summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/process_capability.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/hle/kernel/process_capability.h')
-rw-r--r--src/core/hle/kernel/process_capability.h209
1 files changed, 209 insertions, 0 deletions
diff --git a/src/core/hle/kernel/process_capability.h b/src/core/hle/kernel/process_capability.h
new file mode 100644
index 000000000..5cff10476
--- /dev/null
+++ b/src/core/hle/kernel/process_capability.h
@@ -0,0 +1,209 @@
+// Copyright 2018 yuzu emulator team
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#pragma once
+
+#include <bitset>
+
+#include "common/common_types.h"
+
+union ResultCode;
+
+namespace Kernel {
+
+class VMManager;
+
+/// Handles kernel capability descriptors that are provided by
+/// application metadata. These descriptors provide information
+/// that alters certain parameters for kernel process instance
+/// that will run said application (or applet).
+///
+/// Capabilities are a sequence of flag descriptors, that indicate various
+/// configurations and constraints for a particular process.
+///
+/// Flag types are indicated by a sequence of set low bits. E.g. the
+/// types are indicated with the low bits as follows (where x indicates "don't care"):
+///
+/// - Priority and core mask : 0bxxxxxxxxxxxx0111
+/// - Allowed service call mask: 0bxxxxxxxxxxx01111
+/// - Map physical memory : 0bxxxxxxxxx0111111
+/// - Map IO memory : 0bxxxxxxxx01111111
+/// - Interrupts : 0bxxxx011111111111
+/// - Application type : 0bxx01111111111111
+/// - Kernel version : 0bx011111111111111
+/// - Handle table size : 0b0111111111111111
+/// - Debugger flags : 0b1111111111111111
+///
+/// These are essentially a bit offset subtracted by 1 to create a mask.
+/// e.g. The first entry in the above list is simply bit 3 (value 8 -> 0b1000)
+/// subtracted by one (7 -> 0b0111)
+///
+/// An example of a bit layout (using the map physical layout):
+/// <example>
+/// The MapPhysical type indicates a sequence entry pair of:
+///
+/// [initial, memory_flags], where:
+///
+/// initial:
+/// bits:
+/// 7-24: Starting page to map memory at.
+/// 25 : Indicates if the memory should be mapped as read only.
+///
+/// memory_flags:
+/// bits:
+/// 7-20 : Number of pages to map
+/// 21-25: Seems to be reserved (still checked against though)
+/// 26 : Whether or not the memory being mapped is IO memory, or physical memory
+/// </example>
+///
+class ProcessCapabilities {
+public:
+ using InterruptCapabilities = std::bitset<1024>;
+ using SyscallCapabilities = std::bitset<128>;
+
+ ProcessCapabilities() = default;
+ ProcessCapabilities(const ProcessCapabilities&) = delete;
+ ProcessCapabilities(ProcessCapabilities&&) = default;
+
+ ProcessCapabilities& operator=(const ProcessCapabilities&) = delete;
+ ProcessCapabilities& operator=(ProcessCapabilities&&) = default;
+
+ /// Initializes this process capabilities instance for a kernel process.
+ ///
+ /// @param capabilities The capabilities to parse
+ /// @param num_capabilities The number of capabilities to parse.
+ /// @param vm_manager The memory manager to use for handling any mapping-related
+ /// operations (such as mapping IO memory, etc).
+ ///
+ /// @returns RESULT_SUCCESS if this capabilities instance was able to be initialized,
+ /// otherwise, an error code upon failure.
+ ///
+ ResultCode InitializeForKernelProcess(const u32* capabilities, std::size_t num_capabilities,
+ VMManager& vm_manager);
+
+ /// Initializes this process capabilities instance for a userland process.
+ ///
+ /// @param capabilities The capabilities to parse.
+ /// @param num_capabilities The total number of capabilities to parse.
+ /// @param vm_manager The memory manager to use for handling any mapping-related
+ /// operations (such as mapping IO memory, etc).
+ ///
+ /// @returns RESULT_SUCCESS if this capabilities instance was able to be initialized,
+ /// otherwise, an error code upon failure.
+ ///
+ ResultCode InitializeForUserProcess(const u32* capabilities, std::size_t num_capabilities,
+ VMManager& vm_manager);
+
+ /// Initializes this process capabilities instance for a process that does not
+ /// have any metadata to parse.
