summaryrefslogtreecommitdiffstats
path: root/src/common
diff options
context:
space:
mode:
authorbunnei <bunneidev@gmail.com>2015-08-16 00:26:12 +0200
committerbunnei <bunneidev@gmail.com>2015-08-16 00:26:12 +0200
commitd852c4ecc71f800b552978362947a5eb5a524694 (patch)
tree9ea9a86da4027126914e69b12c24d2849fdb2c2d /src/common
parentMerge pull request #1027 from lioncash/debugger (diff)
parentShader: Use a POD struct for registers. (diff)
downloadyuzu-d852c4ecc71f800b552978362947a5eb5a524694.tar
yuzu-d852c4ecc71f800b552978362947a5eb5a524694.tar.gz
yuzu-d852c4ecc71f800b552978362947a5eb5a524694.tar.bz2
yuzu-d852c4ecc71f800b552978362947a5eb5a524694.tar.lz
yuzu-d852c4ecc71f800b552978362947a5eb5a524694.tar.xz
yuzu-d852c4ecc71f800b552978362947a5eb5a524694.tar.zst
yuzu-d852c4ecc71f800b552978362947a5eb5a524694.zip
Diffstat (limited to 'src/common')
-rw-r--r--src/common/CMakeLists.txt16
-rw-r--r--src/common/code_block.h87
-rw-r--r--src/common/common_funcs.h2
-rw-r--r--src/common/cpu_detect.h78
-rw-r--r--src/common/hash.cpp126
-rw-r--r--src/common/hash.h25
-rw-r--r--src/common/memory_util.cpp8
-rw-r--r--src/common/platform.h2
-rw-r--r--src/common/x64/abi.cpp680
-rw-r--r--src/common/x64/abi.h78
-rw-r--r--src/common/x64/cpu_detect.cpp187
-rw-r--r--src/common/x64/cpu_detect.h66
-rw-r--r--src/common/x64/emitter.cpp1989
-rw-r--r--src/common/x64/emitter.h1067
14 files changed, 4326 insertions, 85 deletions
diff --git a/src/common/CMakeLists.txt b/src/common/CMakeLists.txt
index 4c086cd2f..e743a026d 100644
--- a/src/common/CMakeLists.txt
+++ b/src/common/CMakeLists.txt
@@ -5,6 +5,7 @@ set(SRCS
break_points.cpp
emu_window.cpp
file_util.cpp
+ hash.cpp
key_map.cpp
logging/filter.cpp
logging/text_formatter.cpp
@@ -24,14 +25,15 @@ set(HEADERS
bit_field.h
break_points.h
chunk_file.h
+ code_block.h
color.h
common_funcs.h
common_paths.h
common_types.h
- cpu_detect.h
debug_interface.h
emu_window.h
file_util.h
+ hash.h
key_map.h
linear_disk_cache.h
logging/text_formatter.h
@@ -56,6 +58,18 @@ set(HEADERS
vector_math.h
)
+if(ARCHITECTURE_x86_64)
+ set(SRCS ${SRCS}
+ x64/abi.cpp
+ x64/cpu_detect.cpp
+ x64/emitter.cpp)
+
+ set(HEADERS ${HEADERS}
+ x64/abi.h
+ x64/cpu_detect.h
+ x64/emitter.h)
+endif()
+
create_directory_groups(${SRCS} ${HEADERS})
add_library(common STATIC ${SRCS} ${HEADERS})
diff --git a/src/common/code_block.h b/src/common/code_block.h
new file mode 100644
index 000000000..9ef7296d3
--- /dev/null
+++ b/src/common/code_block.h
@@ -0,0 +1,87 @@
+// Copyright 2013 Dolphin Emulator Project
+// Licensed under GPLv2
+// Refer to the license.txt file included.
+
+#pragma once
+
+#include "common_types.h"
+#include "memory_util.h"
+
+// Everything that needs to generate code should inherit from this.
+// You get memory management for free, plus, you can use all emitter functions without
+// having to prefix them with gen-> or something similar.
+// Example implementation:
+// class JIT : public CodeBlock<ARMXEmitter> {}
+template<class T> class CodeBlock : public T, NonCopyable
+{
+private:
+ // A privately used function to set the executable RAM space to something invalid.
+ // For debugging usefulness it should be used to set the RAM to a host specific breakpoint instruction
+ virtual void PoisonMemory() = 0;
+
+protected:
+ u8 *region;
+ size_t region_size;
+
+public:
+ CodeBlock() : region(nullptr), region_size(0) {}
+ virtual ~CodeBlock() { if (region) FreeCodeSpace(); }
+
+ // Call this before you generate any code.
+ void AllocCodeSpace(int size)
+ {
+ region_size = size;
+ region = (u8*)AllocateExecutableMemory(region_size);
+ T::SetCodePtr(region);
+ }
+
+ // Always clear code space with breakpoints, so that if someone accidentally executes
+ // uninitialized, it just breaks into the debugger.
+ void ClearCodeSpace()
+ {
+ PoisonMemory();
+ ResetCodePtr();
+ }
+
+ // Call this when shutting down. Don't rely on the destructor, even though it'll do the job.
+ void FreeCodeSpace()
+ {
+#ifdef __SYMBIAN32__
+ ResetExecutableMemory(region);
+#else
+ FreeMemoryPages(region, region_size);
+#endif
+ region = nullptr;
+ region_size = 0;
+ }
+
+ bool IsInSpace(const u8 *ptr)
+ {
+ return (ptr >= region) && (ptr < (region + region_size));
+ }
+
+ // Cannot currently be undone. Will write protect the entire code region.
+ // Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()).
+ void WriteProtect()
+ {
+ WriteProtectMemory(region, region_size, true);
+ }
+
+ void ResetCodePtr()
+ {
+ T::SetCodePtr(region);
+ }
+
+ size_t GetSpaceLeft() const
+ {
+ return region_size - (T::GetCodePtr() - region);
+ }
+
+ u8 *GetBasePtr() {
+ return region;
+ }
+
+ size_t GetOffset(const u8 *ptr) const {
+ return ptr - region;
+ }
+};
diff --git a/src/common/common_funcs.h b/src/common/common_funcs.h
index 83b47f61e..88e452a16 100644
--- a/src/common/common_funcs.h
+++ b/src/common/common_funcs.h
@@ -35,7 +35,7 @@
#ifndef _MSC_VER
-#if defined(__x86_64__) || defined(_M_X64)
+#ifdef ARCHITECTURE_x86_64
#define Crash() __asm__ __volatile__("int $3")
#elif defined(_M_ARM)
#define Crash() __asm__ __volatile__("trap")
diff --git a/src/common/cpu_detect.h b/src/common/cpu_detect.h
deleted file mode 100644
index b585f9608..000000000
--- a/src/common/cpu_detect.h
+++ /dev/null
@@ -1,78 +0,0 @@
-// Copyright 2013 Dolphin Emulator Project / 2014 Citra Emulator Project
-// Licensed under GPLv2 or any later version
-// Refer to the license.txt file included.
