summaryrefslogtreecommitdiffstats
path: root/src/common/atomic_gcc.h
blob: 117e342f6b912a2c934cba2ca92f791f9be36aa3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.

#pragma once

#include "common/common.h"

// Atomic operations are performed in a single step by the CPU. It is
// impossible for other threads to see the operation "half-done."
//
// Some atomic operations can be combined with different types of memory
// barriers called "Acquire semantics" and "Release semantics", defined below.
//
// Acquire semantics: Future memory accesses cannot be relocated to before the
//                    operation.
//
// Release semantics: Past memory accesses cannot be relocated to after the
//                    operation.
//
// These barriers affect not only the compiler, but also the CPU.

namespace Common
{

inline void AtomicAdd(volatile u32& target, u32 value) {
    __sync_add_and_fetch(&target, value);
}

inline void AtomicAnd(volatile u32& target, u32 value) {
    __sync_and_and_fetch(&target, value);
}

inline void AtomicDecrement(volatile u32& target) {
    __sync_add_and_fetch(&target, -1);
}

inline void AtomicIncrement(volatile u32& target) {
    __sync_add_and_fetch(&target, 1);
}

inline u32 AtomicLoad(volatile u32& src) {
    return src; // 32-bit reads are always atomic.
}
inline u32 AtomicLoadAcquire(volatile u32& src) {
    //keep the compiler from caching any memory references
    u32 result = src; // 32-bit reads are always atomic.
    //__sync_synchronize(); // TODO: May not be necessary.
    // Compiler instruction only. x86 loads always have acquire semantics.
    __asm__ __volatile__ ( "":::"memory" );
    return result;
}

inline void AtomicOr(volatile u32& target, u32 value) {
    __sync_or_and_fetch(&target, value);
}

inline void AtomicStore(volatile u32& dest, u32 value) {
    dest = value; // 32-bit writes are always atomic.
}
inline void AtomicStoreRelease(volatile u32& dest, u32 value) {
    __sync_lock_test_and_set(&dest, value); // TODO: Wrong! This function is has acquire semantics.
}

}

// Old code kept here for reference in case we need the parts with __asm__ __volatile__.
#if 0
LONG SyncInterlockedIncrement(LONG *Dest)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
  return  __sync_add_and_fetch(Dest, 1);
#else
  register int result;
  __asm__ __volatile__("lock; xadd %0,%1"
                       : "=r" (result), "=m" (*Dest)
                       : "0" (1), "m" (*Dest)
                       : "memory");
  return result;
#endif
}

LONG SyncInterlockedExchangeAdd(LONG *Dest, LONG Val)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
  return  __sync_add_and_fetch(Dest, Val);
#else
  register int result;
  __asm__ __volatile__("lock; xadd %0,%1"
                       : "=r" (result), "=m" (*Dest)
                       : "0" (Val), "m" (*Dest)
                       : "memory");
  return result;
#endif
}

LONG SyncInterlockedExchange(LONG *Dest, LONG Val)
{
#if defined(__GNUC__) && defined (__GNUC_MINOR__) && ((4 < __GNUC__) || (4 == __GNUC__ && 1 <= __GNUC_MINOR__))
  return  __sync_lock_test_and_set(Dest, Val);
#else
  register int result;
  __asm__ __volatile__("lock; xchg %0,%1"
                       : "=r" (result), "=m" (*Dest)
                       : "0" (Val), "m" (*Dest)
                       : "memory");
  return result;
#endif
}
#endif