+ ///
+ /// This is necessary, as we allow running raw executables, and the internal
+ /// kernel process capabilities also determine what CPU cores the process is
+ /// allowed to run on, and what priorities are allowed for threads. It also
+ /// determines the max handle table size, what the program type is, whether or
+ /// not the process can be debugged, or whether it's possible for a process to
+ /// forcibly debug another process.
+ ///
+ /// Given the above, this essentially enables all capabilities across the board
+ /// for the process. It allows the process to:
+ ///
+ /// - Run on any core
+ /// - Use any thread priority
+ /// - Use the maximum amount of handles a process is allowed to.
+ /// - Be debuggable
+ /// - Forcibly debug other processes.
+ ///
+ /// Note that this is not a behavior that the kernel allows a process to do via
+ /// a single function like this. This is yuzu-specific behavior to handle
+ /// executables with no capability descriptors whatsoever to derive behavior from.
+ /// It being yuzu-specific is why this is also not the default behavior and not
+ /// done by default in the constructor.
+ ///
+ void InitializeForMetadatalessProcess();
+
+private:
+ /// Attempts to parse a given sequence of capability descriptors.
+ ///
+ /// @param capabilities The sequence of capability descriptors to parse.
+ /// @param num_capabilities The number of descriptors within the given sequence.
+ /// @param vm_manager The memory manager that will perform any memory
+ /// mapping if necessary.
+ ///
+ /// @return RESULT_SUCCESS if no errors occur, otherwise an error code.
+ ///
+ ResultCode ParseCapabilities(const u32* capabilities, std::size_t num_capabilities,
+ VMManager& vm_manager);
+
+ /// Attempts to parse a capability descriptor that is only represented by a
+ /// single flag set.
+ ///
+ /// @param set_flags Running set of flags that are used to catch
+ /// flags being initialized more than once when they shouldn't be.
+ /// @param set_svc_bits Running set of bits representing the allowed supervisor calls mask.
+ /// @param flag The flag to attempt to parse.
+ /// @param vm_manager The memory manager that will perform any memory
+ /// mapping if necessary.
+ ///
+ /// @return RESULT_SUCCESS if no errors occurred, otherwise an error code.
+ ///
+ ResultCode ParseSingleFlagCapability(u32& set_flags, u32& set_svc_bits, u32 flag,
+ VMManager& vm_manager);
+
+ /// Clears the internal state of this process capability instance. Necessary,
+ /// to have a sane starting point due to us allowing running executables without
+ /// configuration metadata. We assume a process is not going to have metadata,
+ /// and if it turns out that the process does, in fact, have metadata, then
+ /// we attempt to parse it. Thus, we need this to reset data members back to
+ /// a good state.
+ ///
+ /// DO NOT ever make this a public member function. This isn't an invariant
+ /// anything external should depend upon (and if anything comes to rely on it,
+ /// you should immediately be questioning the design of that thing, not this
+ /// class. If the kernel itself can run without depending on behavior like that,
+ /// then so can yuzu).
+ ///
+ void Clear();
+
+ /// Handles flags related to the priority and core number capability flags.
+ ResultCode HandlePriorityCoreNumFlags(u32 flags);
+
+ /// Handles flags related to determining the allowable SVC mask.
+ ResultCode HandleSyscallFlags(u32& set_svc_bits, u32 flags);
+
+ /// Handles flags related to mapping physical memory pages.
+ ResultCode HandleMapPhysicalFlags(u32 flags, u32 size_flags, VMManager& vm_manager);
+
+ /// Handles flags related to mapping IO pages.
+ ResultCode HandleMapIOFlags(u32 flags, VMManager& vm_manager);
+
+ /// Handles flags related to the interrupt capability flags.
+ ResultCode HandleInterruptFlags(u32 flags);
+
+ /// Handles flags related to the program type.
+ ResultCode HandleProgramTypeFlags(u32 flags);
+
+ /// Handles flags related to the handle table size.
+ ResultCode HandleHandleTableFlags(u32 flags);
+
+ /// Handles flags related to the kernel version capability flags.
+ ResultCode HandleKernelVersionFlags(u32 flags);
+
+ /// Handles flags related to debug-specific capabilities.
+ ResultCode HandleDebugFlags(u32 flags);
+
+ SyscallCapabilities svc_capabilities;
+ InterruptCapabilities interrupt_capabilities;
+
+ u64 core_mask = 0;
+ u64 priority_mask = 0;
+
+ u32 handle_table_size = 0;
+ u32 kernel_version = 0;
+ u32 program_type = 0;
+
+ bool is_debuggable = false;
+ bool can_force_debug = false;
+};
+
+} // namespace Kernel