-
-
-// Detect the cpu, so we'll know which optimizations to use
-#pragma once
-
-#include <string>
-
-enum CPUVendor
-{
- VENDOR_INTEL = 0,
- VENDOR_AMD = 1,
- VENDOR_ARM = 2,
- VENDOR_OTHER = 3,
-};
-
-struct CPUInfo
-{
- CPUVendor vendor;
-
- char cpu_string[0x21];
- char brand_string[0x41];
- bool OS64bit;
- bool CPU64bit;
- bool Mode64bit;
-
- bool HTT;
- int num_cores;
- int logical_cpu_count;
-
- bool bSSE;
- bool bSSE2;
- bool bSSE3;
- bool bSSSE3;
- bool bPOPCNT;
- bool bSSE4_1;
- bool bSSE4_2;
- bool bLZCNT;
- bool bSSE4A;
- bool bAVX;
- bool bAES;
- bool bLAHFSAHF64;
- bool bLongMode;
-
- // ARM specific CPUInfo
- bool bSwp;
- bool bHalf;
- bool bThumb;
- bool bFastMult;
- bool bVFP;
- bool bEDSP;
- bool bThumbEE;
- bool bNEON;
- bool bVFPv3;
- bool bTLS;
- bool bVFPv4;
- bool bIDIVa;
- bool bIDIVt;
- bool bArmV7; // enable MOVT, MOVW etc
-
- // ARMv8 specific
- bool bFP;
- bool bASIMD;
-
- // Call Detect()
- explicit CPUInfo();
-
- // Turn the cpu info into a string we can show
- std::string Summarize();
-
-private:
- // Detects the various cpu features
- void Detect();
-};
-
-extern CPUInfo cpu_info;
diff --git a/src/common/hash.cpp b/src/common/hash.cpp
new file mode 100644
index 000000000..413e9c6f1
--- /dev/null
+++ b/src/common/hash.cpp
@@ -0,0 +1,126 @@
+// Copyright 2015 Citra Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#if defined(_MSC_VER)
+#include <stdlib.h>
+#endif
+
+#include "common_funcs.h"
+#include "common_types.h"
+#include "hash.h"
+
+namespace Common {
+
+// MurmurHash3 was written by Austin Appleby, and is placed in the public
+// domain. The author hereby disclaims copyright to this source code.
+
+// Block read - if your platform needs to do endian-swapping or can only handle aligned reads, do
+// the conversion here
+
+static FORCE_INLINE u32 getblock32(const u32* p, int i) {
+ return p[i];
+}
+
+static FORCE_INLINE u64 getblock64(const u64* p, int i) {
+ return p[i];
+}
+
+// Finalization mix - force all bits of a hash block to avalanche
+
+static FORCE_INLINE u32 fmix32(u32 h) {
+ h ^= h >> 16;
+ h *= 0x85ebca6b;
+ h ^= h >> 13;
+ h *= 0xc2b2ae35;
+ h ^= h >> 16;
+
+ return h;
+}
+
+static FORCE_INLINE u64 fmix64(u64 k) {
+ k ^= k >> 33;
+ k *= 0xff51afd7ed558ccdllu;
+ k ^= k >> 33;
+ k *= 0xc4ceb9fe1a85ec53llu;
+ k ^= k >> 33;
+
+ return k;
+}
+
+// This is the 128-bit variant of the MurmurHash3 hash function that is targetted for 64-bit
+// platforms (MurmurHash3_x64_128). It was taken from:
+// https://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
+void MurmurHash3_128(const void* key, int len, u32 seed, void* out) {
+ const u8 * data = (const u8*)key;
+ const int nblocks = len / 16;
+
+ u64 h1 = seed;
+ u64 h2 = seed;
+
+ const u64 c1 = 0x87c37b91114253d5llu;
+ const u64 c2 = 0x4cf5ad432745937fllu;
+
+ // Body
+
+ const u64 * blocks = (const u64 *)(data);
+
+ for (int i = 0; i < nblocks; i++) {
+ u64 k1 = getblock64(blocks,i*2+0);
+ u64 k2 = getblock64(blocks,i*2+1);
+
+ k1 *= c1; k1 = _rotl64(k1,31); k1 *= c2; h1 ^= k1;
+
+ h1 = _rotl64(h1,27); h1 += h2; h1 = h1*5+0x52dce729;
+
+ k2 *= c2; k2 = _rotl64(k2,33); k2 *= c1; h2 ^= k2;
+
+ h2 = _rotl64(h2,31); h2 += h1; h2 = h2*5+0x38495ab5;
+ }
+
+ // Tail
+
+ const u8 * tail = (const u8*)(data + nblocks*16);
+
+ u64 k1 = 0;
+ u64 k2 = 0;
+
+ switch (len & 15) {
+ case 15: k2 ^= ((u64)tail[14]) << 48;
+ case 14: k2 ^= ((u64)tail[13]) << 40;
+ case 13: k2 ^= ((u64)tail[12]) << 32;
+ case 12: k2 ^= ((u64)tail[11]) << 24;
+ case 11: k2 ^= ((u64)tail[10]) << 16;
+ case 10: k2 ^= ((u64)tail[ 9]) << 8;
+ case 9: k2 ^= ((u64)tail[ 8]) << 0;
+ k2 *= c2; k2 = _rotl64(k2,33); k2 *= c1; h2 ^= k2;
+
+ case 8: k1 ^= ((u64)tail[ 7]) << 56;
+ case 7: k1 ^= ((u64)tail[ 6]) << 48;
+ case 6: k1 ^= ((u64)tail[ 5]) << 40;
+ case 5: k1 ^= ((u64)tail[ 4]) << 32;
+ case 4: k1 ^= ((u64)tail[ 3]) << 24;
+ case 3: k1 ^= ((u64)tail[ 2]) << 16;
+ case 2: k1 ^= ((u64)tail[ 1]) << 8;
+ case 1: k1 ^= ((u64)tail[ 0]) << 0;
+ k1 *= c1; k1 = _rotl64(k1,31); k1 *= c2; h1 ^= k1;
+ };
+
+ // Finalization
+
+ h1 ^= len; h2 ^= len;
+
+ h1 += h2;
+ h2 += h1;
+
+ h1 = fmix64(h1);
+ h2 = fmix64(h2);
+
+ h1 += h2;
+ h2 += h1;
+
+ ((u64*)out)[0] = h1;
+ ((u64*)out)[1] = h2;
+}
+
+} // namespace Common
diff --git a/src/common/hash.h b/src/common/hash.h
new file mode 100644
index 000000000..a3850be68
--- /dev/null
+++ b/src/common/hash.h
@@ -0,0 +1,25 @@
+// Copyright 2015 Citra Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#pragma once
+
+#include "common/common_types.h"
+
+namespace Common {
+
+void MurmurHash3_128(const void* key, int len, u32 seed, void* out);
+
+/**
+ * Computes a 64-bit hash over the specified block of data
+ * @param data Block of data to compute hash over
+ * @param len Length of data (in bytes) to compute hash over
+ * @returns 64-bit hash value that was computed over the data block
+ */
+static inline u64 ComputeHash64(const void* data, int len) {
+ u64 res[2];
+ MurmurHash3_128(data, len, 0, res);
+ return res[0];
+}
+
+} // namespace Common
diff --git a/src/common/memory_util.cpp b/src/common/memory_util.cpp
index 2b3ace528..5ef784224 100644
--- a/src/common/memory_util.cpp
+++ b/src/common/memory_util.cpp
@@ -16,7 +16,7 @@
#include <sys/mman.h>
#endif
-#if !defined(_WIN32) && defined(__x86_64__) && !defined(MAP_32BIT)
+#if !defined(_WIN32) && defined(ARCHITECTURE_X64) && !defined(MAP_32BIT)
#include <unistd.h>
#define PAGE_MASK (getpagesize() - 1)
#define round_page(x) ((((unsigned long)(x)) + PAGE_MASK) & ~(PAGE_MASK))
@@ -31,7 +31,7 @@ void* AllocateExecutableMemory(size_t size, bool low)
void* ptr = VirtualAlloc(0, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
#else
static char *map_hint = 0;
-#if defined(__x86_64__) && !defined(MAP_32BIT)
+#if defined(ARCHITECTURE_X64) && !defined(MAP_32BIT)
// This OS has no flag to enforce allocation below the 4 GB boundary,
// but if we hint that we want a low address it is very likely we will
// get one.
