summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/scheduler.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/hle/kernel/scheduler.h')
-rw-r--r--src/core/hle/kernel/scheduler.h320
1 files changed, 0 insertions, 320 deletions
diff --git a/src/core/hle/kernel/scheduler.h b/src/core/hle/kernel/scheduler.h
deleted file mode 100644
index 68db4a5ef..000000000
--- a/src/core/hle/kernel/scheduler.h
+++ /dev/null
@@ -1,320 +0,0 @@
-// Copyright 2018 yuzu emulator team
-// Licensed under GPLv2 or any later version
-// Refer to the license.txt file included.
-
-#pragma once
-
-#include <atomic>
-#include <memory>
-#include <mutex>
-#include <vector>
-
-#include "common/common_types.h"
-#include "common/multi_level_queue.h"
-#include "common/spin_lock.h"
-#include "core/hardware_properties.h"
-#include "core/hle/kernel/thread.h"
-
-namespace Common {
-class Fiber;
-}
-
-namespace Core {
-class ARM_Interface;
-class System;
-} // namespace Core
-
-namespace Kernel {
-
-class KernelCore;
-class Process;
-class SchedulerLock;
-
-class GlobalScheduler final {
-public:
- explicit GlobalScheduler(KernelCore& kernel);
- ~GlobalScheduler();
-
- /// Adds a new thread to the scheduler
- void AddThread(std::shared_ptr<Thread> thread);
-
- /// Removes a thread from the scheduler
- void RemoveThread(std::shared_ptr<Thread> thread);
-
- /// Returns a list of all threads managed by the scheduler
- const std::vector<std::shared_ptr<Thread>>& GetThreadList() const {
- return thread_list;
- }
-
- /// Notify the scheduler a thread's status has changed.
- void AdjustSchedulingOnStatus(Thread* thread, u32 old_flags);
-
- /// Notify the scheduler a thread's priority has changed.
- void AdjustSchedulingOnPriority(Thread* thread, u32 old_priority);
-
- /// Notify the scheduler a thread's core and/or affinity mask has changed.
- void AdjustSchedulingOnAffinity(Thread* thread, u64 old_affinity_mask, s32 old_core);
-
- /**
- * Takes care of selecting the new scheduled threads in three steps:
- *
- * 1. First a thread is selected from the top of the priority queue. If no thread
- * is obtained then we move to step two, else we are done.
- *
- * 2. Second we try to get a suggested thread that's not assigned to any core or
- * that is not the top thread in that core.
- *
- * 3. Third is no suggested thread is found, we do a second pass and pick a running
- * thread in another core and swap it with its current thread.
- *
- * returns the cores needing scheduling.
- */
- u32 SelectThreads();
-
- bool HaveReadyThreads(std::size_t core_id) const {
- return !scheduled_queue[core_id].empty();
- }
-
- /**
- * Takes a thread and moves it to the back of the it's priority list.
- *
- * @note This operation can be redundant and no scheduling is changed if marked as so.
- */
- bool YieldThread(Thread* thread);
-
- /**
- * Takes a thread and moves it to the back of the it's priority list.
- * Afterwards, tries to pick a suggested thread from the suggested queue that has worse time or
- * a better priority than the next thread in the core.
- *
- * @note This operation can be redundant and no scheduling is changed if marked as so.
- */
- bool YieldThreadAndBalanceLoad(Thread* thread);
-
- /**
- * Takes a thread and moves it out of the scheduling queue.
- * and into the suggested queue. If no thread can be scheduled afterwards in that core,
- * a suggested thread is obtained instead.
- *
- * @note This operation can be redundant and no scheduling is changed if marked as so.
- */
- bool YieldThreadAndWaitForLoadBalancing(Thread* thread);
-
- /**
- * Rotates the scheduling queues of threads at a preemption priority and then does
- * some core rebalancing. Preemption priorities can be found in the array
- * 'preemption_priorities'.
- *
- * @note This operation happens every 10ms.
- */
- void PreemptThreads();
-
- u32 CpuCoresCount() const {
- return Core::Hardware::NUM_CPU_CORES;
- }
-
- void SetReselectionPending() {
- is_reselection_pending.store(true, std::memory_order_release);
- }
-
- bool IsReselectionPending() const {
- return is_reselection_pending.load(std::memory_order_acquire);
- }
-
- void Shutdown();
-
-private:
- friend class SchedulerLock;
-
- /// Lock the scheduler to the current thread.
- void Lock();
-
- /// Unlocks the scheduler, reselects threads, interrupts cores for rescheduling
- /// and reschedules current core if needed.
- void Unlock();
-
- void EnableInterruptAndSchedule(u32 cores_pending_reschedule,
- Core::EmuThreadHandle global_thread);
-
- /**
- * Add a thread to the suggested queue of a cpu core. Suggested threads may be
- * picked if no thread is scheduled to run on the core.
- */
- void Suggest(u32 priority, std::size_t core, Thread* thread);
-
- /**
- * Remove a thread to the suggested queue of a cpu core. Suggested threads may be
- * picked if no thread is scheduled to run on the core.
- */
- void Unsuggest(u32 priority, std::size_t core, Thread* thread);
-
- /**
- * Add a thread to the scheduling queue of a cpu core. The thread is added at the
- * back the queue in its priority level.
- */
- void Schedule(u32 priority, std::size_t core, Thread* thread);
-
- /**
- * Add a thread to the scheduling queue of a cpu core. The thread is added at the
- * front the queue in its priority level.
