summaryrefslogtreecommitdiffstats
path: root/src/audio_core/renderer/command/data_source/decode.cpp
blob: 905613a5a8c884684de2b514ea8d1e3b7a2d4aa5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <array>
#include <vector>

#include "audio_core/renderer/command/data_source/decode.h"
#include "audio_core/renderer/command/resample/resample.h"
#include "common/fixed_point.h"
#include "common/logging/log.h"
#include "common/scratch_buffer.h"
#include "core/guest_memory.h"
#include "core/memory.h"

namespace AudioCore::Renderer {

constexpr u32 TempBufferSize = 0x3F00;
constexpr std::array<u8, 3> PitchBySrcQuality = {4, 8, 4};

/**
 * Decode PCM data. Only s16 or f32 is supported.
 *
 * @tparam T         - Type to decode. Only s16 and f32 are supported.
 * @param memory     - Core memory for reading samples.
 * @param out_buffer - Output mix buffer to receive the samples.
 * @param req        - Information for how to decode.
 * @return Number of samples decoded.
 */
template <typename T>
static u32 DecodePcm(Core::Memory::Memory& memory, std::span<s16> out_buffer,
                     const DecodeArg& req) {
    constexpr s32 min{std::numeric_limits<s16>::min()};
    constexpr s32 max{std::numeric_limits<s16>::max()};

    if (req.buffer == 0 || req.buffer_size == 0) {
        return 0;
    }

    if (req.start_offset >= req.end_offset) {
        return 0;
    }

    auto samples_to_decode{
        std::min(req.samples_to_read, req.end_offset - req.start_offset - req.offset)};
    u32 channel_count{static_cast<u32>(req.channel_count)};

    switch (req.channel_count) {
    default: {
        const VAddr source{req.buffer +
                           (((req.start_offset + req.offset) * channel_count) * sizeof(T))};
        const u64 size{channel_count * samples_to_decode};

        Core::Memory::CpuGuestMemory<T, Core::Memory::GuestMemoryFlags::UnsafeRead> samples(
            memory, source, size);
        if constexpr (std::is_floating_point_v<T>) {
            for (u32 i = 0; i < samples_to_decode; i++) {
                auto sample{static_cast<s32>(samples[i * channel_count + req.target_channel] *
                                             std::numeric_limits<s16>::max())};
                out_buffer[i] = static_cast<s16>(std::clamp(sample, min, max));
            }
        } else {
            for (u32 i = 0; i < samples_to_decode; i++) {
                out_buffer[i] = samples[i * channel_count + req.target_channel];
            }
        }
    } break;

    case 1:
        if (req.target_channel != 0) {
            LOG_ERROR(Service_Audio, "Invalid target channel, expected 0, got {}",
                      req.target_channel);
            return 0;
        }

        const VAddr source{req.buffer + ((req.start_offset + req.offset) * sizeof(T))};
        Core::Memory::CpuGuestMemory<T, Core::Memory::GuestMemoryFlags::UnsafeRead> samples(
            memory, source, samples_to_decode);

        if constexpr (std::is_floating_point_v<T>) {
            for (u32 i = 0; i < samples_to_decode; i++) {
                auto sample{static_cast<s32>(samples[i * channel_count + req.target_channel] *
                                             std::numeric_limits<s16>::max())};
                out_buffer[i] = static_cast<s16>(std::clamp(sample, min, max));
            }
        } else {
            std::memcpy(out_buffer.data(), samples.data(), samples_to_decode * sizeof(s16));
        }
        break;
    }

    return samples_to_decode;
}

/**
 * Decode ADPCM data.
 *
 * @param memory     - Core memory for reading samples.
 * @param out_buffer - Output mix buffer to receive the samples.
 * @param req        - Information for how to decode.
 * @return Number of samples decoded.
 */
static u32 DecodeAdpcm(Core::Memory::Memory& memory, std::span<s16> out_buffer,
                       const DecodeArg& req) {
    constexpr u32 SamplesPerFrame{14};
    constexpr u32 NibblesPerFrame{16};