@@ -43,7 +43,7 @@ void* AllocateExecutableMemory(size_t size, bool low)
#endif
void* ptr = mmap(map_hint, size, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_ANON | MAP_PRIVATE
-#if defined(__x86_64__) && defined(MAP_32BIT)
+#if defined(ARCHITECTURE_X64) && defined(MAP_32BIT)
| (low ? MAP_32BIT : 0)
#endif
, -1, 0);
@@ -62,7 +62,7 @@ void* AllocateExecutableMemory(size_t size, bool low)
#endif
LOG_ERROR(Common_Memory, "Failed to allocate executable memory");
}
-#if !defined(_WIN32) && defined(__x86_64__) && !defined(MAP_32BIT)
+#if !defined(_WIN32) && defined(ARCHITECTURE_X64) && !defined(MAP_32BIT)
else
{
if (low)
diff --git a/src/common/platform.h b/src/common/platform.h
index 0a912dda3..9ba4db11b 100644
--- a/src/common/platform.h
+++ b/src/common/platform.h
@@ -27,7 +27,7 @@
////////////////////////////////////////////////////////////////////////////////////////////////////
// Platform detection
-#if defined(__x86_64__) || defined(_M_X64) || defined(__aarch64__)
+#if defined(ARCHITECTURE_x86_64) || defined(__aarch64__)
#define EMU_ARCH_BITS 64
#elif defined(__i386) || defined(_M_IX86) || defined(__arm__) || defined(_M_ARM)
#define EMU_ARCH_BITS 32
diff --git a/src/common/x64/abi.cpp b/src/common/x64/abi.cpp
new file mode 100644
index 000000000..4c07a6ebe
--- /dev/null
+++ b/src/common/x64/abi.cpp
@@ -0,0 +1,680 @@
+// Copyright (C) 2003 Dolphin Project.
+
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, version 2.0 or later versions.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License 2.0 for more details.
+
+// A copy of the GPL 2.0 should have been included with the program.
+// If not, see http://www.gnu.org/licenses/
+
+// Official SVN repository and contact information can be found at
+// http://code.google.com/p/dolphin-emu/
+
+#include "abi.h"
+#include "emitter.h"
+
+using namespace Gen;
+
+// Shared code between Win64 and Unix64
+
+// Sets up a __cdecl function.
+void XEmitter::ABI_EmitPrologue(int maxCallParams)
+{
+#ifdef _M_IX86
+ // Don't really need to do anything
+#elif defined(ARCHITECTURE_x86_64)
+#if _WIN32
+ int stacksize = ((maxCallParams + 1) & ~1) * 8 + 8;
+ // Set up a stack frame so that we can call functions
+ // TODO: use maxCallParams
+ SUB(64, R(RSP), Imm8(stacksize));
+#endif
+#else
+#error Arch not supported
+#endif
+}
+
+void XEmitter::ABI_EmitEpilogue(int maxCallParams)
+{
+#ifdef _M_IX86
+ RET();
+#elif defined(ARCHITECTURE_x86_64)
+#ifdef _WIN32
+ int stacksize = ((maxCallParams+1)&~1)*8 + 8;
+ ADD(64, R(RSP), Imm8(stacksize));
+#endif
+ RET();
+#else
+#error Arch not supported
+
+
+#endif
+}
+
+#ifdef _M_IX86 // All32
+
+// Shared code between Win32 and Unix32
+void XEmitter::ABI_CallFunction(const void *func) {
+ ABI_AlignStack(0);
+ CALL(func);
+ ABI_RestoreStack(0);
+}
+
+void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
+ ABI_AlignStack(1 * 2);
+ PUSH(16, Imm16(param1));
+ CALL(func);
+ ABI_RestoreStack(1 * 2);
+}
+
+void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
+ ABI_AlignStack(1 * 2 + 1 * 4);
+ PUSH(16, Imm16(param2));
+ PUSH(32, Imm32(param1));
+ CALL(func);
+ ABI_RestoreStack(1 * 2 + 1 * 4);
+}
+
+void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
+ ABI_AlignStack(1 * 4);
+ PUSH(32, Imm32(param1));
+ CALL(func);
+ ABI_RestoreStack(1 * 4);
+}
+
+void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
+ ABI_AlignStack(2 * 4);
+ PUSH(32, Imm32(param2));
+ PUSH(32, Imm32(param1));
+ CALL(func);
+ ABI_RestoreStack(2 * 4);
+}
+
+void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
+ ABI_AlignStack(3 * 4);
+ PUSH(32, Imm32(param3));
+ PUSH(32, Imm32(param2));
+ PUSH(32, Imm32(param1));
+ CALL(func);
+ ABI_RestoreStack(3 * 4);
+}
+
+void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
+ ABI_AlignStack(3 * 4);
+ PUSH(32, ImmPtr(param3));
+ PUSH(32, Imm32(param2));
+ PUSH(32, Imm32(param1));
+ CALL(func);
+ ABI_RestoreStack(3 * 4);
+}
+
+void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2,u32 param3, void *param4) {
+ ABI_AlignStack(4 * 4);
+ PUSH(32, ImmPtr(param4));
+ PUSH(32, Imm32(param3));
+ PUSH(32, Imm32(param2));
+ PUSH(32, Imm32(param1));
+ CALL(func);
+ ABI_RestoreStack(4 * 4);
+}
+
+void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
+ ABI_AlignStack(1 * 4);
+ PUSH(32, ImmPtr(param1));
+ CALL(func);
+ ABI_RestoreStack(1 * 4);
+}
+
+void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
+ ABI_AlignStack(2 * 4);
+ PUSH(32, arg2);
+ PUSH(32, ImmPtr(param1));
+ CALL(func);
+ ABI_RestoreStack(2 * 4);
+}
+
+void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
+ ABI_AlignStack(3 * 4);
+ PUSH(32, arg3);
+ PUSH(32, arg2);
+ PUSH(32, ImmPtr(param1));
+ CALL(func);
+ ABI_RestoreStack(3 * 4);
+}
+
+void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
+ ABI_AlignStack(3 * 4);
+ PUSH(32, Imm32(param3));
+ PUSH(32, ImmPtr(param2));
+ PUSH(32, ImmPtr(param1));
+ CALL(func);
+ ABI_RestoreStack(3 * 4);
+}
+
+// Pass a register as a parameter.
+void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
+ ABI_AlignStack(1 * 4);
+ PUSH(32, R(reg1));
+ CALL(func);
+ ABI_RestoreStack(1 * 4);
+}
+
+// Pass two registers as parameters.
