diff options
author | bunnei <bunneidev@gmail.com> | 2015-08-21 00:48:09 +0200 |
---|---|---|
committer | bunnei <bunneidev@gmail.com> | 2015-08-21 00:48:09 +0200 |
commit | d8908aef6389c83590e5f6fa3a9dc5ea5fe8fced (patch) | |
tree | 8496228fd7bb7ccc83b43fca79aa64de585d90ae /src/common | |
parent | Merge pull request #1035 from darkf/mingw-fix (diff) | |
parent | emitter: Remove unnecessary defines (diff) | |
download | yuzu-d8908aef6389c83590e5f6fa3a9dc5ea5fe8fced.tar yuzu-d8908aef6389c83590e5f6fa3a9dc5ea5fe8fced.tar.gz yuzu-d8908aef6389c83590e5f6fa3a9dc5ea5fe8fced.tar.bz2 yuzu-d8908aef6389c83590e5f6fa3a9dc5ea5fe8fced.tar.lz yuzu-d8908aef6389c83590e5f6fa3a9dc5ea5fe8fced.tar.xz yuzu-d8908aef6389c83590e5f6fa3a9dc5ea5fe8fced.tar.zst yuzu-d8908aef6389c83590e5f6fa3a9dc5ea5fe8fced.zip |
Diffstat (limited to 'src/common')
-rw-r--r-- | src/common/x64/emitter.cpp | 746 | ||||
-rw-r--r-- | src/common/x64/emitter.h | 849 |
2 files changed, 773 insertions, 822 deletions
diff --git a/src/common/x64/emitter.cpp b/src/common/x64/emitter.cpp index 4b79acd1f..cf31f8d69 100644 --- a/src/common/x64/emitter.cpp +++ b/src/common/x64/emitter.cpp @@ -15,6 +15,7 @@ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ +#include <cinttypes> #include <cstring> #include "common/assert.h" @@ -25,11 +26,6 @@ #include "cpu_detect.h" #include "emitter.h" -#define PRIx64 "llx" - -// Minimize the diff against Dolphin -#define DYNA_REC JIT - namespace Gen { @@ -374,7 +370,7 @@ void XEmitter::Rex(int w, int r, int x, int b) Write8(rx); } -void XEmitter::JMP(const u8 *addr, bool force5Bytes) +void XEmitter::JMP(const u8* addr, bool force5Bytes) { u64 fn = (u64)addr; if (!force5Bytes) @@ -398,7 +394,7 @@ void XEmitter::JMP(const u8 *addr, bool force5Bytes) } } -void XEmitter::JMPptr(const OpArg &arg2) +void XEmitter::JMPptr(const OpArg& arg2) { OpArg arg = arg2; if (arg.IsImm()) ASSERT_MSG(0, "JMPptr - Imm argument"); @@ -425,7 +421,7 @@ void XEmitter::CALLptr(OpArg arg) arg.WriteRest(this); } -void XEmitter::CALL(const void *fnptr) +void XEmitter::CALL(const void* fnptr) { u64 distance = u64(fnptr) - (u64(code) + 5); ASSERT_MSG( @@ -496,7 +492,7 @@ void XEmitter::J_CC(CCFlags conditionCode, const u8* addr, bool force5bytes) } } -void XEmitter::SetJumpTarget(const FixupBranch &branch) +void XEmitter::SetJumpTarget(const FixupBranch& branch) { if (branch.type == 0) { @@ -512,30 +508,6 @@ void XEmitter::SetJumpTarget(const FixupBranch &branch) } } -// INC/DEC considered harmful on newer CPUs due to partial flag set. -// Use ADD, SUB instead. - -/* -void XEmitter::INC(int bits, OpArg arg) -{ - if (arg.IsImm()) ASSERT_MSG(0, "INC - Imm argument"); - arg.operandReg = 0; - if (bits == 16) {Write8(0x66);} - arg.WriteRex(this, bits, bits); - Write8(bits == 8 ? 0xFE : 0xFF); - arg.WriteRest(this); -} -void XEmitter::DEC(int bits, OpArg arg) -{ - if (arg.IsImm()) ASSERT_MSG(0, "DEC - Imm argument"); - arg.operandReg = 1; - if (bits == 16) {Write8(0x66);} - arg.WriteRex(this, bits, bits); - Write8(bits == 8 ? 0xFE : 0xFF); - arg.WriteRest(this); -} -*/ - //Single byte opcodes //There is no PUSHAD/POPAD in 64-bit mode. void XEmitter::INT3() {Write8(0xCC);} @@ -667,7 +639,7 @@ void XEmitter::CBW(int bits) void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);} void XEmitter::POP(X64Reg reg) {WriteSimple1Byte(32, 0x58, reg);} -void XEmitter::PUSH(int bits, const OpArg ®) +void XEmitter::PUSH(int bits, const OpArg& reg) { if (reg.IsSimpleReg()) PUSH(reg.GetSimpleReg()); @@ -703,7 +675,7 @@ void XEmitter::PUSH(int bits, const OpArg ®) } } -void XEmitter::POP(int /*bits*/, const OpArg ®) +void XEmitter::POP(int /*bits*/, const OpArg& reg) { if (reg.IsSimpleReg()) POP(reg.GetSimpleReg()); @@ -791,12 +763,12 @@ void XEmitter::WriteMulDivType(int bits, OpArg src, int ext) src.WriteRest(this); } -void XEmitter::MUL(int bits, OpArg src) {WriteMulDivType(bits, src, 4);} -void XEmitter::DIV(int bits, OpArg src) {WriteMulDivType(bits, src, 6);} -void XEmitter::IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);} -void XEmitter::IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);} -void XEmitter::NEG(int bits, OpArg src) {WriteMulDivType(bits, src, 3);} -void XEmitter::NOT(int bits, OpArg src) {WriteMulDivType(bits, src, 2);} +void XEmitter::MUL(int bits, const OpArg& src) {WriteMulDivType(bits, src, 4);} +void XEmitter::DIV(int bits, const OpArg& src) {WriteMulDivType(bits, src, 6);} +void XEmitter::IMUL(int bits, const OpArg& src) {WriteMulDivType(bits, src, 5);} +void XEmitter::IDIV(int bits, const OpArg& src) {WriteMulDivType(bits, src, 7);} +void XEmitter::NEG(int bits, const OpArg& src) {WriteMulDivType(bits, src, 3);} +void XEmitter::NOT(int bits, const OpArg& src) {WriteMulDivType(bits, src, 2);} void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep) { @@ -813,24 +785,24 @@ void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bo src.WriteRest(this); } -void XEmitter::MOVNTI(int bits, OpArg dest, X64Reg src) +void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src) { if (bits <= 16) ASSERT_MSG(0, "MOVNTI - bits<=16"); WriteBitSearchType(bits, src, dest, 0xC3); } -void XEmitter::BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit -void XEmitter::BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit +void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src) {WriteBitSearchType(bits,dest,src,0xBC);} // Bottom bit to top bit +void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src) {WriteBitSearchType(bits,dest,src,0xBD);} // Top bit to bottom bit -void XEmitter::TZCNT(int bits, X64Reg dest, OpArg src) +void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src) { CheckFlags(); if (!Common::GetCPUCaps().bmi1) ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer."); WriteBitSearchType(bits, dest, src, 0xBC, true); } -void XEmitter::LZCNT(int bits, X64Reg dest, OpArg src) +void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src) { CheckFlags(); if (!Common::GetCPUCaps().lzcnt) @@ -950,7 +922,7 @@ void XEmitter::LEA(int bits, X64Reg dest, OpArg src) } //shift can be either imm8 or cl -void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext) +void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext) { CheckFlags(); bool writeImm = false; @@ -991,16 +963,16 @@ void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext) // large rotates and shift are slower on intel than amd // intel likes to rotate by 1, and the op is smaller too -void XEmitter::ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);} -void XEmitter::ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);} -void XEmitter::RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);} -void XEmitter::RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);} -void XEmitter::SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);} -void XEmitter::SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);} -void XEmitter::SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);} +void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 0);} +void XEmitter::ROR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 1);} +void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 2);} +void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 3);} +void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 4);} +void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 5);} +void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift) {WriteShift(bits, dest, shift, 7);} // index can be either imm8 or register, don't use memory destination because it's slow -void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext) +void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext) { CheckFlags(); if (dest.IsImm()) @@ -1029,13 +1001,13 @@ void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext) } } -void XEmitter::BT(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 4);} -void XEmitter::BTS(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 5);} -void XEmitter::BTR(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 6);} -void XEmitter::BTC(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 7);} +void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 4);} +void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 5);} +void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 6);} +void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index) {WriteBitTest(bits, dest, index, 7);} //shift can be either imm8 or cl -void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift) +void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) { CheckFlags(); if (dest.IsImm()) @@ -1067,7 +1039,7 @@ void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift) } } -void XEmitter::SHLD(int bits, OpArg dest, OpArg src, OpArg shift) +void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) { CheckFlags(); if (dest.IsImm()) @@ -1111,7 +1083,7 @@ void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bit } //operand can either be immediate or register -void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const +void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg& operand, int bits) const { X64Reg _operandReg; if (IsImm()) @@ -1257,7 +1229,7 @@ void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &o } } -void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2) +void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg& a1, const OpArg& a2) { if (a1.IsImm()) { @@ -1283,24 +1255,24 @@ void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg } } -void XEmitter::ADD (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADD, a1, a2);} -void XEmitter::ADC (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADC, a1, a2);} -void XEmitter::SUB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSUB, a1, a2);} -void XEmitter::SBB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSBB, a1, a2);} -void XEmitter::AND (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmAND, a1, a2);} -void XEmitter::OR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmOR , a1, a2);} -void XEmitter::XOR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmXOR, a1, a2);} -void XEmitter::MOV (int bits, const OpArg &a1, const OpArg &a2) +void XEmitter::ADD (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADD, a1, a2);} +void XEmitter::ADC (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADC, a1, a2);} +void XEmitter::SUB (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSUB, a1, a2);} +void XEmitter::SBB (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSBB, a1, a2);} +void XEmitter::AND (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmAND, a1, a2);} +void XEmitter::OR (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmOR , a1, a2);} +void XEmitter::XOR (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmXOR, a1, a2);} +void XEmitter::MOV (int bits, const OpArg& a1, const OpArg& a2) { if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg()) LOG_ERROR(Common, "Redundant MOV @ %p - bug in JIT?", code); WriteNormalOp(this, bits, nrmMOV, a1, a2); } -void XEmitter::TEST(int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmTEST, a1, a2);} -void XEmitter::CMP (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmCMP, a1, a2);} -void XEmitter::XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);} +void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmTEST, a1, a2);} +void XEmitter::CMP (int bits, const OpArg& a1, const OpArg& a2) {CheckFlags(); WriteNormalOp(this, bits, nrmCMP, a1, a2);} +void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);} -void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2) +void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2) { CheckFlags(); if (bits == 8) @@ -1353,7 +1325,7 @@ void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2) } } -void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a) +void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a) { CheckFlags(); if (bits == 8) @@ -1390,7 +1362,7 @@ void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extr