    if (req.buffer == 0 || req.buffer_size == 0) {
        return 0;
    }

    if (req.end_offset < req.start_offset) {
        return 0;
    }

    auto end{(req.end_offset % SamplesPerFrame) +
             NibblesPerFrame * (req.end_offset / SamplesPerFrame)};
    if (req.end_offset % SamplesPerFrame) {
        end += 3;
    } else {
        end += 1;
    }

    if (req.buffer_size < end / 2) {
        return 0;
    }

    auto start_pos{req.start_offset + req.offset};
    auto samples_to_process{std::min(req.end_offset - start_pos, req.samples_to_read)};
    if (samples_to_process == 0) {
        return 0;
    }

    auto samples_to_read{samples_to_process};
    auto samples_remaining_in_frame{start_pos % SamplesPerFrame};
    auto position_in_frame{(start_pos / SamplesPerFrame) * NibblesPerFrame +
                           samples_remaining_in_frame};

    if (samples_remaining_in_frame) {
        position_in_frame += 2;
    }

    const auto size{std::max((samples_to_process / 8U) * SamplesPerFrame, 8U)};
    Core::Memory::CpuGuestMemory<u8, Core::Memory::GuestMemoryFlags::UnsafeRead> wavebuffer(
        memory, req.buffer + position_in_frame / 2, size);

    auto context{req.adpcm_context};
    auto header{context->header};
    u8 coeff_index{static_cast<u8>((header >> 4U) & 0xFU)};
    u8 scale{static_cast<u8>(header & 0xFU)};
    s32 coeff0{req.coefficients[coeff_index * 2 + 0]};
    s32 coeff1{req.coefficients[coeff_index * 2 + 1]};

    auto yn0{context->yn0};
    auto yn1{context->yn1};

    static constexpr std::array<s32, 16> Steps{
        0, 1, 2, 3, 4, 5, 6, 7, -8, -7, -6, -5, -4, -3, -2, -1,
    };

    const auto decode_sample = [&](const s32 code) -> s16 {
        const auto xn = code * (1 << scale);
        const auto prediction = coeff0 * yn0 + coeff1 * yn1;
        const auto sample = ((xn << 11) + 0x400 + prediction) >> 11;
        const auto saturated = std::clamp<s32>(sample, -0x8000, 0x7FFF);
        yn1 = yn0;
        yn0 = static_cast<s16>(saturated);
        return yn0;
    };

    u32 read_index{0};
    u32 write_index{0};

    while (samples_to_read > 0) {
        // Are we at a new frame?
        if ((position_in_frame % NibblesPerFrame) == 0) {
            header = wavebuffer[read_index++];
            coeff_index = (header >> 4) & 0xF;
            scale = header & 0xF;
            coeff0 = req.coefficients[coeff_index * 2 + 0];
            coeff1 = req.coefficients[coeff_index * 2 + 1];
            position_in_frame += 2;

            // Can we consume all of this frame's samples?
            if (samples_to_read >= SamplesPerFrame) {
                // Can grab all samples until the next header
                for (u32 i = 0; i < SamplesPerFrame / 2; i++) {
                    auto code0{Steps[(wavebuffer[read_index] >> 4) & 0xF]};
                    auto code1{Steps[wavebuffer[read_index] & 0xF]};
                    read_index++;

                    out_buffer[write_index++] = decode_sample(code0);
                    out_buffer[write_index++] = decode_sample(code1);
                }

                position_in_frame += SamplesPerFrame;
                samples_to_read -= SamplesPerFrame;
                continue;
            }
        }