+void XEmitter::ABI_CallFunctionRR(const void *func, Gen::X64Reg reg1, Gen::X64Reg reg2)
+{
+ ABI_AlignStack(2 * 4);
+ PUSH(32, R(reg2));
+ PUSH(32, R(reg1));
+ CALL(func);
+ ABI_RestoreStack(2 * 4);
+}
+
+void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
+{
+ ABI_AlignStack(2 * 4);
+ PUSH(32, Imm32(param2));
+ PUSH(32, arg1);
+ CALL(func);
+ ABI_RestoreStack(2 * 4);
+}
+
+void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
+{
+ ABI_AlignStack(3 * 4);
+ PUSH(32, Imm32(param3));
+ PUSH(32, Imm32(param2));
+ PUSH(32, arg1);
+ CALL(func);
+ ABI_RestoreStack(3 * 4);
+}
+
+void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
+{
+ ABI_AlignStack(1 * 4);
+ PUSH(32, arg1);
+ CALL(func);
+ ABI_RestoreStack(1 * 4);
+}
+
+void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
+{
+ ABI_AlignStack(2 * 4);
+ PUSH(32, arg2);
+ PUSH(32, arg1);
+ CALL(func);
+ ABI_RestoreStack(2 * 4);
+}
+
+void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
+ // Note: 4 * 4 = 16 bytes, so alignment is preserved.
+ PUSH(EBP);
+ PUSH(EBX);
+ PUSH(ESI);
+ PUSH(EDI);
+}
+
+void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
+ POP(EDI);
+ POP(ESI);
+ POP(EBX);
+ POP(EBP);
+}
+
+unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
+ frameSize += 4; // reserve space for return address
+ unsigned int alignedSize =
+#ifdef __GNUC__
+ (frameSize + 15) & -16;
+#else
+ (frameSize + 3) & -4;
+#endif
+ return alignedSize;
+}
+
+
+void XEmitter::ABI_AlignStack(unsigned int frameSize) {
+// Mac OS X requires the stack to be 16-byte aligned before every call.
+// Linux requires the stack to be 16-byte aligned before calls that put SSE
+// vectors on the stack, but since we do not keep track of which calls do that,
+// it is effectively every call as well.
+// Windows binaries compiled with MSVC do not have such a restriction*, but I
+// expect that GCC on Windows acts the same as GCC on Linux in this respect.
+// It would be nice if someone could verify this.
+// *However, the MSVC optimizing compiler assumes a 4-byte-aligned stack at times.
+ unsigned int fillSize =
+ ABI_GetAlignedFrameSize(frameSize) - (frameSize + 4);
+ if (fillSize != 0) {
+ SUB(32, R(ESP), Imm8(fillSize));
+ }
+}
+
+void XEmitter::ABI_RestoreStack(unsigned int frameSize) {
+ unsigned int alignedSize = ABI_GetAlignedFrameSize(frameSize);
+ alignedSize -= 4; // return address is POPped at end of call
+ if (alignedSize != 0) {
+ ADD(32, R(ESP), Imm8(alignedSize));
+ }
+}
+
+#else //64bit
+
+// Common functions
+void XEmitter::ABI_CallFunction(const void *func) {
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionC16(const void *func, u16 param1) {
+ MOV(32, R(ABI_PARAM1), Imm32((u32)param1));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2) {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(32, R(ABI_PARAM2), Imm32((u32)param2));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionC(const void *func, u32 param1) {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionCC(const void *func, u32 param1, u32 param2) {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3) {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ MOV(32, R(ABI_PARAM3), Imm32(param3));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3) {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ MOV(64, R(ABI_PARAM3), ImmPtr(param3));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4) {
+ MOV(32, R(ABI_PARAM1), Imm32(param1));
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ MOV(32, R(ABI_PARAM3), Imm32(param3));
+ MOV(64, R(ABI_PARAM4), ImmPtr(param4));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionP(const void *func, void *param1) {
+ MOV(64, R(ABI_PARAM1), ImmPtr(param1));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2) {
+ MOV(64, R(ABI_PARAM1), ImmPtr(param1));
+ if (!arg2.IsSimpleReg(ABI_PARAM2))
+ MOV(32, R(ABI_PARAM2), arg2);
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3) {
+ MOV(64, R(ABI_PARAM1), ImmPtr(param1));
+ if (!arg2.IsSimpleReg(ABI_PARAM2))
+ MOV(32, R(ABI_PARAM2), arg2);
+ if (!arg3.IsSimpleReg(ABI_PARAM3))
+ MOV(32, R(ABI_PARAM3), arg3);
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3) {
+ MOV(64, R(ABI_PARAM1), ImmPtr(param1));
+ MOV(64, R(ABI_PARAM2), ImmPtr(param2));
+ MOV(32, R(ABI_PARAM3), Imm32(param3));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+// Pass a register as a parameter.
+void XEmitter::ABI_CallFunctionR(const void *func, X64Reg reg1) {
+ if (reg1 != ABI_PARAM1)
+ MOV(32, R(ABI_PARAM1), R(reg1));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+// Pass two registers as parameters.
+void XEmitter::ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2) {
+ if (reg2 != ABI_PARAM1) {
+ if (reg1 != ABI_PARAM1)
+ MOV(64, R(ABI_PARAM1), R(reg1));
+ if (reg2 != ABI_PARAM2)
+ MOV(64, R(ABI_PARAM2), R(reg2));
+ } else {
+ if (reg2 != ABI_PARAM2)
+ MOV(64, R(ABI_PARAM2), R(reg2));
+ if (reg1 != ABI_PARAM1)
+ MOV(64, R(ABI_PARAM1), R(reg1));
+ }
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2)
+{
+ if (!arg1.IsSimpleReg(ABI_PARAM1))
+ MOV(32, R(ABI_PARAM1), arg1);
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3)
+{
+ if (!arg1.IsSimpleReg(ABI_PARAM1))
+ MOV(32, R(ABI_PARAM1), arg1);
+ MOV(32, R(ABI_PARAM2), Imm32(param2));
+ MOV(64, R(ABI_PARAM3), Imm64(param3));
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1)
+{
+ if (!arg1.IsSimpleReg(ABI_PARAM1))
+ MOV(32, R(ABI_PARAM1), arg1);
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+void XEmitter::ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2)
+{
+ if (!arg1.IsSimpleReg(ABI_PARAM1))
+ MOV(32, R(ABI_PARAM1), arg1);
+ if (!arg2.IsSimpleReg(ABI_PARAM2))
+ MOV(32, R(ABI_PARAM2), arg2);
+ u64 distance = u64(func) - (u64(code) + 5);
+ if (distance >= 0x0000000080000000ULL
+ && distance < 0xFFFFFFFF80000000ULL) {
+ // Far call
+ MOV(64, R(RAX), ImmPtr(func));
+ CALLptr(R(RAX));
+ } else {
+ CALL(func);
+ }
+}
+
+unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize) {
+ return frameSize;
+}
+
+#ifdef _WIN32
+
+// The Windows x64 ABI requires XMM6 - XMM15 to be callee saved. 10 regs.
+// But, not saving XMM4 and XMM5 breaks things in VS 2010, even though they are volatile regs.
+// Let's just save all 16.
+const int XMM_STACK_SPACE = 16 * 16;
+
+// Win64 Specific Code
+void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
+ //we only want to do this once
+ PUSH(RBX);
+ PUSH(RSI);
+ PUSH(RDI);
+ PUSH(RBP);
+ PUSH(R12);
+ PUSH(R13);
+ PUSH(R14);
+ PUSH(R15);
+ ABI_AlignStack(0);
+
+ // Do this after aligning, because before it's offset by 8.
