1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <chrono>
#include <limits>
#include <mutex>
#include <thread>
#ifdef _MSC_VER
#include <intrin.h>
#pragma intrinsic(__umulh)
#pragma intrinsic(_udiv128)
#else
#include <x86intrin.h>
#endif
#include "common/atomic_ops.h"
#include "common/uint128.h"
#include "common/x64/native_clock.h"
namespace {
[[nodiscard]] u64 GetFixedPoint64Factor(u64 numerator, u64 divisor) {
#ifdef __SIZEOF_INT128__
const auto base = static_cast<unsigned __int128>(numerator) << 64ULL;
return static_cast<u64>(base / divisor);
#elif defined(_M_X64) || defined(_M_ARM64)
std::array<u64, 2> r = {0, numerator};
u64 remainder;
#if _MSC_VER < 1923
return udiv128(r[1], r[0], divisor, &remainder);
#else
return _udiv128(r[1], r[0], divisor, &remainder);
#endif
#else
// This one is bit more inaccurate.
return MultiplyAndDivide64(std::numeric_limits<u64>::max(), numerator, divisor);
#endif
}
[[nodiscard]] u64 MultiplyHigh(u64 a, u64 b) {
#ifdef __SIZEOF_INT128__
return (static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b)) >> 64;
#elif defined(_M_X64) || defined(_M_ARM64)
return __umulh(a, b); // MSVC
#else
// Generic fallback
const u64 a_lo = u32(a);
const u64 a_hi = a >> 32;
const u64 b_lo = u32(b);
const u64 b_hi = b >> 32;
const u64 a_x_b_hi = a_hi * b_hi;
const u64 a_x_b_mid = a_hi * b_lo;
const u64 b_x_a_mid = b_hi * a_lo;
const u64 a_x_b_lo = a_lo * b_lo;
const u64 carry_bit = (static_cast<u64>(static_cast<u32>(a_x_b_mid)) +
static_cast<u64>(static_cast<u32>(b_x_a_mid)) + (a_x_b_lo >> 32)) >>
32;
const u64 multhi = a_x_b_hi + (a_x_b_mid >> 32) + (b_x_a_mid >> 32) + carry_bit;
return multhi;
#endif
}
} // namespace
namespace Common {
u64 EstimateRDTSCFrequency() {
const auto milli_10 = std::chrono::milliseconds{10};
// get current time
_mm_mfence();
const u64 tscStart = __rdtsc();
const auto startTime = std::chrono::high_resolution_clock::now();
// wait roughly 3 seconds
while (true) {
auto milli = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - startTime);
if (milli.count() >= 3000)
break;
std::this_thread::sleep_for(milli_10);
}
const auto endTime = std::chrono::high_resolution_clock::now();
_mm_mfence();
const u64 tscEnd = __rdtsc();
// calculate difference
const u64 timer_diff =
std::chrono::duration_cast<std::chrono::nanoseconds>(endTime - startTime).count();
const u64 tsc_diff = tscEnd - tscStart;
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff);
return tsc_freq;
}
namespace X64 {
NativeClock::NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_,
u64 rtsc_frequency_)
: WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, true), rtsc_frequency{
rtsc_frequency_} {
_mm_mfence();
time_point.inner.last_measure = __rdtsc();
time_point.inner.accumulated_ticks = 0U;
ns_rtsc_factor = GetFixedPoint64Factor(1000000000, rtsc_frequency);
us_rtsc_factor = GetFixedPoint64Factor(1000000, rtsc_frequency);
ms_rtsc_factor = GetFixedPoint64Factor(1000, rtsc_frequency);
clock_rtsc_factor = GetFixedPoint64Factor(emulated_clock_frequency, rtsc_frequency);
cpu_rtsc_factor = GetFixedPoint64Factor(emulated_cpu_frequency, rtsc_frequency);
}
u64 NativeClock::GetRTSC() {
TimePoint new_time_point{};
TimePoint current_time_point{};
do {
current_time_point.pack = time_point.pack;
_mm_mfence();
const u64 current_measure = __rdtsc();
u64 diff = current_measure - current_time_point.inner.last_measure;
diff = diff & ~static_cast<u64>(static_cast<s64>(diff) >> 63); // max(diff, 0)
new_time_point.inner.last_measure = current_measure > current_time_point.inner.last_measure
? current_measure
: current_time_point.inner.last_measure;
new_time_point.inner.accumulated_ticks = current_time_point.inner.accumulated_ticks + diff;
} while (!Common::AtomicCompareAndSwap(time_point.pack.data(), new_time_point.pack,
current_time_point.pack));
/// The clock cannot be more precise than the guest timer, remove the lower bits
return new_time_point.inner.accumulated_ticks & inaccuracy_mask;
}
void NativeClock::Pause(bool is_paused) {
if (!is_paused) {
TimePoint current_time_point{};
TimePoint new_time_point{};
do {
current_time_point.pack = time_point.pack;
new_time_point.pack = current_time_point.pack;
_mm_mfence();
new_time_point.inner.last_measure = __rdtsc();
} while (!Common::AtomicCompareAndSwap(time_point.pack.data(), new_time_point.pack,
current_time_point.pack));
}
}
std::chrono::nanoseconds NativeClock::GetTimeNS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::nanoseconds{MultiplyHigh(rtsc_value, ns_rtsc_factor)};
}
std::chrono::microseconds NativeClock::GetTimeUS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::microseconds{MultiplyHigh(rtsc_value, us_rtsc_factor)};
}
std::chrono::milliseconds NativeClock::GetTimeMS() {
const u64 rtsc_value = GetRTSC();
return std::chrono::milliseconds{MultiplyHigh(rtsc_value, ms_rtsc_factor)};
}
u64 NativeClock::GetClockCycles() {
const u64 rtsc_value = GetRTSC();
return MultiplyHigh(rtsc_value, clock_rtsc_factor);
}
u64 NativeClock::GetCPUCycles() {
const u64 rtsc_value = GetRTSC();
return MultiplyHigh(rtsc_value, cpu_rtsc_factor);
}
} // namespace X64
} // namespace Common
|