arg.WriteRest(this, extrabytes); } -void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) +void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) { WriteAVXOp(opPrefix, op, regOp, INVALID_REG, arg, extrabytes); } @@ -1400,25 +1372,25 @@ static int GetVEXmmmmm(u16 op) // Currently, only 0x38 and 0x3A are used as secondary escape byte. if ((op >> 8) == 0x3A) return 3; - else if ((op >> 8) == 0x38) + if ((op >> 8) == 0x38) return 2; - else - return 1; + + return 1; } static int GetVEXpp(u8 opPrefix) { if (opPrefix == 0x66) return 1; - else if (opPrefix == 0xF3) + if (opPrefix == 0xF3) return 2; - else if (opPrefix == 0xF2) + if (opPrefix == 0xF2) return 3; - else - return 0; + + return 0; } -void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) +void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { if (!Common::GetCPUCaps().avx) ASSERT_MSG(0, "Trying to use AVX on a system that doesn't support it. Bad programmer."); @@ -1431,7 +1403,7 @@ void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpA } // Like the above, but more general; covers GPR-based VEX operations, like BMI1/2 -void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) +void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { if (size != 32 && size != 64) ASSERT_MSG(0, "VEX GPR instructions only support 32-bit and 64-bit modes!"); @@ -1442,7 +1414,7 @@ void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg r arg.WriteRest(this, extrabytes, regOp1); } -void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) +void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { CheckFlags(); if (!Common::GetCPUCaps().bmi1) @@ -1450,7 +1422,7 @@ void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); } -void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes) +void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes) { CheckFlags(); if (!Common::GetCPUCaps().bmi2) @@ -1517,135 +1489,135 @@ void XEmitter::WriteMXCSR(OpArg arg, int ext) arg.WriteRest(this); } -void XEmitter::STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);} -void XEmitter::LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);} - -void XEmitter::MOVNTDQ(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);} -void XEmitter::MOVNTPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVNTP, regOp, arg);} -void XEmitter::MOVNTPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTP, regOp, arg);} - -void XEmitter::ADDSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseADD, regOp, arg);} -void XEmitter::ADDSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseADD, regOp, arg);} -void XEmitter::SUBSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseSUB, regOp, arg);} -void XEmitter::SUBSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseSUB, regOp, arg);} -void XEmitter::CMPSS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare);} -void XEmitter::CMPSD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare);} -void XEmitter::MULSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMUL, regOp, arg);} -void XEmitter::MULSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMUL, regOp, arg);} -void XEmitter::DIVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseDIV, regOp, arg);} -void XEmitter::DIVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseDIV, regOp, arg);} -void XEmitter::MINSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMIN, regOp, arg);} -void XEmitter::MINSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMIN, regOp, arg);} -void XEmitter::MAXSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMAX, regOp, arg);} -void XEmitter::MAXSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMAX, regOp, arg);} -void XEmitter::SQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseSQRT, regOp, arg);} -void XEmitter::SQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseSQRT, regOp, arg);} -void XEmitter::RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseRSQRT, regOp, arg);} - -void XEmitter::ADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseADD, regOp, arg);} -void XEmitter::ADDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseADD, regOp, arg);} -void XEmitter::SUBPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseSUB, regOp, arg);} -void XEmitter::SUBPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseSUB, regOp, arg);} -void XEmitter::CMPPS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare);} -void XEmitter::CMPPD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare);} -void XEmitter::ANDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseAND, regOp, arg);} -void XEmitter::ANDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseAND, regOp, arg);} -void XEmitter::ANDNPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseANDN, regOp, arg);} -void XEmitter::ANDNPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseANDN, regOp, arg);} -void XEmitter::ORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseOR, regOp, arg);} -void XEmitter::ORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseOR, regOp, arg);} -void XEmitter::XORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseXOR, regOp, arg);} -void XEmitter::XORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseXOR, regOp, arg);} -void XEmitter::MULPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMUL, regOp, arg);} -void XEmitter::MULPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMUL, regOp, arg);} -void XEmitter::DIVPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseDIV, regOp, arg);} -void XEmitter::DIVPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseDIV, regOp, arg);} -void XEmitter::MINPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMIN, regOp, arg);} -void XEmitter::MINPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMIN, regOp, arg);} -void XEmitter::MAXPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMAX, regOp, arg);} -void XEmitter::MAXPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMAX, regOp, arg);} -void XEmitter::SQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseSQRT, regOp, arg);} -void XEmitter::SQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseSQRT, regOp, arg);} -void XEmitter::RCPPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseRCP, regOp, arg); } -void XEmitter::RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseRSQRT, regOp, arg);} -void XEmitter::SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x00, sseSHUF, regOp, arg,1); Write8(shuffle);} -void XEmitter::SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, sseSHUF, regOp, arg,1); Write8(shuffle);} - -void XEmitter::HADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseHADD, regOp, arg);} - -void XEmitter::COMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseCOMIS, regOp, arg);} //weird that these should be packed -void XEmitter::COMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseCOMIS, regOp, arg);} //ordered -void XEmitter::UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseUCOMIS, regOp, arg);} //unordered -void XEmitter::UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseUCOMIS, regOp, arg);} - -void XEmitter::MOVAPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);} -void XEmitter::MOVAPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);} -void XEmitter::MOVAPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);} -void XEmitter::MOVAPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);} - -void XEmitter::MOVUPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);} -void XEmitter::MOVUPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);} -void XEmitter::MOVUPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);} -void XEmitter::MOVUPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);} - -void XEmitter::MOVDQA(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);} -void XEmitter::MOVDQA(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);} -void XEmitter::MOVDQU(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);} -void XEmitter::MOVDQU(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);} - -void XEmitter::MOVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);} -void XEmitter::MOVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);} -void XEmitter::MOVSS(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);} -void XEmitter::MOVSD(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);} - -void XEmitter::MOVLPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); } -void XEmitter::MOVLPD(X64Reg regOp, OpArg arg) { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); } -void XEmitter::MOVLPS(OpArg arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); } -void XEmitter::MOVLPD(OpArg arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); } - -void XEmitter::MOVHPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); } -void XEmitter::MOVHPD(X64Reg regOp, OpArg arg) { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); } -void XEmitter::MOVHPS(OpArg arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); } -void XEmitter::MOVHPD(OpArg arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); } +void XEmitter::STMXCSR(const OpArg& memloc) {WriteMXCSR(memloc, 3);} +void XEmitter::LDMXCSR(const OpArg& memloc) {WriteMXCSR(memloc, 2);} + +void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);} +void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVNTP, regOp, arg);} +void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTP, regOp, arg);} + +void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseADD, regOp, arg);} +void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseADD, regOp, arg);} +void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseSUB, regOp, arg);} +void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseSUB, regOp, arg);} +void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare);} +void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare);} +void XEmitter::MULSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMUL, regOp, arg);} +void XEmitter::MULSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMUL, regOp, arg);} +void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseDIV, regOp, arg);} +void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseDIV, regOp, arg);} +void XEmitter::MINSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMIN, regOp, arg);} +void XEmitter::MINSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMIN, regOp, arg);} +void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMAX, regOp, arg);} +void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMAX, regOp, arg);} +void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseSQRT, regOp, arg);} +void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseSQRT, regOp, arg);} +void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseRSQRT, regOp, arg);} + +void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseADD, regOp, arg);} +void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseADD, regOp, arg);} +void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseSUB, regOp, arg);} +void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseSUB, regOp, arg);} +void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare);} +void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare) {WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare);} +void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseAND, regOp, arg);} +void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseAND, regOp, arg);} +void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseANDN, regOp, arg);} +void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseANDN, regOp, arg);} +void XEmitter::ORPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseOR, regOp, arg);} +void XEmitter::ORPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseOR, regOp, arg);} +void XEmitter::XORPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseXOR, regOp, arg);} +void XEmitter::XORPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseXOR, regOp, arg);} +void XEmitter::MULPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMUL, regOp, arg);} +void