+ SUB(64, R(RSP), Imm32(XMM_STACK_SPACE));
+ for (int i = 0; i < 16; ++i)
+ MOVAPS(MDisp(RSP, i * 16), (X64Reg)(XMM0 + i));
+}
+
+void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
+ for (int i = 0; i < 16; ++i)
+ MOVAPS((X64Reg)(XMM0 + i), MDisp(RSP, i * 16));
+ ADD(64, R(RSP), Imm32(XMM_STACK_SPACE));
+
+ ABI_RestoreStack(0);
+ POP(R15);
+ POP(R14);
+ POP(R13);
+ POP(R12);
+ POP(RBP);
+ POP(RDI);
+ POP(RSI);
+ POP(RBX);
+}
+
+// Win64 Specific Code
+void XEmitter::ABI_PushAllCallerSavedRegsAndAdjustStack() {
+ PUSH(RCX);
+ PUSH(RDX);
+ PUSH(RSI);
+ PUSH(RDI);
+ PUSH(R8);
+ PUSH(R9);
+ PUSH(R10);
+ PUSH(R11);
+ // TODO: Callers preserve XMM4-5 (XMM0-3 are args.)
+ ABI_AlignStack(0);
+}
+
+void XEmitter::ABI_PopAllCallerSavedRegsAndAdjustStack() {
+ ABI_RestoreStack(0);
+ POP(R11);
+ POP(R10);
+ POP(R9);
+ POP(R8);
+ POP(RDI);
+ POP(RSI);
+ POP(RDX);
+ POP(RCX);
+}
+
+void XEmitter::ABI_AlignStack(unsigned int /*frameSize*/) {
+ SUB(64, R(RSP), Imm8(0x28));
+}
+
+void XEmitter::ABI_RestoreStack(unsigned int /*frameSize*/) {
+ ADD(64, R(RSP), Imm8(0x28));
+}
+
+#else
+// Unix64 Specific Code
+void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
+ PUSH(RBX);
+ PUSH(RBP);
+ PUSH(R12);
+ PUSH(R13);
+ PUSH(R14);
+ PUSH(R15);
+ PUSH(R15); //just to align stack. duped push/pop doesn't hurt.
+ // TODO: XMM?
+}
+
+void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
+ POP(R15);
+ POP(R15);
+ POP(R14);
+ POP(R13);
+ POP(R12);
+ POP(RBP);
+ POP(RBX);
+}
+
+void XEmitter::ABI_PushAllCallerSavedRegsAndAdjustStack() {
+ PUSH(RCX);
+ PUSH(RDX);
+ PUSH(RSI);
+ PUSH(RDI);
+ PUSH(R8);
+ PUSH(R9);
+ PUSH(R10);
+ PUSH(R11);
+ PUSH(R11);
+}
+
+void XEmitter::ABI_PopAllCallerSavedRegsAndAdjustStack() {
+ POP(R11);
+ POP(R11);
+ POP(R10);
+ POP(R9);
+ POP(R8);
+ POP(RDI);
+ POP(RSI);
+ POP(RDX);
+ POP(RCX);
+}
+
+void XEmitter::ABI_AlignStack(unsigned int /*frameSize*/) {
+ SUB(64, R(RSP), Imm8(0x08));
+}
+
+void XEmitter::ABI_RestoreStack(unsigned int /*frameSize*/) {
+ ADD(64, R(RSP), Imm8(0x08));
+}
+
+#endif // WIN32
+
+#endif // 32bit
diff --git a/src/common/x64/abi.h b/src/common/x64/abi.h
new file mode 100644
index 000000000..7e9c156ae
--- /dev/null
+++ b/src/common/x64/abi.h
@@ -0,0 +1,78 @@
+// Copyright (C) 2003 Dolphin Project.
+
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, version 2.0 or later versions.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License 2.0 for more details.
+
+// A copy of the GPL 2.0 should have been included with the program.
+// If not, see http://www.gnu.org/licenses/
+
+// Official SVN repository and contact information can be found at
+// http://code.google.com/p/dolphin-emu/
+
+#pragma once
+
+#include "common/common_types.h"
+
+// x86/x64 ABI:s, and helpers to help follow them when JIT-ing code.
+// All convensions return values in EAX (+ possibly EDX).
+
+// Linux 32-bit, Windows 32-bit (cdecl, System V):
+// * Caller pushes left to right
+// * Caller fixes stack after call
+// * function subtract from stack for local storage only.
+// Scratch: EAX ECX EDX
+// Callee-save: EBX ESI EDI EBP
+// Parameters: -
+
+// Windows 64-bit
+// * 4-reg "fastcall" variant, very new-skool stack handling
+// * Callee moves stack pointer, to make room for shadow regs for the biggest function _it itself calls_
+// * Parameters passed in RCX, RDX, ... further parameters are MOVed into the allocated stack space.
+// Scratch: RAX RCX RDX R8 R9 R10 R11
+// Callee-save: RBX RSI RDI RBP R12 R13 R14 R15
+// Parameters: RCX RDX R8 R9, further MOV-ed
+
+// Linux 64-bit
+// * 6-reg "fastcall" variant, old skool stack handling (parameters are pushed)
+// Scratch: RAX RCX RDX RSI RDI R8 R9 R10 R11
+// Callee-save: RBX RBP R12 R13 R14 R15
+// Parameters: RDI RSI RDX RCX R8 R9
+
+#ifdef _M_IX86 // 32 bit calling convention, shared by all
+
+// 32-bit don't pass parameters in regs, but these are convenient to have anyway when we have to
+// choose regs to put stuff in.
+#define ABI_PARAM1 RCX
+#define ABI_PARAM2 RDX
+
+// There are no ABI_PARAM* here, since args are pushed.
+// 32-bit bog standard cdecl, shared between linux and windows
+// MacOSX 32-bit is same as System V with a few exceptions that we probably don't care much about.
+
+#elif ARCHITECTURE_x86_64 // 64 bit calling convention
+
+#ifdef _WIN32 // 64-bit Windows - the really exotic calling convention
+
+#define ABI_PARAM1 RCX
+#define ABI_PARAM2 RDX
+#define ABI_PARAM3 R8
+#define ABI_PARAM4 R9
+
+#else //64-bit Unix (hopefully MacOSX too)
+
+#define ABI_PARAM1 RDI
+#define ABI_PARAM2 RSI
+#define ABI_PARAM3 RDX
+#define ABI_PARAM4 RCX
+#define ABI_PARAM5 R8
+#define ABI_PARAM6 R9
+
+#endif // WIN32
+
+#endif // X86
diff --git a/src/common/x64/cpu_detect.cpp b/src/common/x64/cpu_detect.cpp
new file mode 100644
index 000000000..d9c430c67
--- /dev/null
+++ b/src/common/x64/cpu_detect.cpp
@@ -0,0 +1,187 @@
+// Copyright 2013 Dolphin Emulator Project / 2015 Citra Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#include <cstring>
+#include <string>
+#include <thread>
+
+#include "common/common_types.h"
+
+#include "cpu_detect.h"
+
+namespace Common {
+
+#ifndef _MSC_VER
+
+#ifdef __FreeBSD__
+#include <sys/types.h>
+#include <machine/cpufunc.h>
+#endif
+
+static inline void __cpuidex(int info[4], int function_id, int subfunction_id) {
+#ifdef __FreeBSD__
+ // Despite the name, this is just do_cpuid() with ECX as second input.