        // Decode a single sample
        auto code{wavebuffer[read_index]};
        if (position_in_frame & 1) {
            code &= 0xF;
            read_index++;
        } else {
            code >>= 4;
        }

        out_buffer[write_index++] = decode_sample(Steps[code]);

        position_in_frame++;
        samples_to_read--;
    }

    context->header = header;
    context->yn0 = yn0;
    context->yn1 = yn1;

    return samples_to_process;
}

/**
 * Decode implementation.
 * Decode wavebuffers according to the given args.
 *
 * @param memory - Core memory to read data from.
 * @param args   - The wavebuffer data, and information for how to decode it.
 */
void DecodeFromWaveBuffers(Core::Memory::Memory& memory, const DecodeFromWaveBuffersArgs& args) {
    static constexpr auto EndWaveBuffer = [](auto& voice_state, auto& wavebuffer, auto& index,
                                             auto& played_samples, auto& consumed) -> void {
        voice_state.wave_buffer_valid[index] = false;
        voice_state.loop_count = 0;

        if (wavebuffer.stream_ended) {
            played_samples = 0;
        }

        index = (index + 1) % MaxWaveBuffers;
        consumed++;
    };
    auto& voice_state{*args.voice_state};
    auto remaining_sample_count{args.sample_count};
    auto fraction{voice_state.fraction};

    const auto sample_rate_ratio{Common::FixedPoint<49, 15>(
        (f32)args.source_sample_rate / (f32)args.target_sample_rate * (f32)args.pitch)};
    const auto size_required{fraction + remaining_sample_count * sample_rate_ratio};

    if (size_required < 0) {
        return;
    }

    auto pitch{PitchBySrcQuality[static_cast<u32>(args.src_quality)]};
    if (static_cast<u32>(pitch + size_required.to_int_floor()) > TempBufferSize) {
        return;
    }

    auto max_remaining_sample_count{
        ((Common::FixedPoint<17, 15>(TempBufferSize) - fraction) / sample_rate_ratio)
            .to_uint_floor()};
    max_remaining_sample_count = std::min(max_remaining_sample_count, remaining_sample_count);

    auto wavebuffers_consumed{voice_state.wave_buffers_consumed};
    auto wavebuffer_index{voice_state.wave_buffer_index};
    auto played_sample_count{voice_state.played_sample_count};

    bool is_buffer_starved{false};
    u32 offset{voice_state.offset};

    auto output_buffer{args.output};
    std::array<s16, TempBufferSize> temp_buffer{};

    while (remaining_sample_count > 0) {
        const auto samples_to_write{std::min(remaining_sample_count, max_remaining_sample_count)};
        const auto samples_to_read{
            (fraction + samples_to_write * sample_rate_ratio).to_uint_floor()};

        u32 temp_buffer_pos{0};

        if (!args.IsVoicePitchAndSrcSkippedSupported) {
            for (u32 i = 0; i < pitch; i++) {
                temp_buffer[i] = voice_state.sample_history[i];
            }
            temp_buffer_pos = pitch;
        }

        u32 samples_read{0};
        while (samples_read < samples_to_read) {
            if (wavebuffer_index >= MaxWaveBuffers) {
                LOG_ERROR(Service_Audio, "Invalid wavebuffer index! {}", wavebuffer_index);
                wavebuffer_index = 0;
                voice_state.wave_buffer_valid.fill(false);
                wavebuffers_consumed = MaxWaveBuffers;
            }

            if (!voice_state.wave_buffer_valid[wavebuffer_index]) {
                is_buffer_starved = true;
                break;
            }

            auto& wavebuffer{args.wave_buffers[wavebuffer_index]};

            if (offset == 0 && args.sample_format == SampleFormat::Adpcm &&
                wavebuffer.context != 0) {
                memory.ReadBlockUnsafe(wavebuffer.context, &voice_state.adpcm_context,
                                       wavebuffer.context_size);
            }

            auto start_offset{wavebuffer.start_offset};
            auto end_offset{wavebuffer.end_offset};

            if (wavebuffer.loop && voice_state.loop_count > 0 &&
                wavebuffer.loop_start_offset <= wavebuffer.loop_end_offset) {
                start_offset = wavebuffer.loop_start_offset;
                end_offset = wavebuffer.loop_end_offset;
            }