XEmitter::MULPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMUL, regOp, arg);} +void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseDIV, regOp, arg);} +void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseDIV, regOp, arg);} +void XEmitter::MINPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMIN, regOp, arg);} +void XEmitter::MINPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMIN, regOp, arg);} +void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMAX, regOp, arg);} +void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMAX, regOp, arg);} +void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseSQRT, regOp, arg);} +void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseSQRT, regOp, arg);} +void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseRCP, regOp, arg); } +void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseRSQRT, regOp, arg);} +void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x00, sseSHUF, regOp, arg,1); Write8(shuffle);} +void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x66, sseSHUF, regOp, arg,1); Write8(shuffle);} + +void XEmitter::HADDPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseHADD, regOp, arg);} + +void XEmitter::COMISS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseCOMIS, regOp, arg);} //weird that these should be packed +void XEmitter::COMISD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseCOMIS, regOp, arg);} //ordered +void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseUCOMIS, regOp, arg);} //unordered +void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseUCOMIS, regOp, arg);} + +void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);} +void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);} +void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);} +void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);} + +void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);} +void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);} +void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);} +void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);} + +void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);} +void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);} +void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);} +void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);} + +void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);} +void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);} +void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);} +void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp) {WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);} + +void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); } +void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); } +void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); } +void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); } + +void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); } +void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg) { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); } +void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); } +void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); } void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));} void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));} -void XEmitter::CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5A, regOp, arg);} -void XEmitter::CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5A, regOp, arg);} +void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, 0x5A, regOp, arg);} +void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0x5A, regOp, arg);} -void XEmitter::CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x5A, regOp, arg);} -void XEmitter::CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5A, regOp, arg);} -void XEmitter::CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2D, regOp, arg);} -void XEmitter::CVTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2D, regOp, arg);} -void XEmitter::CVTSI2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2A, regOp, arg);} -void XEmitter::CVTSI2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2A, regOp, arg);} +void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x5A, regOp, arg);} +void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x5A, regOp, arg);} +void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2D, regOp, arg);} +void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2D, regOp, arg);} +void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2A, regOp, arg);} +void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2A, regOp, arg);} -void XEmitter::CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0xE6, regOp, arg);} -void XEmitter::CVTDQ2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5B, regOp, arg);} -void XEmitter::CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0xE6, regOp, arg);} -void XEmitter::CVTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5B, regOp, arg);} +void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0xE6, regOp, arg);} +void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x00, 0x5B, regOp, arg);} +void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0xE6, regOp, arg);} +void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0x5B, regOp, arg);} -void XEmitter::CVTTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2C, regOp, arg);} -void XEmitter::CVTTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2C, regOp, arg);} -void XEmitter::CVTTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5B, regOp, arg);} -void XEmitter::CVTTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0xE6, regOp, arg);} +void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF2, 0x2C, regOp, arg);} +void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x2C, regOp, arg);} +void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0xF3, 0x5B, regOp, arg);} +void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg) {WriteSSEOp(0x66, 0xE6, regOp, arg);} void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) {WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));} -void XEmitter::MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x50, dest, arg);} -void XEmitter::MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x50, dest, arg);} +void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x50, dest, arg);} +void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x50, dest, arg);} -void XEmitter::LDDQU(X64Reg dest, OpArg arg) {WriteSSEOp(0xF2, sseLDDQU, dest, arg);} // For integer data only +void XEmitter::LDDQU(X64Reg dest, const OpArg& arg) {WriteSSEOp(0xF2, sseLDDQU, dest, arg);} // For integer data only // THESE TWO ARE UNTESTED. -void XEmitter::UNPCKLPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x14, dest, arg);} -void XEmitter::UNPCKHPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x15, dest, arg);} +void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x14, dest, arg);} +void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x00, 0x15, dest, arg);} -void XEmitter::UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x14, dest, arg);} -void XEmitter::UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x15, dest, arg);} +void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x14, dest, arg);} +void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x15, dest, arg);} -void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg) +void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg) { if (Common::GetCPUCaps().sse3) { @@ -1663,9 +1635,9 @@ void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg) //There are a few more left // Also some integer instructions are missing -void XEmitter::PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x6B, dest, arg);} -void XEmitter::PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x63, dest, arg);} -void XEmitter::PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x67, dest, arg);} +void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x6B, dest, arg);} +void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x63, dest, arg);} +void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x67, dest, arg);} void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x60, dest, arg);} void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x61, dest, arg);} @@ -1690,7 +1662,7 @@ void XEmitter::PSRLQ(X64Reg reg, int shift) Write8(shift); } -void XEmitter::PSRLQ(X64Reg reg, OpArg arg) +void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg) { WriteSSEOp(0x66, 0xd3, reg, arg); } @@ -1735,212 +1707,212 @@ void XEmitter::PSRAD(X64Reg reg, int shift) Write8(shift); } -void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) +void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) { if (!Common::GetCPUCaps().ssse3) ASSERT_MSG(0, "Trying to use SSSE3 on a system that doesn't support it. Bad programmer."); WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); } -void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) +void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) { if (!Common::GetCPUCaps().sse4_1) ASSERT_MSG(0, "Trying to use SSE4.1 on a system that doesn't support it. Bad programmer."); WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); } -void XEmitter::PSHUFB(X64Reg dest, OpArg arg) {WriteSSSE3Op(0x66, 0x3800, dest, arg);} -void XEmitter::PTEST(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3817, dest, arg);} -void XEmitter::PACKUSDW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x382b, dest, arg);} -void XEmitter::DPPS(X64Reg dest, OpArg arg, u8 mask) {WriteSSE41Op(0x66, 0x3A40, dest, arg, 1); Write8(mask);} - -void XEmitter::PMINSB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3838, dest, arg);} -void XEmitter::PMINSD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3839, dest, arg);} -void XEmitter::PMINUW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383a, dest, arg);} -void XEmitter::PMINUD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383b, dest, arg);} -void XEmitter::PMAXSB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383c, dest, arg);} -void XEmitter::PMAXSD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383d, dest, arg);} -void XEmitter::PMAXUW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383e, dest, arg);} -void XEmitter::PMAXUD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383f, dest, arg);} - -void XEmitter::PMOVSXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3820, dest, arg);} -void XEmitter::PMOVSXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3821, dest, arg);} -void XEmitter::PMOVSXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3822, dest, arg);} -void XEmitter::PMOVSXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3823, dest, arg);} -void XEmitter::PMOVSXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3824, dest, arg);} -void XEmitter::PMOVSXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3825, dest, arg);} -void XEmitter::PMOVZXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3830, dest, arg);} -void XEmitter::PMOVZXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3831, dest, arg);} -void XEmitter::PMOVZXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3832, dest, arg);} -void XEmitter::PMOVZXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3833, dest, arg);} -void XEmitter::PMOVZXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3834, dest, arg);} -void XEmitter::PMOVZXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3835, dest, arg);} - -void XEmitter::PBLENDVB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3810, dest, arg);} -void XEmitter::BLENDVPS(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3814, dest, arg);} -void XEmitter::BLENDVPD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3815, dest, arg);} +void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg) {WriteSSSE3Op(0x66, 0x3800, dest, arg);} +void