+ cpuid_count((u_int)function_id, (u_int)subfunction_id, (u_int*)info);
+#else
+ info[0] = function_id; // eax
+ info[2] = subfunction_id; // ecx
+ __asm__(
+ "cpuid"
+ : "=a" (info[0]),
+ "=b" (info[1]),
+ "=c" (info[2]),
+ "=d" (info[3])
+ : "a" (function_id),
+ "c" (subfunction_id)
+ );
+#endif
+}
+
+static inline void __cpuid(int info[4], int function_id) {
+ return __cpuidex(info, function_id, 0);
+}
+
+#define _XCR_XFEATURE_ENABLED_MASK 0
+static u64 _xgetbv(u32 index) {
+ u32 eax, edx;
+ __asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
+ return ((u64)edx << 32) | eax;
+}
+
+#endif // ifndef _MSC_VER
+
+// Detects the various CPU features
+static CPUCaps Detect() {
+ CPUCaps caps = {};
+
+ caps.num_cores = std::thread::hardware_concurrency();
+
+ // Assumes the CPU supports the CPUID instruction. Those that don't would likely not support
+ // Citra at all anyway
+
+ int cpu_id[4];
+ memset(caps.brand_string, 0, sizeof(caps.brand_string));
+
+ // Detect CPU's CPUID capabilities and grab CPU string
+ __cpuid(cpu_id, 0x00000000);
+ u32 max_std_fn = cpu_id[0]; // EAX
+
+ std::memcpy(&caps.brand_string[0], &cpu_id[1], sizeof(int));
+ std::memcpy(&caps.brand_string[4], &cpu_id[3], sizeof(int));
+ std::memcpy(&caps.brand_string[8], &cpu_id[2], sizeof(int));
+
+ __cpuid(cpu_id, 0x80000000);
+
+ u32 max_ex_fn = cpu_id[0];
+ if (!strcmp(caps.brand_string, "GenuineIntel"))
+ caps.vendor = CPUVendor::INTEL;
+ else if (!strcmp(caps.brand_string, "AuthenticAMD"))
+ caps.vendor = CPUVendor::AMD;
+ else
+ caps.vendor = CPUVendor::OTHER;
+
+ // Set reasonable default brand string even if brand string not available
+ strcpy(caps.cpu_string, caps.brand_string);
+
+ // Detect family and other miscellaneous features
+ if (max_std_fn >= 1) {
+ __cpuid(cpu_id, 0x00000001);
+
+ if ((cpu_id[3] >> 25) & 1) caps.sse = true;
+ if ((cpu_id[3] >> 26) & 1) caps.sse2 = true;
+ if ((cpu_id[2]) & 1) caps.sse3 = true;
+ if ((cpu_id[2] >> 9) & 1) caps.ssse3 = true;
+ if ((cpu_id[2] >> 19) & 1) caps.sse4_1 = true;
+ if ((cpu_id[2] >> 20) & 1) caps.sse4_2 = true;
+ if ((cpu_id[2] >> 22) & 1) caps.movbe = true;
+ if ((cpu_id[2] >> 25) & 1) caps.aes = true;
+
+ if ((cpu_id[3] >> 24) & 1) {
+ caps.fxsave_fxrstor = true;
+ }
+
+ // AVX support requires 3 separate checks:
+ // - Is the AVX bit set in CPUID?
+ // - Is the XSAVE bit set in CPUID?
+ // - XGETBV result has the XCR bit set.
+ if (((cpu_id[2] >> 28) & 1) && ((cpu_id[2] >> 27) & 1)) {
+ if ((_xgetbv(_XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6) {
+ caps.avx = true;
+ if ((cpu_id[2] >> 12) & 1)
+ caps.fma = true;
+ }
+ }
+
+ if (max_std_fn >= 7) {
+ __cpuidex(cpu_id, 0x00000007, 0x00000000);
+ // Can't enable AVX2 unless the XSAVE/XGETBV checks above passed
+ if ((cpu_id[1] >> 5) & 1)
+ caps.avx2 = caps.avx;
+ if ((cpu_id[1] >> 3) & 1)
+ caps.bmi1 = true;
+ if ((cpu_id[1] >> 8) & 1)
+ caps.bmi2 = true;
+ }
+ }
+
+ caps.flush_to_zero = caps.sse;
+
+ if (max_ex_fn >= 0x80000004) {
+ // Extract CPU model string
+ __cpuid(cpu_id, 0x80000002);
+ std::memcpy(caps.cpu_string, cpu_id, sizeof(cpu_id));
+ __cpuid(cpu_id, 0x80000003);
+ std::memcpy(caps.cpu_string + 16, cpu_id, sizeof(cpu_id));
+ __cpuid(cpu_id, 0x80000004);
+ std::memcpy(caps.cpu_string + 32, cpu_id, sizeof(cpu_id));
+ }
+
+ if (max_ex_fn >= 0x80000001) {
+ // Check for more features
+ __cpuid(cpu_id, 0x80000001);
+ if (cpu_id[2] & 1) caps.lahf_sahf_64 = true;
+ if ((cpu_id[2] >> 5) & 1) caps.lzcnt = true;
+ if ((cpu_id[2] >> 16) & 1) caps.fma4 = true;
+ if ((cpu_id[3] >> 29) & 1) caps.long_mode = true;
+ }
+
+ return caps;
+}
+
+const CPUCaps& GetCPUCaps() {
+ static CPUCaps caps = Detect();
+ return caps;
+}
+
+std::string GetCPUCapsString() {
+ auto caps = GetCPUCaps();
+
+ std::string sum(caps.cpu_string);
+ sum += " (";
+ sum += caps.brand_string;
+ sum += ")";
+
+ if (caps.sse) sum += ", SSE";
+ if (caps.sse2) {
+ sum += ", SSE2";
+ if (!caps.flush_to_zero) sum += " (without DAZ)";
+ }
+
+ if (caps.sse3) sum += ", SSE3";
+ if (caps.ssse3) sum += ", SSSE3";
+ if (caps.sse4_1) sum += ", SSE4.1";
+ if (caps.sse4_2) sum += ", SSE4.2";
+ if (caps.avx) sum += ", AVX";
+ if (caps.avx2) sum += ", AVX2";
+ if (caps.bmi1) sum += ", BMI1";
+ if (caps.bmi2) sum += ", BMI2";
+ if (caps.fma) sum += ", FMA";
+ if (caps.aes) sum += ", AES";
+ if (caps.movbe) sum += ", MOVBE";
+ if (caps.long_mode) sum += ", 64-bit support";
+
+ return sum;
+}
+
+} // namespace Common
diff --git a/src/common/x64/cpu_detect.h b/src/common/x64/cpu_detect.h
new file mode 100644
index 000000000..0af3a8adb
--- /dev/null
+++ b/src/common/x64/cpu_detect.h
@@ -0,0 +1,66 @@
+// Copyright 2013 Dolphin Emulator Project / 2015 Citra Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#pragma once
+
+#include <string>
+
+namespace Common {
+
+/// x86/x64 CPU vendors that may be detected by this module
+enum class CPUVendor {
+ INTEL,
+ AMD,
+ OTHER,
+};
+
+/// x86/x64 CPU capabilities that may be detected by this module
+struct CPUCaps {
+ CPUVendor vendor;
+ char cpu_string[0x21];
+ char brand_string[0x41];
+ int num_cores;
+ bool sse;
+ bool sse2;
+ bool sse3;
+ bool ssse3;
+ bool sse4_1;
+ bool sse4_2;
+ bool lzcnt;
+ bool avx;
+ bool avx2;
+ bool bmi1;
+ bool bmi2;
+ bool fma;
+ bool fma4;
+ bool aes;
+
+ // Support for the FXSAVE and FXRSTOR instructions
+ bool fxsave_fxrstor;
+
+ bool movbe;
+
+ // This flag indicates that the hardware supports some mode in which denormal inputs and outputs
+ // are automatically set to (signed) zero.