- */
- void SchedulePrepend(u32 priority, std::size_t core, Thread* thread);
-
- /// Reschedule an already scheduled thread based on a new priority
- void Reschedule(u32 priority, std::size_t core, Thread* thread);
-
- /// Unschedules a thread.
- void Unschedule(u32 priority, std::size_t core, Thread* thread);
-
- /**
- * Transfers a thread into an specific core. If the destination_core is -1
- * it will be unscheduled from its source code and added into its suggested
- * queue.
- */
- void TransferToCore(u32 priority, s32 destination_core, Thread* thread);
-
- bool AskForReselectionOrMarkRedundant(Thread* current_thread, const Thread* winner);
-
- static constexpr u32 min_regular_priority = 2;
- std::array<Common::MultiLevelQueue<Thread*, THREADPRIO_COUNT>, Core::Hardware::NUM_CPU_CORES>
- scheduled_queue;
- std::array<Common::MultiLevelQueue<Thread*, THREADPRIO_COUNT>, Core::Hardware::NUM_CPU_CORES>
- suggested_queue;
- std::atomic<bool> is_reselection_pending{false};
-
- // The priority levels at which the global scheduler preempts threads every 10 ms. They are
- // ordered from Core 0 to Core 3.
- std::array<u32, Core::Hardware::NUM_CPU_CORES> preemption_priorities = {59, 59, 59, 62};
-
- /// Scheduler lock mechanisms.
- bool is_locked{};
- std::mutex inner_lock;
- std::atomic<s64> scope_lock{};
- Core::EmuThreadHandle current_owner{Core::EmuThreadHandle::InvalidHandle()};
-
- Common::SpinLock global_list_guard{};
-
- /// Lists all thread ids that aren't deleted/etc.
- std::vector<std::shared_ptr<Thread>> thread_list;
- KernelCore& kernel;
-};
-
-class Scheduler final {
-public:
- explicit Scheduler(Core::System& system, std::size_t core_id);
- ~Scheduler();
-
- /// Returns whether there are any threads that are ready to run.
- bool HaveReadyThreads() const;
-
- /// Reschedules to the next available thread (call after current thread is suspended)
- void TryDoContextSwitch();
-
- /// The next two are for SingleCore Only.
- /// Unload current thread before preempting core.
- void Unload(Thread* thread);
- void Unload();
- /// Reload current thread after core preemption.
- void Reload(Thread* thread);
- void Reload();
-
- /// Gets the current running thread
- Thread* GetCurrentThread() const;
-
- /// Gets the currently selected thread from the top of the multilevel queue
- Thread* GetSelectedThread() const;
-
- /// Gets the timestamp for the last context switch in ticks.
- u64 GetLastContextSwitchTicks() const;
-
- bool ContextSwitchPending() const {
- return is_context_switch_pending;
- }
-
- void Initialize();
-
- /// Shutdowns the scheduler.
- void Shutdown();
-
- void OnThreadStart();
-
- std::shared_ptr<Common::Fiber>& ControlContext() {
- return switch_fiber;
- }
-
- const std::shared_ptr<Common::Fiber>& ControlContext() const {
- return switch_fiber;
- }
-
-private:
- friend class GlobalScheduler;
-
- /// Switches the CPU's active thread context to that of the specified thread
- void SwitchContext();
-
- /// When a thread wakes up, it must run this through it's new scheduler
- void SwitchContextStep2();
-
- /**
- * Called on every context switch to update the internal timestamp
- * This also updates the running time ticks for the given thread and
- * process using the following difference:
- *
- * ticks += most_recent_ticks - last_context_switch_ticks
- *
- * The internal tick timestamp for the scheduler is simply the
- * most recent tick count retrieved. No special arithmetic is
- * applied to it.
- */
- void UpdateLastContextSwitchTime(Thread* thread, Process* process);
-
- static void OnSwitch(void* this_scheduler);
- void SwitchToCurrent();
-
- std::shared_ptr<Thread> current_thread = nullptr;
- std::shared_ptr<Thread> selected_thread = nullptr;
- std::shared_ptr<Thread> current_thread_prev = nullptr;
- std::shared_ptr<Thread> selected_thread_set = nullptr;
- std::shared_ptr<Thread> idle_thread = nullptr;
-
- std::shared_ptr<Common::Fiber> switch_fiber = nullptr;
-
- Core::System& system;
- u64 last_context_switch_time = 0;
- u64 idle_selection_count = 0;
- const std::size_t core_id;
-
- Common::SpinLock guard{};
-
- bool is_context_switch_pending = false;
-};
-
-class SchedulerLock {
-public:
- [[nodiscard]] explicit SchedulerLock(KernelCore& kernel);
- ~SchedulerLock();
-
-protected:
- KernelCore& kernel;
-};
-
-class SchedulerLockAndSleep : public SchedulerLock {
-public:
- explicit SchedulerLockAndSleep(KernelCore& kernel, Handle& event_handle, Thread* time_task,
- s64 nanoseconds);
- ~SchedulerLockAndSleep();
-
- void CancelSleep() {
- sleep_cancelled = true;
- }
-
- void Release();
-
-private:
- Handle& event_handle;
- Thread* time_task;
- s64 nanoseconds;
- bool sleep_cancelled{};
-};
-
-} // namespace Kernel