XEmitter::PTEST(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3817, dest, arg);} +void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x382b, dest, arg);} +void XEmitter::DPPS(X64Reg dest, const OpArg& arg, u8 mask) {WriteSSE41Op(0x66, 0x3A40, dest, arg, 1); Write8(mask);} + +void XEmitter::PMINSB(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3838, dest, arg);} +void XEmitter::PMINSD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3839, dest, arg);} +void XEmitter::PMINUW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383a, dest, arg);} +void XEmitter::PMINUD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383b, dest, arg);} +void XEmitter::PMAXSB(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383c, dest, arg);} +void XEmitter::PMAXSD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383d, dest, arg);} +void XEmitter::PMAXUW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383e, dest, arg);} +void XEmitter::PMAXUD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x383f, dest, arg);} + +void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3820, dest, arg);} +void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3821, dest, arg);} +void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3822, dest, arg);} +void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3823, dest, arg);} +void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3824, dest, arg);} +void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3825, dest, arg);} +void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3830, dest, arg);} +void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3831, dest, arg);} +void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3832, dest, arg);} +void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3833, dest, arg);} +void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3834, dest, arg);} +void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3835, dest, arg);} + +void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3810, dest, arg);} +void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3814, dest, arg);} +void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg) {WriteSSE41Op(0x66, 0x3815, dest, arg);} void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); Write8(blend); } void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); Write8(blend); } -void XEmitter::ROUNDSS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1); Write8(mode);} -void XEmitter::ROUNDSD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1); Write8(mode);} -void XEmitter::ROUNDPS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A08, dest, arg, 1); Write8(mode);} -void XEmitter::ROUNDPD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A09, dest, arg, 1); Write8(mode);} +void XEmitter::ROUNDSS(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1); Write8(mode);} +void XEmitter::ROUNDSD(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1); Write8(mode);} +void XEmitter::ROUNDPS(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A08, dest, arg, 1); Write8(mode);} +void XEmitter::ROUNDPD(X64Reg dest, const OpArg& arg, u8 mode) {WriteSSE41Op(0x66, 0x3A09, dest, arg, 1); Write8(mode);} -void XEmitter::PAND(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDB, dest, arg);} -void XEmitter::PANDN(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDF, dest, arg);} -void XEmitter::PXOR(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEF, dest, arg);} -void XEmitter::POR(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEB, dest, arg);} +void XEmitter::PAND(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDB, dest, arg);} +void XEmitter::PANDN(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDF, dest, arg);} +void XEmitter::PXOR(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEF, dest, arg);} +void XEmitter::POR(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEB, dest, arg);} -void XEmitter::PADDB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFC, dest, arg);} -void XEmitter::PADDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFD, dest, arg);} -void XEmitter::PADDD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFE, dest, arg);} -void XEmitter::PADDQ(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD4, dest, arg);} +void XEmitter::PADDB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFC, dest, arg);} +void XEmitter::PADDW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFD, dest, arg);} +void XEmitter::PADDD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFE, dest, arg);} +void XEmitter::PADDQ(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD4, dest, arg);} -void XEmitter::PADDSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEC, dest, arg);} -void XEmitter::PADDSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xED, dest, arg);} -void XEmitter::PADDUSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDC, dest, arg);} -void XEmitter::PADDUSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDD, dest, arg);} +void XEmitter::PADDSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEC, dest, arg);} +void XEmitter::PADDSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xED, dest, arg);} +void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDC, dest, arg);} +void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDD, dest, arg);} -void XEmitter::PSUBB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF8, dest, arg);} -void XEmitter::PSUBW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF9, dest, arg);} -void XEmitter::PSUBD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFA, dest, arg);} -void XEmitter::PSUBQ(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFB, dest, arg);} +void XEmitter::PSUBB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF8, dest, arg);} +void XEmitter::PSUBW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF9, dest, arg);} +void XEmitter::PSUBD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFA, dest, arg);} +void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xFB, dest, arg);} -void XEmitter::PSUBSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE8, dest, arg);} -void XEmitter::PSUBSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE9, dest, arg);} -void XEmitter::PSUBUSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD8, dest, arg);} -void XEmitter::PSUBUSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD9, dest, arg);} +void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE8, dest, arg);} +void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE9, dest, arg);} +void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD8, dest, arg);} +void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD9, dest, arg);} -void XEmitter::PAVGB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE0, dest, arg);} -void XEmitter::PAVGW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE3, dest, arg);} +void XEmitter::PAVGB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE0, dest, arg);} +void XEmitter::PAVGW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xE3, dest, arg);} -void XEmitter::PCMPEQB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x74, dest, arg);} -void XEmitter::PCMPEQW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x75, dest, arg);} -void XEmitter::PCMPEQD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x76, dest, arg);} +void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x74, dest, arg);} +void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x75, dest, arg);} +void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x76, dest, arg);} -void XEmitter::PCMPGTB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x64, dest, arg);} -void XEmitter::PCMPGTW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x65, dest, arg);} -void XEmitter::PCMPGTD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x66, dest, arg);} +void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x64, dest, arg);} +void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x65, dest, arg);} +void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0x66, dest, arg);} -void XEmitter::PEXTRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(0x66, 0xC5, dest, arg, 1); Write8(subreg);} -void XEmitter::PINSRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(0x66, 0xC4, dest, arg, 1); Write8(subreg);} +void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg) {WriteSSEOp(0x66, 0xC5, dest, arg, 1); Write8(subreg);} +void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg) {WriteSSEOp(0x66, 0xC4, dest, arg, 1); Write8(subreg);} -void XEmitter::PMADDWD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF5, dest, arg); } -void XEmitter::PSADBW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF6, dest, arg);} +void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF5, dest, arg); } +void XEmitter::PSADBW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xF6, dest, arg);} -void XEmitter::PMAXSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEE, dest, arg); } -void XEmitter::PMAXUB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDE, dest, arg); } -void XEmitter::PMINSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEA, dest, arg); } -void XEmitter::PMINUB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDA, dest, arg); } +void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEE, dest, arg); } +void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDE, dest, arg); } +void XEmitter::PMINSW(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xEA, dest, arg); } +void XEmitter::PMINUB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xDA, dest, arg); } -void XEmitter::PMOVMSKB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD7, dest, arg); } -void XEmitter::PSHUFD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle);} -void XEmitter::PSHUFLW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle);} -void XEmitter::PSHUFHW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle);} +void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg) {WriteSSEOp(0x66, 0xD7, dest, arg); } +void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle);} +void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle);} +void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle) {WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle);} // VEX -void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);} -void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);} -void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);} -void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);} -void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);} -void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);} -void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);} -void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);} -void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);} -void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle) {WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle);} -void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg){WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);} -void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg){WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);} - -void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); } -void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); } -void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); } -void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); } -void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); } -void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); } -void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); } -void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); } - -void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); } -void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); } -void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); } -void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); } - -void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg); } -void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg); } -void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg); } -void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg, 