+ bool flush_to_zero;
+
+ // Support for LAHF and SAHF instructions in 64-bit mode
+ bool lahf_sahf_64;
+
+ bool long_mode;
+};
+
+/**
+ * Gets the supported capabilities of the host CPU
+ * @return Reference to a CPUCaps struct with the detected host CPU capabilities
+ */
+const CPUCaps& GetCPUCaps();
+
+/**
+ * Gets a string summary of the name and supported capabilities of the host CPU
+ * @return String summary
+ */
+std::string GetCPUCapsString();
+
+} // namespace Common
diff --git a/src/common/x64/emitter.cpp b/src/common/x64/emitter.cpp
new file mode 100644
index 000000000..4b79acd1f
--- /dev/null
+++ b/src/common/x64/emitter.cpp
@@ -0,0 +1,1989 @@
+// Copyright (C) 2003 Dolphin Project.
+
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, version 2.0 or later versions.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License 2.0 for more details.
+
+// A copy of the GPL 2.0 should have been included with the program.
+// If not, see http://www.gnu.org/licenses/
+
+// Official SVN repository and contact information can be found at
+// http://code.google.com/p/dolphin-emu/
+
+#include <cstring>
+
+#include "common/assert.h"
+#include "common/logging/log.h"
+#include "common/memory_util.h"
+
+#include "abi.h"
+#include "cpu_detect.h"
+#include "emitter.h"
+
+#define PRIx64 "llx"
+
+// Minimize the diff against Dolphin
+#define DYNA_REC JIT
+
+namespace Gen
+{
+
+struct NormalOpDef
+{
+ u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext;
+};
+
+// 0xCC is code for invalid combination of immediates
+static const NormalOpDef normalops[11] =
+{
+ {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, //ADD
+ {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, //ADC
+
+ {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, //SUB
+ {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, //SBB
+
+ {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, //AND
+ {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, //OR
+
+ {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, //XOR
+ {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, //MOV
+
+ {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, //TEST (to == from)
+ {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, //CMP
+
+ {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, //XCHG
+};
+
+enum NormalSSEOps
+{
+ sseCMP = 0xC2,
+ sseADD = 0x58, //ADD
+ sseSUB = 0x5C, //SUB
+ sseAND = 0x54, //AND
+ sseANDN = 0x55, //ANDN
+ sseOR = 0x56,
+ sseXOR = 0x57,
+ sseMUL = 0x59, //MUL
+ sseDIV = 0x5E, //DIV
+ sseMIN = 0x5D, //MIN
+ sseMAX = 0x5F, //MAX
+ sseCOMIS = 0x2F, //COMIS
+ sseUCOMIS = 0x2E, //UCOMIS
+ sseSQRT = 0x51, //SQRT
+ sseRSQRT = 0x52, //RSQRT (NO DOUBLE PRECISION!!!)
+ sseRCP = 0x53, //RCP
+ sseMOVAPfromRM = 0x28, //MOVAP from RM
+ sseMOVAPtoRM = 0x29, //MOVAP to RM
+ sseMOVUPfromRM = 0x10, //MOVUP from RM
+ sseMOVUPtoRM = 0x11, //MOVUP to RM
+ sseMOVLPfromRM= 0x12,
+ sseMOVLPtoRM = 0x13,
+ sseMOVHPfromRM= 0x16,
+ sseMOVHPtoRM = 0x17,
+ sseMOVHLPS = 0x12,
+ sseMOVLHPS = 0x16,
+ sseMOVDQfromRM = 0x6F,
+ sseMOVDQtoRM = 0x7F,
+ sseMASKMOVDQU = 0xF7,
+ sseLDDQU = 0xF0,
+ sseSHUF = 0xC6,
+ sseMOVNTDQ = 0xE7,
+ sseMOVNTP = 0x2B,
+ sseHADD = 0x7C,
+};
+
+
+void XEmitter::SetCodePtr(u8 *ptr)
+{
+ code = ptr;
+}
+
+const u8 *XEmitter::GetCodePtr() const
+{
+ return code;
+}
+
+u8 *XEmitter::GetWritableCodePtr()
+{
+ return code;
+}
+
+void XEmitter::ReserveCodeSpace(int bytes)
+{
+ for (int i = 0; i < bytes; i++)
+ *code++ = 0xCC;
+}
+
+const u8 *XEmitter::AlignCode4()
+{
+ int c = int((u64)code & 3);
+ if (c)
+ ReserveCodeSpace(4-c);
+ return code;
+}
+
+const u8 *XEmitter::AlignCode16()
+{
+ int c = int((u64)code & 15);
+ if (c)
+ ReserveCodeSpace(16-c);
+ return code;
+}
+
+const u8 *XEmitter::AlignCodePage()
+{
+ int c = int((u64)code & 4095);
+ if (c)
+ ReserveCodeSpace(4096-c);
+ return code;
+}
+
+// This operation modifies flags; check to see the flags are locked.
+// If the flags are locked, we should immediately and loudly fail before
+// causing a subtle JIT bug.
+void XEmitter::CheckFlags()
+{
+ ASSERT_MSG(!flags_locked, "Attempt to modify flags while flags locked!");
+}
+
+void XEmitter::WriteModRM(int mod, int reg, int rm)
+{
+ Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7)));
+}
+
+void XEmitter::WriteSIB(int scale, int index, int base)
+{
+ Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
+}
+
+void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const
+{
+ if (customOp == -1) customOp = operandReg;
+#ifdef ARCHITECTURE_x86_64
+ u8 op = 0x40;
+ // REX.W (whether operation is a 64-bit operation)
+ if (opBits == 64) op |= 8;
+ // REX.R (whether ModR/M reg field refers to R8-R15.
+ if (customOp & 8) op |= 4;
+ // REX.X (whether ModR/M SIB index field refers to R8-R15)
+ if (indexReg & 8) op |= 2;
+ // REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15)
+ if (offsetOrBaseReg & 8) op |= 1;
+ // Write REX if wr have REX bits to write, or if the operation accesses
+ // SIL, DIL, BPL, or SPL.
+ if (op != 0x40 ||
+ (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
+ (opBits == 8 && (customOp & 0x10c) == 4))
+ {
+ emit->Write8(op);
+ // Check the operation doesn't access AH, BH, CH, or DH.
+ DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0);
+ DEBUG_ASSERT((customOp & 0x100) == 0);
+ }
+#else
+ DEBUG_ASSERT(opBits != 64);
+ DEBUG_ASSERT((customOp & 8) == 0 || customOp == -1);
+ DEBUG_ASSERT((indexReg & 8) == 0);
+ DEBUG_ASSERT((offsetOrBaseReg & 8) == 0);
+ DEBUG_ASSERT(opBits != 8 || (customOp & 0x10c) != 4 || customOp == -1);
+ DEBUG_ASSERT(scale == SCALE_ATREG || bits != 8 || (offsetOrBaseReg & 0x10c) != 4);
+#endif
+}
+
+void OpArg::WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W) const
+{
+ int R = !(regOp1 & 8);
+ int X = !(indexReg & 8);
+ int B = !(offsetOrBaseReg & 8);
+
+ int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf);
+
+ // do we need any VEX fields that only appear in the three-byte form?