            DecodeArg decode_arg{
                .buffer{wavebuffer.buffer},
                .buffer_size{wavebuffer.buffer_size},
                .start_offset{start_offset},
                .end_offset{end_offset},
                .channel_count{args.channel_count},
                .coefficients{},
                .adpcm_context{nullptr},
                .target_channel{args.channel},
                .offset{offset},
                .samples_to_read{samples_to_read - samples_read},
            };

            s32 samples_decoded{0};

            switch (args.sample_format) {
            case SampleFormat::PcmInt16:
                samples_decoded = DecodePcm<s16>(
                    memory, {&temp_buffer[temp_buffer_pos], TempBufferSize - temp_buffer_pos},
                    decode_arg);
                break;

            case SampleFormat::PcmFloat:
                samples_decoded = DecodePcm<f32>(
                    memory, {&temp_buffer[temp_buffer_pos], TempBufferSize - temp_buffer_pos},
                    decode_arg);
                break;

            case SampleFormat::Adpcm: {
                decode_arg.adpcm_context = &voice_state.adpcm_context;
                memory.ReadBlockUnsafe(args.data_address, &decode_arg.coefficients, args.data_size);
                samples_decoded = DecodeAdpcm(
                    memory, {&temp_buffer[temp_buffer_pos], TempBufferSize - temp_buffer_pos},
                    decode_arg);
            } break;

            default:
                LOG_ERROR(Service_Audio, "Invalid sample format to decode {}",
                          static_cast<u32>(args.sample_format));
                samples_decoded = 0;
                break;
            }

            played_sample_count += samples_decoded;
            samples_read += samples_decoded;
            temp_buffer_pos += samples_decoded;
            offset += samples_decoded;

            if (samples_decoded && offset < end_offset - start_offset) {
                continue;
            }

            offset = 0;
            if (wavebuffer.loop) {
                voice_state.loop_count++;
                if (wavebuffer.loop_count >= 0 &&
                    (voice_state.loop_count > wavebuffer.loop_count || samples_decoded == 0)) {
                    EndWaveBuffer(voice_state, wavebuffer, wavebuffer_index, played_sample_count,
                                  wavebuffers_consumed);
                }

                if (samples_decoded == 0) {
                    is_buffer_starved = true;
                    break;
                }

                if (args.IsVoicePlayedSampleCountResetAtLoopPointSupported) {
                    played_sample_count = 0;
                }
            } else {
                EndWaveBuffer(voice_state, wavebuffer, wavebuffer_index, played_sample_count,
                              wavebuffers_consumed);
            }
        }

        if (args.IsVoicePitchAndSrcSkippedSupported) {
            if (samples_read > output_buffer.size()) {
                LOG_ERROR(Service_Audio, "Attempting to write past the end of output buffer!");
            }
            for (u32 i = 0; i < samples_read; i++) {
                output_buffer[i] = temp_buffer[i];
            }
        } else {
            std::memset(&temp_buffer[temp_buffer_pos], 0,
                        (samples_to_read - samples_read) * sizeof(s16));

            Resample(output_buffer, temp_buffer, sample_rate_ratio, fraction, samples_to_write,
                     args.src_quality);

            std::memcpy(voice_state.sample_history.data(), &temp_buffer[samples_to_read],
                        pitch * sizeof(s16));
        }

        remaining_sample_count -= samples_to_write;
        if (remaining_sample_count != 0 && is_buffer_starved) {
            LOG_ERROR(Service_Audio, "Samples remaining but buffer is starving??");
            break;
        }

        output_buffer = output_buffer.subspan(samples_to_write);
    }

    voice_state.wave_buffers_consumed = wavebuffers_consumed;
    voice_state.played_sample_count = played_sample_count;
    voice_state.wave_buffer_index = wavebuffer_index;
    voice_state.offset = offset;
    voice_state.fraction = fraction;
}

} // namespace AudioCore::Renderer