1); } -void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg, 1); } -void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg, 1); } -void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg); } -void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg); } -void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg); } -void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg, 1); } -void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg, 1); } -void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg, 1); } -void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg); } -void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg); } -void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg); } -void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg, 1); } -void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg, 1); } -void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg, 1); } -void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg); } -void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg); } -void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg); } -void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg, 1); } -void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg, 1); } -void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg); } -void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg); } -void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg); } -void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg); } -void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg); } -void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg); } -void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg); } -void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg); } -void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg); } -void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg); } -void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg); } -void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg); } -void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg, 1); } -void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg, 1); } -void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg); } -void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg); } -void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg); } -void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg, 1); } -void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg, 1); } -void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg, 1); } -void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg); } -void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg); } -void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg); } -void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg, 1); } -void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg, 1); } -void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg, 1); } - -void XEmitter::SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);} -void XEmitter::SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);} -void XEmitter::SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);} -void XEmitter::RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate) {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);} -void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);} -void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);} -void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);} -void XEmitter::BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);} -void XEmitter::BLSR(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);} -void XEmitter::BLSMSK(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);} -void XEmitter::BLSI(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);} -void XEmitter::BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);} -void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);} +void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);} +void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);} +void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);} +void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);} +void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);} +void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);} +void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);} +void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);} +void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);} +void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) {WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle);} +void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg){WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);} +void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg){WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);} + +void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); } +void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); } +void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); } +void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); } +void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); } +void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); } +void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); } +void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); } + +void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); } +void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); } +void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); } +void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); } + +void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg); } +void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg); } +void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg); } +void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg, 1); } +void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg, 1); } +void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg, 1); } +void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg); } +void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg); } +void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg); } +void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg, 1); } +void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg, 1); } +void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg, 1); } +void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg); } +void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg); } +void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg); } +void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg, 1); } +void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg, 1); } +void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg, 1); } +void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg); } +void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg); } +void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg); } +void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg, 1); } +void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg, 1); } +void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg); } +void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg); } +void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg); } +void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg); } +void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg); } +void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg); } +void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg); } +void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg); } +void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg); } +void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg); } +void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg); } +void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg); } +void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg, 1); } +void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg, 1); } +void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg); } +void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg); } +void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg); } +void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg, 1); } +void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg, 1); } +void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg, 1); } +void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg); } +void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg); } +void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg); } +void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg, 1); } +void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg, 1); } +void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg, 1); } + +void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);} +void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);} +void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);} +void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate) {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);} +void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);} +void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);} +void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);} +void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);} +void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);} +void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);} +void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);} +void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);} +void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);} // Prefixes @@ -1956,7 +1928,7 @@ void XEmitter::FWAIT() } // TODO: make this more generic -void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg) +void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg) { int mf = 0; ASSERT_MSG(!(bits == 80 && op_80b == floatINVALID), "WriteFloatLoadStore: 80 bits not supported for this instruction"); @@ -1974,9 +1946,9 @@ void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg a arg.WriteRest(this, 0, (X64Reg) op); } -void XEmitter::FLD(int bits, OpArg src) {WriteFloatLoadStore(bits, floatLD, floatLD80, src);} -void XEmitter::FST(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatST, floatINVALID, dest);} -void XEmitter::FSTP(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);} +void XEmitter::FLD(int bits, const OpArg& src) {WriteFloatLoadStore(bits, floatLD, floatLD80, src);} +void XEmitter::FST(int bits, const OpArg& dest) {WriteFloatLoadStore(bits, floatST, floatINVALID, dest);} +void XEmitter::FSTP(int bits, const OpArg& dest) {WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);} void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); } void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); } diff --git a/src/common/x64/emitter.h b/src/common/x64/emitter.h index e9c924126..86f4a1fff 100644 --- a/src/common/x64/emitter.h +++ b/src/common/x64/emitter.h @@ -328,8 +328,6 @@ enum SSECompare ORD, }; -typedef const u8* JumpTarget; - class XEmitter { friend struct OpArg; // for Write8 etc @@ -344,27 +342,27 @@ private: void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg); void WriteMulDivType(int bits, OpArg src, int ext); void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false); - void WriteShift(int bits, OpArg dest, OpArg &shift, int ext); - void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext); + void WriteShift(int bits, OpArg dest, const OpArg& shift, int ext); + void WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext); void WriteMXCSR(OpArg arg, int