->IsExecuting()) {
jit->HaltExecution();
}
}
void ARM_Dynarmic::ClearInstructionCache() {
jit->ClearCache();
}
|