ext); void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0); - void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0); - void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0); - void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0); - void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0); - void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0); - void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0); - void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0); - void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg); - void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2); + void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0); + void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0); + void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0); + void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0); + void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0); + void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0); + void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int extrabytes = 0); + void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg); + void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg& a1, const OpArg& a2); void ABI_CalculateFrameSize(u32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp); protected: - inline void Write8(u8 value) {*code++ = value;} - inline void Write16(u16 value) {*(u16*)code = (value); code += 2;} - inline void Write32(u32 value) {*(u32*)code = (value); code += 4;} - inline void Write64(u64 value) {*(u64*)code = (value); code += 8;} + void Write8(u8 value) {*code++ = value;} + void Write16(u16 value) {*(u16*)code = (value); code += 2;} + void Write32(u32 value) {*(u32*)code = (value); code += 4;} + void Write64(u64 value) {*(u64*)code = (value); code += 8;} public: XEmitter() { code = nullptr; flags_locked = false; } @@ -413,8 +411,8 @@ public: // Stack control void PUSH(X64Reg reg); void POP(X64Reg reg); - void PUSH(int bits, const OpArg ®); - void POP(int bits, const OpArg ®); + void PUSH(int bits, const OpArg& reg); + void POP(int bits, const OpArg& reg); void PUSHF(); void POPF(); @@ -424,21 +422,19 @@ public: void UD2(); FixupBranch J(bool force5bytes = false); - void JMP(const u8 * addr, bool force5Bytes = false); - void JMP(OpArg arg); - void JMPptr(const OpArg &arg); + void JMP(const u8* addr, bool force5Bytes = false); + void JMPptr(const OpArg& arg); void JMPself(); //infinite loop! #ifdef CALL #undef CALL #endif - void CALL(const void *fnptr); + void CALL(const void* fnptr); void CALLptr(OpArg arg); FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false); - //void J_CC(CCFlags conditionCode, JumpTarget target); - void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false); + void J_CC(CCFlags conditionCode, const u8* addr, bool force5Bytes = false); - void SetJumpTarget(const FixupBranch &branch); + void SetJumpTarget(const FixupBranch& branch); void SETcc(CCFlags flag, OpArg dest); // Note: CMOV brings small if any benefit on current cpus. @@ -450,8 +446,8 @@ public: void SFENCE(); // Bit scan - void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit - void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit + void BSF(int bits, X64Reg dest, const OpArg& src); // Bottom bit to top bit + void BSR(int bits, X64Reg dest, const OpArg& src); // Top bit to bottom bit // Cache control enum PrefetchLevel @@ -462,67 +458,67 @@ public: PF_T2, //Levels 3+ (aliased to T0 on AMD) }; void PREFETCH(PrefetchLevel level, OpArg arg); - void MOVNTI(int bits, OpArg dest, X64Reg src); - void MOVNTDQ(OpArg arg, X64Reg regOp); - void MOVNTPS(OpArg arg, X64Reg regOp); - void MOVNTPD(OpArg arg, X64Reg regOp); + void MOVNTI(int bits, const OpArg& dest, X64Reg src); + void MOVNTDQ(const OpArg& arg, X64Reg regOp); + void MOVNTPS(const OpArg& arg, X64Reg regOp); + void MOVNTPD(const OpArg& arg, X64Reg regOp); // Multiplication / division - void MUL(int bits, OpArg src); //UNSIGNED - void IMUL(int bits, OpArg src); //SIGNED - void IMUL(int bits, X64Reg regOp, OpArg src); - void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm); - void DIV(int bits, OpArg src); - void IDIV(int bits, OpArg src); + void MUL(int bits, const OpArg& src); //UNSIGNED + void IMUL(int bits, const OpArg& src); //SIGNED + void IMUL(int bits, X64Reg regOp, const OpArg& src); + void IMUL(int bits, X64Reg regOp, const OpArg& src, const OpArg& imm); + void DIV(int bits, const OpArg& src); + void IDIV(int bits, const OpArg& src); // Shift - void ROL(int bits, OpArg dest, OpArg shift); - void ROR(int bits, OpArg dest, OpArg shift); - void RCL(int bits, OpArg dest, OpArg shift); - void RCR(int bits, OpArg dest, OpArg shift); - void SHL(int bits, OpArg dest, OpArg shift); - void SHR(int bits, OpArg dest, OpArg shift); - void SAR(int bits, OpArg dest, OpArg shift); + void ROL(int bits, const OpArg& dest, const OpArg& shift); + void ROR(int bits, const OpArg& dest, const OpArg& shift); + void RCL(int bits, const OpArg& dest, const OpArg& shift); + void RCR(int bits, const OpArg& dest, const OpArg& shift); + void SHL(int bits, const OpArg& dest, const OpArg& shift); + void SHR(int bits, const OpArg& dest, const OpArg& shift); + void SAR(int bits, const OpArg& dest, const OpArg& shift); // Bit Test - void BT(int bits, OpArg dest, OpArg index); - void BTS(int bits, OpArg dest, OpArg index); - void BTR(int bits, OpArg dest, OpArg index); - void BTC(int bits, OpArg dest, OpArg index); + void BT(int bits, const OpArg& dest, const OpArg& index); + void BTS(int bits, const OpArg& dest, const OpArg& index); + void BTR(int bits, const OpArg& dest, const OpArg& index); + void BTC(int bits, const OpArg& dest, const OpArg& index); // Double-Precision Shift - void SHRD(int bits, OpArg dest, OpArg src, OpArg shift); - void SHLD(int bits, OpArg dest, OpArg src, OpArg shift); + void SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift); + void SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift); // Extend EAX into EDX in various ways void CWD(int bits = 16); - inline void CDQ() {CWD(32);} - inline void CQO() {CWD(64);} + void CDQ() {CWD(32);} + void CQO() {CWD(64);} void CBW(int bits = 8); - inline void CWDE() {CBW(16);} - inline void CDQE() {CBW(32);} + void CWDE() {CBW(16);} + void CDQE() {CBW(32);} // Load effective address void LEA(int bits, X64Reg dest, OpArg src); // Integer arithmetic - void NEG (int bits, OpArg src); - void ADD (int bits, const OpArg &a1, const OpArg &a2); - void ADC (int bits, const OpArg &a1, const OpArg &a2); - void SUB (int bits, const OpArg &a1, const OpArg &a2); - void SBB (int bits, const OpArg &a1, const OpArg &a2); - void AND (int bits, const OpArg &a1, const OpArg &a2); - void CMP (int bits, const OpArg &a1, const OpArg &a2); + void NEG(int bits, const OpArg& src); + void ADD(int bits, const OpArg& a1, const OpArg& a2); + void ADC(int bits, const OpArg& a1, const OpArg& a2); + void SUB(int bits, const OpArg& a1, const OpArg& a2); + void SBB(int bits, const OpArg& a1, const OpArg& a2); + void AND(int bits, const OpArg& a1, const OpArg& a2); + void CMP(int bits, const OpArg& a1, const OpArg& a2); // Bit operations - void NOT (int bits, OpArg src); - void OR (int bits, const OpArg &a1, const OpArg &a2); - void XOR (int bits, const OpArg &a1, const OpArg &a2); - void MOV (int bits, const OpArg &a1, const OpArg &a2); - void TEST(int bits, const OpArg &a1, const OpArg &a2); + void NOT (int bits, const OpArg& src); + void OR(int bits, const OpArg& a1, const OpArg& a2); + void XOR(int bits, const OpArg& a1, const OpArg& a2); + void MOV(int bits, const OpArg& a1, const OpArg& a2); + void TEST(int bits, const OpArg& a1, const OpArg& a2); // Are these useful at all? Consider removing. - void XCHG(int bits, const OpArg &a1, const OpArg &a2); + void XCHG(int bits, const OpArg& a1, const OpArg& a2); void XCHG_AHAL(); // Byte swapping (32 and 64-bit only). @@ -536,13 +532,13 @@ public: void MOVBE(int dbits, const OpArg& dest, const OpArg& src); // Available only on AMD >= Phenom or Intel >= Haswell - void LZCNT(int bits, X64Reg dest, OpArg src); + void LZCNT(int bits, X64Reg dest, const OpArg& src); // Note: this one is actually part of BMI1 - void TZCNT(int bits, X64Reg dest, OpArg src); + void TZCNT(int bits, X64Reg dest, const OpArg& src); // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64) - void STMXCSR(OpArg memloc); - void LDMXCSR(OpArg memloc); + void STMXCSR(const OpArg& memloc); + void LDMXCSR(const OpArg& memloc); // Prefixes void LOCK(); @@ -569,259 +565,242 @@ public: x87_FPUBusy = 0x8000, }; - void FLD(int bits, OpArg src); - void FST(int bits, OpArg dest); - void FSTP(int bits, OpArg dest); + void FLD(int bits, const OpArg& src); + void FST(int bits, const OpArg& dest); + void FSTP(int bits, const OpArg& dest); void FNSTSW_AX(); void FWAIT(); // SSE/SSE2: Floating point arithmetic - void ADDSS(X64Reg regOp, OpArg arg); - void ADDSD(X64Reg regOp, OpArg arg); - void SUBSS(X64Reg regOp, OpArg arg); - void SUBSD(X64Reg regOp, OpArg arg); - void MULSS(X64Reg regOp, OpArg arg); - void MULSD(X64Reg regOp, OpArg arg); - void DIVSS(X64Reg regOp, OpArg arg); - void DIVSD(X64Reg regOp, OpArg arg); - void MINSS(X64Reg regOp, OpArg arg); - void MINSD(X64Reg regOp, OpArg arg); - void MAXSS(X64Reg regOp, OpArg arg); - void MAXSD(X64Reg regOp, OpArg arg); - void SQRTSS(X64Reg regOp, OpArg arg); - void SQRTSD(X64Reg regOp, OpArg arg); - void RSQRTSS(X64Reg regOp, OpArg arg); + void ADDSS(X64Reg regOp, const OpArg& arg); + void ADDSD(X64Reg regOp, const OpArg& arg); + void SUBSS(X64Reg regOp, const OpArg& arg); + void SUBSD(X64Reg regOp, const OpArg& arg); + void MULSS(X64Reg regOp, const OpArg& arg); + void MULSD(X64Reg regOp, const OpArg& arg); + void DIVSS(X64Reg regOp, const OpArg& arg); + void DIVSD(X64Reg regOp, const OpArg& arg); + void MINSS(X64Reg regOp, const OpArg& arg); + void MINSD(X64Reg regOp, const OpArg& arg); + void MAXSS(X64Reg regOp, const OpArg& arg); + void MAXSD(X64Reg regOp, const OpArg& arg); + void SQRTSS(X64Reg regOp, const OpArg& arg); + void SQRTSD(X64Reg regOp, const OpArg& arg); + void RSQRTSS(X64Reg regOp, const OpArg& arg); // SSE/SSE2: Floating point bitwise (yes) - void CMPSS(X64Reg regOp, OpArg arg, u8 compare); - void CMPSD(X64Reg regOp, OpArg arg, u8 compare); + void CMPSS(X64Reg regOp, const OpArg& arg, u8 compare); + void CMPSD(X64Reg regOp, const OpArg& arg, u8 compare); - inline void CMPEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_EQ); } - inline void CMPLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LT); } - inline void CMPLESS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LE); } - inline void CMPUNORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_UNORD); } - inline void CMPNEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NEQ); } - inline void CMPNLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NLT); } - inline void CMPORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_ORD); } + void CMPEQSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_EQ); } + void CMPLTSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_LT); } + void CMPLESS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_LE); } + void CMPUNORDSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_UNORD); } + void CMPNEQSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_NEQ); } + void CMPNLTSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_NLT); } + void CMPORDSS(X64Reg regOp, const OpArg& arg) { CMPSS(regOp, arg, CMP_ORD); } // SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double) - void ADDPS(X64Reg regOp, OpArg arg); - void ADDPD(X64Reg regOp, OpArg arg); - void SUBPS(X64Reg regOp, OpArg arg); - void SUBPD(X64Reg regOp, OpArg arg); - void CMPPS(X64Reg regOp, OpArg arg, u8 compare); - void CMPPD(X64Reg regOp, OpArg arg, u8 compare); - void MULPS(X64Reg regOp, OpArg arg); - void MULPD(X64Reg regOp, OpArg arg); - void DIVPS(X64Reg regOp, OpArg arg); - void DIVPD(X64Reg regOp, OpArg arg); - void MINPS(X64Reg regOp, OpArg arg); - void MINPD(X64Reg regOp, OpArg arg); - void MAXPS(X64Reg regOp, OpArg arg); - void MAXPD(X64Reg regOp, OpArg arg); - void SQRTPS(X64Reg regOp, OpArg arg); - void SQRTPD(X64Reg regOp, OpArg arg); - void RCPPS(X64Reg regOp, OpArg arg); - void RSQRTPS(X64Reg regOp, OpArg arg); + void ADDPS(X64Reg regOp, const OpArg& arg); + void ADDPD(X64Reg regOp, const OpArg& arg); + void SUBPS(X64Reg regOp, const OpArg& arg); + void SUBPD(X64Reg regOp, const OpArg& arg); + void CMPPS(X64Reg regOp, const OpArg& arg, u8 compare); + void CMPPD(X64Reg regOp, const OpArg& arg, u8 compare); + void MULPS(X64Reg regOp, const OpArg& arg); + void MULPD(X64Reg regOp, const OpArg& arg); + void DIVPS(X64Reg regOp, const OpArg& arg); + void DIVPD(X64Reg regOp, const OpArg& arg); + void MINPS(X64Reg regOp, const OpArg& arg); + void MINPD(X64Reg regOp, const OpArg& arg); + void MAXPS(X64Reg regOp, const OpArg& arg); + void MAXPD(X64Reg regOp, const OpArg& arg); + void SQRTPS(X64Reg regOp, const OpArg& arg); + void SQRTPD(X64Reg regOp, const OpArg& arg); + void RCPPS(X64Reg regOp, const OpArg& arg); + void RSQRTPS(X64Reg regOp, const OpArg& arg); // SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double) - void ANDPS(X64Reg regOp, OpArg arg); - void ANDPD(X64Reg regOp, OpArg arg); - void ANDNPS(X64Reg regOp, OpArg arg); - void ANDNPD(X64Reg regOp, OpArg arg); - void ORPS(X64Reg regOp, OpArg arg); - void ORPD(X64Reg regOp, OpArg arg); - void XORPS(X64Reg regOp, OpArg arg); - void XORPD(X64Reg regOp, OpArg arg); + void ANDPS(X64Reg regOp, const OpArg& arg); + void ANDPD(X64Reg regOp, const OpArg& arg); + void ANDNPS(X64Reg regOp, const OpArg& arg); + void ANDNPD(X64Reg regOp, const OpArg& arg); + void ORPS(X64Reg regOp, const OpArg& arg); + void ORPD(X64Reg regOp, const OpArg& arg); + void XORPS(X64Reg regOp, const OpArg& arg); + void XORPD(X64Reg regOp, const OpArg& arg); // SSE/SSE2: Shuffle components. These are tricky - see Intel documentation. - void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle); - void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle); + void SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle); + void SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle); // SSE/SSE2: Useful alternative to shuffle in some cases. - void MOVDDUP(X64Reg regOp, OpArg arg); - - // TODO: Actually implement -#if 0 - // SSE3: Horizontal operations in SIMD registers. Could be useful for various VFPU things like dot products... - void ADDSUBPS(X64Reg dest, OpArg src); - void ADDSUBPD(X64Reg dest, OpArg src); - void HADDPD(X64Reg dest, OpArg src); - void HSUBPS(X64Reg dest, OpArg src); - void HSUBPD(X64Reg dest, OpArg src); - - // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask". - void DPPD(X64Reg dest, OpArg src, u8 arg); - - // These are probably useful for VFPU emulation. - void INSERTPS(X64Reg dest, OpArg src, u8 arg); - void EXTRACTPS(OpArg dest, X64Reg src, u8 arg); -#endif + void MOVDDUP(X64Reg regOp, const OpArg& arg); // SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily on Ivy. - void HADDPS(X64Reg dest, OpArg src); + void HADDPS(X64Reg dest, const OpArg& src); // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask". - void DPPS(X64Reg dest, OpArg src, u8 arg); + void DPPS(X64Reg dest, const OpArg& src, u8 arg); - void UNPCKLPS(X64Reg dest, OpArg src); - void UNPCKHPS(X64Reg dest, OpArg src); - void UNPCKLPD(X64Reg dest, OpArg src); - void UNPCKHPD(X64Reg dest, OpArg src); + void UNPCKLPS(X64Reg dest, const OpArg& src); + void UNPCKHPS(X64Reg dest, const OpArg& src); + void UNPCKLPD(X64Reg dest, const OpArg& src); + void UNPCKHPD(X64Reg dest, const OpArg& src); // SSE/SSE2: Compares. - void COMISS(X64Reg regOp, OpArg arg); - void COMISD(X64Reg regOp, OpArg arg); - void UCOMISS(X64Reg regOp, OpArg arg); - void UCOMISD(X64Reg regOp, OpArg arg); + void COMISS(X64Reg regOp, const OpArg& arg); + void COMISD(X64Reg regOp, const OpArg& arg); + void UCOMISS(X64Reg regOp, const OpArg& arg); + void UCOMISD(X64Reg regOp, const OpArg& arg); // SSE/SSE2: Moves. Use the right data type for your data, in most cases. - void MOVAPS(X64Reg regOp, OpArg arg); - void MOVAPD(X64Reg regOp, OpArg arg); - void MOVAPS(OpArg arg, X64Reg regOp); - void MOVAPD(OpArg arg, X64Reg regOp); - - void MOVUPS(X64Reg regOp, OpArg arg); - void MOVUPD(X64Reg regOp, OpArg arg); - void MOVUPS(OpArg arg, X64Reg regOp); - void MOVUPD(OpArg arg, X64Reg regOp); - - void MOVDQA(X64Reg regOp, OpArg arg); - void MOVDQA(OpArg arg, X64Reg regOp); - void MOVDQU(X64Reg regOp, OpArg arg); - void MOVDQU(OpArg arg, X64Reg regOp); - - void MOVSS(X64Reg regOp, OpArg arg); - void MOVSD(X64Reg regOp, OpArg arg); - void MOVSS(OpArg arg, X64Reg regOp); - void MOVSD(OpArg arg, X64Reg regOp); - - void MOVLPS(X64Reg regOp, OpArg arg); - void MOVLPD(X64Reg regOp, OpArg arg); - void MOVLPS(OpArg arg, X64Reg regOp); - void MOVLPD(OpArg arg, X64Reg regOp); - - void MOVHPS(X64Reg regOp, OpArg arg); - void MOVHPD(X64Reg regOp, OpArg arg); - void MOVHPS(OpArg arg, X64Reg regOp); - void MOVHPD(OpArg arg, X64Reg regOp); + void MOVAPS(X64Reg regOp, const OpArg& arg); + void MOVAPD(X64Reg regOp, const OpArg& arg); + void MOVAPS(const OpArg& arg, X64Reg regOp); + void MOVAPD(const OpArg& arg, X64Reg regOp); + + void MOVUPS(X64Reg regOp, const OpArg& arg); + void MOVUPD(X64Reg regOp, const OpArg& arg); + void MOVUPS(const OpArg& arg, X64Reg regOp); + void MOVUPD(const OpArg& arg, X64Reg regOp); + + void MOVDQA(X64Reg regOp, const OpArg& arg); + void MOVDQA(const OpArg& arg, X64Reg regOp); + void MOVDQU(X64Reg regOp, const OpArg& arg); + void MOVDQU(const OpArg& arg, X64Reg regOp); + + void MOVSS(X64Reg regOp, const OpArg& arg); + void MOVSD(X64Reg regOp, const OpArg& arg); + void MOVSS(const OpArg& arg, X64Reg regOp); + void MOVSD(const OpArg& arg, X64Reg regOp); + + void MOVLPS(X64Reg regOp, const OpArg& arg); + void MOVLPD(X64Reg regOp, const OpArg& arg); + void MOVLPS(const OpArg& arg, X64Reg regOp); + void MOVLPD(const OpArg& arg, X64Reg regOp); + + void MOVHPS(X64Reg regOp, const OpArg& arg); + void MOVHPD(X64Reg regOp, const OpArg& arg); + void MOVHPS(const OpArg& arg, X64Reg regOp); + void MOVHPD(const OpArg& arg, X64Reg regOp); void MOVHLPS(X64Reg regOp1, X64Reg regOp2); void MOVLHPS(X64Reg regOp1, X64Reg regOp2); - void MOVD_xmm(X64Reg dest, const OpArg &arg); + void MOVD_xmm(X64Reg dest, const OpArg& arg); void MOVQ_xmm(X64Reg dest, OpArg arg); - void MOVD_xmm(const OpArg &arg, X64Reg src); + void MOVD_xmm(const OpArg& arg, X64Reg src); void MOVQ_xmm(OpArg arg, X64Reg src); // SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question. - void MOVMSKPS(X64Reg dest, OpArg arg); - void MOVMSKPD(X64Reg dest, OpArg arg); + void MOVMSKPS(X64Reg dest, const OpArg& arg); + void MOVMSKPD(X64Reg dest, const OpArg& arg); // SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one. void MASKMOVDQU(X64Reg dest, X64Reg src); - void LDDQU(X64Reg dest, OpArg src); + void LDDQU(X64Reg dest, const OpArg& src); // SSE/SSE2: Data type conversions. - void CVTPS2PD(X64Reg dest, OpArg src); - void CVTPD2PS(X64Reg dest, OpArg src); - void CVTSS2SD(X64Reg dest, OpArg src); - void CVTSI2SS(X64Reg dest, OpArg src); - void CVTSD2SS(X64Reg dest, OpArg src); - void CVTSI2SD(X64Reg dest, OpArg src); - void CVTDQ2PD(X64Reg regOp, OpArg arg); - void CVTPD2DQ(X64Reg regOp, OpArg arg); - void CVTDQ2PS(X64Reg regOp, OpArg arg); - void CVTPS2DQ(X64Reg regOp, OpArg arg); - - void CVTTPS2DQ(X64Reg regOp, OpArg arg); - void CVTTPD2DQ(X64Reg regOp, OpArg arg); + void CVTPS2PD(X64Reg dest, const OpArg& src); + void CVTPD2PS(X64Reg dest, const OpArg& src); + void CVTSS2SD(X64Reg dest, const OpArg& src); + void CVTSI2SS(X64Reg dest, const OpArg& src); + void CVTSD2SS(X64Reg dest, const OpArg& src); + void CVTSI2SD(X64Reg dest, const OpArg& src); + void CVTDQ2PD(X64Reg regOp, const OpArg& arg); + void CVTPD2DQ(X64Reg regOp, const OpArg& arg); + void CVTDQ2PS(X64Reg regOp, const OpArg& arg); + void CVTPS2DQ(X64Reg regOp, const OpArg& arg); + + void CVTTPS2DQ(X64Reg regOp, const OpArg& arg); + void CVTTPD2DQ(X64Reg regOp, const OpArg& arg); // Destinations are X64 regs (rax, rbx, ...) for these instructions. - void CVTSS2SI(X64Reg xregdest, OpArg src); - void CVTSD2SI(X64Reg xregdest, OpArg src); - void CVTTSS2SI(X64Reg xregdest, OpArg arg); - void CVTTSD2SI(X64Reg xregdest, OpArg arg); + void CVTSS2SI(X64Reg xregdest, const OpArg& src); + void CVTSD2SI(X64Reg xregdest, const OpArg& src); + void CVTTSS2SI(X64Reg xregdest, const OpArg& arg); + void CVTTSD2SI(X64Reg xregdest, const OpArg& arg); // SSE2: Packed integer instructions - void PACKSSDW(X64Reg dest, OpArg arg); - void PACKSSWB(X64Reg dest, OpArg arg); - void PACKUSDW(X64Reg dest, OpArg arg); - void PACKUSWB(X64Reg dest, OpArg arg); + void PACKSSDW(X64Reg dest, const OpArg& arg); + void PACKSSWB(X64Reg dest, const OpArg& arg); + void PACKUSDW(X64Reg dest, const OpArg& arg); + void PACKUSWB(X64Reg dest, const OpArg& arg); void PUNPCKLBW(X64Reg dest, const OpArg &arg); void PUNPCKLWD(X64Reg dest, const OpArg &arg); void PUNPCKLDQ(X64Reg dest, const OpArg &arg); void PUNPCKLQDQ(X64Reg dest, const OpArg &arg); - void PTEST(X64Reg dest, OpArg arg); - void PAND(X64Reg dest, OpArg arg); - void PANDN(X64Reg dest, OpArg arg); - void PXOR(X64Reg dest, OpArg arg); - void POR(X64Reg dest, OpArg arg); - - void PADDB(X64Reg dest, OpArg arg); - void PADDW(X64Reg dest, OpArg arg); - void PADDD(X64Reg dest, OpArg arg); - void PADDQ(X64Reg dest, OpArg arg); - - void PADDSB(X64Reg dest, OpArg arg); - void PADDSW(X64Reg dest, OpArg arg); - void PADDUSB(X64Reg dest, OpArg arg); - void PADDUSW(X64Reg dest, OpArg arg); - - void PSUBB(X64Reg dest, OpArg arg); - void PSUBW(X64Reg dest, OpArg arg); - void PSUBD(X64Reg dest, OpArg arg); - void PSUBQ(X64Reg dest, OpArg arg); - - void PSUBSB(X64Reg dest, OpArg arg); - void PSUBSW(X64Reg dest, OpArg arg); - void PSUBUSB(X64Reg dest, OpArg arg); - void PSUBUSW(X64Reg dest, OpArg arg); - - void PAVGB(X64Reg dest, OpArg arg); - void PAVGW(X64Reg dest, OpArg arg); - - void PCMPEQB(X64Reg dest, OpArg arg); - void PCMPEQW(X64Reg dest, OpArg arg); - void PCMPEQD(X64Reg dest, OpArg arg); - - void PCMPGTB(X64Reg dest, OpArg arg); - void PCMPGTW(X64Reg dest, OpArg arg); - void PCMPGTD(X64Reg dest, OpArg arg); - - void PEXTRW(X64Reg dest, OpArg arg, u8 subreg); - void PINSRW(X64Reg dest, OpArg arg, u8 subreg); - - void PMADDWD(X64Reg dest, OpArg arg); - void PSADBW(X64Reg dest, OpArg arg); - - void PMAXSW(X64Reg dest, OpArg arg); - void PMAXUB(X64Reg dest, OpArg arg); - void PMINSW(X64Reg dest, OpArg arg); - void PMINUB(X64Reg dest, OpArg arg); + void PTEST(X64Reg dest, const OpArg& arg); + void PAND(X64Reg dest, const OpArg& arg); + void PANDN(X64Reg dest, const OpArg& arg); + void PXOR(X64Reg dest, const OpArg& arg); + void POR(X64Reg dest, const OpArg& arg); + + void PADDB(X64Reg dest, const OpArg& arg); + void PADDW(X64Reg dest, const OpArg& arg); + void PADDD(X64Reg dest, const OpArg& arg); + void PADDQ(X64Reg dest, const OpArg& arg); + + void PADDSB(X64Reg dest, const OpArg& arg); + void PADDSW(X64Reg dest, const OpArg& arg); + void PADDUSB(X64Reg dest, const OpArg& arg); + void PADDUSW(X64Reg dest, const OpArg& arg); + + void PSUBB(X64Reg dest, const OpArg& arg); + void PSUBW(X64Reg dest, const OpArg& arg); + void PSUBD(X64Reg dest, const OpArg& arg); + void PSUBQ(X64Reg dest, const OpArg& arg); + + void PSUBSB(X64Reg dest, const OpArg& arg); + void PSUBSW(X64Reg dest, const OpArg& arg); + void PSUBUSB(X64Reg dest, const OpArg& arg); + void PSUBUSW(X64Reg dest, const OpArg& arg); + + void PAVGB(X64Reg dest, const OpArg& arg); + void PAVGW(X64Reg dest, const OpArg& arg); + + void PCMPEQB(X64Reg dest, const OpArg& arg); + void PCMPEQW(X64Reg dest, const OpArg& arg); + void PCMPEQD(X64Reg dest, const OpArg& arg); + + void PCMPGTB(X64Reg dest, const OpArg& arg); + void PCMPGTW(X64Reg dest, const OpArg& arg); + void PCMPGTD(X64Reg dest, const OpArg& arg); + + void PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg); + void PINSRW(X64Reg dest, const OpArg& arg, u8 subreg); + + void PMADDWD(X64Reg dest, const OpArg& arg); + void PSADBW(X64Reg dest, const OpArg& arg); + + void PMAXSW(X64Reg dest, const OpArg& arg); + void PMAXUB(X64Reg dest, const OpArg& arg); + void PMINSW(X64Reg dest, const OpArg& arg); + void PMINUB(X64Reg dest, const OpArg& arg); // SSE4: More MAX/MIN instructions. - void PMINSB(X64Reg dest, OpArg arg); - void PMINSD(X64Reg dest, OpArg arg); - void PMINUW(X64Reg dest, OpArg arg); - void PMINUD(X64Reg dest, OpArg arg); - void PMAXSB(X64Reg dest, OpArg arg); - void PMAXSD(X64Reg dest, OpArg arg); - void PMAXUW(X64Reg dest, OpArg arg); - void PMAXUD(X64Reg dest, OpArg arg); - - void PMOVMSKB(X64Reg dest, OpArg arg); - void PSHUFD(X64Reg dest, OpArg arg, u8 shuffle); - void PSHUFB(X64Reg dest, OpArg arg); - - void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle); - void PSHUFHW(X64Reg dest, OpArg arg, u8 shuffle); + void PMINSB(X64Reg dest, const OpArg& arg); + void PMINSD(X64Reg dest, const OpArg& arg); + void PMINUW(X64Reg dest, const OpArg& arg); + void PMINUD(X64Reg dest, const OpArg& arg); + void PMAXSB(X64Reg dest, const OpArg& arg); + void PMAXSD(X64Reg dest, const OpArg& arg); + void PMAXUW(X64Reg dest, const OpArg& arg); + void PMAXUD(X64Reg dest, const OpArg& arg); + + void PMOVMSKB(X64Reg dest, const OpArg& arg); + void PSHUFD(X64Reg dest, const OpArg& arg, u8 shuffle); + void PSHUFB(X64Reg dest, const OpArg& arg); + + void PSHUFLW(X64Reg dest, const OpArg& arg, u8 shuffle); + void PSHUFHW(X64Reg dest, const OpArg& arg, u8 shuffle); void PSRLW(X64Reg reg, int shift); void PSRLD(X64Reg reg, int shift); void PSRLQ(X64Reg reg, int shift); - void PSRLQ(X64Reg reg, OpArg arg); + void PSRLQ(X64Reg reg, const OpArg& arg); void PSRLDQ(X64Reg reg, int shift); void PSLLW(X64Reg reg, int shift); @@ -833,198 +812,198 @@ public: void PSRAD(X64Reg reg, int shift); // SSE4: data type conversions - void PMOVSXBW(X64Reg dest, OpArg arg); - void PMOVSXBD(X64Reg dest, OpArg arg); - void PMOVSXBQ(X64Reg dest, OpArg arg); - void PMOVSXWD(X64Reg dest, OpArg arg); - void PMOVSXWQ(X64Reg dest, OpArg arg); - void PMOVSXDQ(X64Reg dest, OpArg arg); - void PMOVZXBW(X64Reg dest, OpArg arg); - void PMOVZXBD(X64Reg dest, OpArg arg); - void PMOVZXBQ(X64Reg dest, OpArg arg); - void PMOVZXWD(X64Reg dest, OpArg arg); - void PMOVZXWQ(X64Reg dest, OpArg arg); - void PMOVZXDQ(X64Reg dest, OpArg arg); + void PMOVSXBW(X64Reg dest, const OpArg& arg); + void PMOVSXBD(X64Reg dest, const OpArg& arg); + void PMOVSXBQ(X64Reg dest, const OpArg& arg); + void PMOVSXWD(X64Reg dest, const OpArg& arg); + void PMOVSXWQ(X64Reg dest, const OpArg& arg); + void PMOVSXDQ(X64Reg dest, const OpArg& arg); + void PMOVZXBW(X64Reg dest, const OpArg& arg); + void PMOVZXBD(X64Reg dest, const OpArg& arg); + void PMOVZXBQ(X64Reg dest, const OpArg& arg); + void PMOVZXWD(X64Reg dest, const OpArg& arg); + void PMOVZXWQ(X64Reg dest, const OpArg& arg); + void PMOVZXDQ(X64Reg dest, const OpArg& arg); // SSE4: variable blend instructions (xmm0 implicit argument) - void PBLENDVB(X64Reg dest, OpArg arg); - void BLENDVPS(X64Reg dest, OpArg arg); - void BLENDVPD(X64Reg dest, OpArg arg); + void PBLENDVB(X64Reg dest, const OpArg& arg); + void BLENDVPS(X64Reg dest, const OpArg& arg); + void BLENDVPD(X64Reg dest, const OpArg& arg); void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend); void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend); // SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.) - void ROUNDSS(X64Reg dest, OpArg arg, u8 mode); - void ROUNDSD(X64Reg dest, OpArg arg, u8 mode); - void ROUNDPS(X64Reg dest, OpArg arg, u8 mode); - void ROUNDPD(X64Reg dest, OpArg arg, u8 mode); - - inline void ROUNDNEARSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_NEAREST); } - inline void ROUNDFLOORSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_FLOOR); } - inline void ROUNDCEILSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_CEIL); } - inline void ROUNDZEROSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_ZERO); } - - inline void ROUNDNEARSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_NEAREST); } - inline void ROUNDFLOORSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_FLOOR); } - inline void ROUNDCEILSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_CEIL); } - inline void ROUNDZEROSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_ZERO); } - - inline void ROUNDNEARPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_NEAREST); } - inline void ROUNDFLOORPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_FLOOR); } - inline void ROUNDCEILPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_CEIL); } - inline void ROUNDZEROPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_ZERO); } - - inline void ROUNDNEARPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_NEAREST); } - inline void ROUNDFLOORPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_FLOOR); } - inline void ROUNDCEILPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_CEIL); } - inline void ROUNDZEROPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_ZERO); } + void ROUNDSS(X64Reg dest, const OpArg& arg, u8 mode); + void ROUNDSD(X64Reg dest, const OpArg& arg, u8 mode); + void ROUNDPS(X64Reg dest, const OpArg& arg, u8 mode); + void ROUNDPD(X64Reg dest, const OpArg& arg, u8 mode); + + void ROUNDNEARSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_NEAREST); } + void ROUNDFLOORSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_FLOOR); } + void ROUNDCEILSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_CEIL); } + void ROUNDZEROSS(X64Reg dest, const OpArg& arg) { ROUNDSS(dest, arg, FROUND_ZERO); } + + void ROUNDNEARSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_NEAREST); } + void ROUNDFLOORSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_FLOOR); } + void ROUNDCEILSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_CEIL); } + void ROUNDZEROSD(X64Reg dest, const OpArg& arg) { ROUNDSD(dest, arg, FROUND_ZERO); } + + void ROUNDNEARPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_NEAREST); } + void ROUNDFLOORPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_FLOOR); } + void ROUNDCEILPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_CEIL); } + void ROUNDZEROPS(X64Reg dest, const OpArg& arg) { ROUNDPS(dest, arg, FROUND_ZERO); } + + void ROUNDNEARPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_NEAREST); } + void ROUNDFLOORPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_FLOOR); } + void ROUNDCEILPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_CEIL); } + void ROUNDZEROPD(X64Reg dest, const OpArg& arg) { ROUNDPD(dest, arg, FROUND_ZERO); } // AVX - void VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle); - void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - - void VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - - void VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle); + void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + + void VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + + void VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); // FMA3 - void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); - void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg); + void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg); // VEX GPR instructions - void SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2); - void SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2); - void SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2); - void RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate); - void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg); - void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg); - void MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg); - void BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2); - void BLSR(int bits, X64Reg regOp, OpArg arg); - void BLSMSK(int bits, X64Reg regOp, OpArg arg); - void BLSI(int bits, X64Reg regOp, OpArg arg); - void BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2); - void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg); + void SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + void SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + void SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + void RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate); + void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); + void BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + void BLSR(int bits, X64Reg regOp, const OpArg& arg); + void BLSMSK(int bits, X64Reg regOp, const OpArg& arg); + void BLSI(int bits, X64Reg regOp, const OpArg& arg); + void BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2); + void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg); void RDTSC(); // Utility functions // The difference between this and CALL is that this aligns the stack // where appropriate. - void ABI_CallFunction(const void *func); + void ABI_CallFunction(const void* func); template <typename T> void ABI_CallFunction(T (*func)()) { - ABI_CallFunction((const void *)func); + ABI_CallFunction((const void*)func); } - void ABI_CallFunction(const u8 *func) { - ABI_CallFunction((const void *)func); + void ABI_CallFunction(const u8* func) { + ABI_CallFunction((const void*)func); } - void ABI_CallFunctionC16(const void *func, u16 param1); - void ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2); + void ABI_CallFunctionC16(const void* func, u16 param1); + void ABI_CallFunctionCC16(const void* func, u32 param1, u16 param2); // These only support u32 parameters, but that's enough for a lot of uses. // These will destroy the 1 or 2 first "parameter regs". - void ABI_CallFunctionC(const void *func, u32 param1); - void ABI_CallFunctionCC(const void *func, u32 param1, u32 param2); - void ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3); - void ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3); - void ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4); - void ABI_CallFunctionP(const void *func, void *param1); - void ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2); - void ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3); - void ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3); - void ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2); - void ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3); - void ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1); - void ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2); + void ABI_CallFunctionC(const void* func, u32 param1); + void ABI_CallFunctionCC(const void* func, u32 param1, u32 param2); + void ABI_CallFunctionCCC(const void* func, u32 param1, u32 param2, u32 param3); + void ABI_CallFunctionCCP(const void* func, u32 param1, u32 param2, void* param3); + void ABI_CallFunctionCCCP(const void* func, u32 param1, u32 param2, u32 param3, void* param4); + void ABI_CallFunctionP(const void* func, void* param1); + void ABI_CallFunctionPA(const void* func, void* param1, const OpArg& arg2); + void ABI_CallFunctionPAA(const void* func, void* param1, const OpArg& arg2, const OpArg& arg3); + void ABI_CallFunctionPPC(const void* func, void* param1, void* param2, u32 param3); + void ABI_CallFunctionAC(const void* func, const OpArg& arg1, u32 param2); + void ABI_CallFunctionACC(const void* func, const OpArg& arg1, u32 param2, u32 param3); + void ABI_CallFunctionA(const void* func, const OpArg& arg1); + void ABI_CallFunctionAA(const void* func, const OpArg& arg1, const OpArg& arg2); // Pass a register as a parameter. - void ABI_CallFunctionR(const void *func, X64Reg reg1); - void ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2); + void ABI_CallFunctionR(const void* func, X64Reg reg1); + void ABI_CallFunctionRR(const void* func, X64Reg reg1, X64Reg reg2); template <typename Tr, typename T1> void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) { - ABI_CallFunctionC((const void *)func, param1); + ABI_CallFunctionC((const void*)func, param1); } // A function that doesn't have any control over what it will do to regs, @@ -1048,9 +1027,9 @@ public: void ABI_EmitEpilogue(int maxCallParams); #ifdef _M_IX86 - inline int ABI_GetNumXMMRegs() { return 8; } + static int ABI_GetNumXMMRegs() { return 8; } #else - inline int ABI_GetNumXMMRegs() { return 16; } + static int ABI_GetNumXMMRegs() { return 16; } #endif }; // class XEmitter |