+ if (X == 1 && B == 1 && W == 0 && mmmmm == 1)
+ {
+ u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 1) | pp;
+ emit->Write8(0xC5);
+ emit->Write8(RvvvvLpp);
+ }
+ else
+ {
+ u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm;
+ u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 1) | pp;
+ emit->Write8(0xC4);
+ emit->Write8(RXBmmmmm);
+ emit->Write8(WvvvvLpp);
+ }
+}
+
+void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
+ bool warn_64bit_offset) const
+{
+ if (_operandReg == INVALID_REG)
+ _operandReg = (X64Reg)this->operandReg;
+ int mod = 0;
+ int ireg = indexReg;
+ bool SIB = false;
+ int _offsetOrBaseReg = this->offsetOrBaseReg;
+
+ if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address
+ {
+ // Oh, RIP addressing.
+ _offsetOrBaseReg = 5;
+ emit->WriteModRM(0, _operandReg, _offsetOrBaseReg);
+ //TODO : add some checks
+#ifdef ARCHITECTURE_x86_64
+ u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes;
+ s64 distance = (s64)offset - (s64)ripAddr;
+ ASSERT_MSG(
+ (distance < 0x80000000LL &&
+ distance >= -0x80000000LL) ||
+ !warn_64bit_offset,
+ "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")",
+ ripAddr, offset);
+ s32 offs = (s32)distance;
+ emit->Write32((u32)offs);
+#else
+ emit->Write32((u32)offset);
+#endif
+ return;
+ }
+
+ if (scale == 0)
+ {
+ // Oh, no memory, Just a reg.
+ mod = 3; //11
+ }
+ else if (scale >= 1)
+ {
+ //Ah good, no scaling.
+ if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5))
+ {
+ //Okay, we're good. No SIB necessary.
+ int ioff = (int)offset;
+ if (ioff == 0)
+ {
+ mod = 0;
+ }
+ else if (ioff<-128 || ioff>127)
+ {
+ mod = 2; //32-bit displacement
+ }
+ else
+ {
+ mod = 1; //8-bit displacement
+ }
+ }
+ else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)
+ {
+ SIB = true;
+ mod = 0;
+ _offsetOrBaseReg = 5;
+ }
+ else //if (scale != SCALE_ATREG)
+ {
+ if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :(
+ {
+ //So we have to fake it with SIB encoding :(
+ SIB = true;
+ }
+
+ if (scale >= SCALE_1 && scale < SCALE_ATREG)
+ {
+ SIB = true;
+ }
+
+ if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4))
+ {
+ SIB = true;
+ ireg = _offsetOrBaseReg;
+ }
+
+ //Okay, we're fine. Just disp encoding.
+ //We need displacement. Which size?
+ int ioff = (int)(s64)offset;
+ if (ioff < -128 || ioff > 127)
+ {
+ mod = 2; //32-bit displacement
+ }
+ else
+ {
+ mod = 1; //8-bit displacement
+ }
+ }
+ }
+
+ // Okay. Time to do the actual writing
+ // ModRM byte:
+ int oreg = _offsetOrBaseReg;
+ if (SIB)
+ oreg = 4;
+
+ // TODO(ector): WTF is this if about? I don't remember writing it :-)
+ //if (RIP)
+ // oreg = 5;
+
+ emit->WriteModRM(mod, _operandReg&7, oreg&7);
+
+ if (SIB)
+ {
+ //SIB byte
+ int ss;
+ switch (scale)
+ {
+ case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; //RSP
+ case SCALE_1: ss = 0; break;
+ case SCALE_2: ss = 1; break;
+ case SCALE_4: ss = 2; break;
+ case SCALE_8: ss = 3; break;
+ case SCALE_NOBASE_2: ss = 1; break;
+ case SCALE_NOBASE_4: ss = 2; break;
+ case SCALE_NOBASE_8: ss = 3; break;
+ case SCALE_ATREG: ss = 0; break;
+ default: ASSERT_MSG(0, "Invalid scale for SIB byte"); ss = 0; break;
+ }
+ emit->Write8((u8)((ss << 6) | ((ireg&7)<<3) | (_offsetOrBaseReg&7)));
+ }
+
+ if (mod == 1) //8-bit disp
+ {
+ emit->Write8((u8)(s8)(s32)offset);
+ }
+ else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) //32-bit disp
+ {
+ emit->Write32((u32)offset);
+ }
+}
+
+// W = operand extended width (1 if 64-bit)
+// R = register# upper bit
+// X = scale amnt upper bit
+// B = base register# upper bit
+void XEmitter::Rex(int w, int r, int x, int b)
+{
+ w = w ? 1 : 0;
+ r = r ? 1 : 0;
+ x = x ? 1 : 0;
+ b = b ? 1 : 0;
+ u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
+ if (rx != 0x40)
+ Write8(rx);
+}
+
+void XEmitter::JMP(const u8 *addr, bool force5Bytes)
+{
+ u64 fn = (u64)addr;
+ if (!force5Bytes)
+ {
+ s64 distance = (s64)(fn - ((u64)code + 2));
+ ASSERT_MSG(distance >= -0x80 && distance < 0x80,
+ "Jump target too far away, needs force5Bytes = true");
+ //8 bits will do
+ Write8(0xEB);
+ Write8((u8)(s8)distance);
+ }
+ else
+ {
+ s64 distance = (s64)(fn - ((u64)code + 5));
+
+ ASSERT_MSG(
+ distance >= -0x80000000LL && distance < 0x80000000LL,
+ "Jump target too far away, needs indirect register");
+ Write8(0xE9);
+ Write32((u32)(s32)distance);
+ }
+}
+
+void XEmitter::JMPptr(const OpArg &arg2)
+{
+ OpArg arg = arg2;
+ if (arg.IsImm()) ASSERT_MSG(0, "JMPptr - Imm argument");
+ arg.operandReg = 4;
+ arg.WriteRex(this, 0, 0);
+ Write8(0xFF);
+ arg.WriteRest(this);
+}
+
+//Can be used to trap other processors, before overwriting their code
+// not used in dolphin
+void XEmitter::JMPself()
+{
+ Write8(0xEB);
+ Write8(0xFE);
+}
+
+void XEmitter::CALLptr(OpArg arg)
+{
+ if (arg.IsImm()) ASSERT_MSG(0, "CALLptr - Imm argument");
+ arg.operandReg = 2;
+ arg.WriteRex(this, 0, 0);
+ Write8(0xFF);
+ arg.WriteRest(this);
+}
+
+void XEmitter::CALL(const void *fnptr)
+{
+ u64 distance = u64(fnptr) - (u64(code) + 5);
+ ASSERT_MSG(
+ distance < 0x0000000080000000ULL ||
+ distance >= 0xFFFFFFFF80000000ULL,
+ "CALL out of range (%p calls %p)", code, fnptr);
+ Write8(0xE8);
+ Write32(u32(distance));
+}
+
+FixupBranch XEmitter::J(bool force5bytes)
+{
+ FixupBranch branch;
+ branch.type = force5bytes ? 1 : 0;
+ branch.ptr = code + (force5bytes ? 5 : 2);
+ if (!force5bytes)
+ {
+ //8 bits will do
+ Write8(0xEB);
+ Write8(0);
+ }
+ else
+ {
+ Write8(0xE9);
+ Write32(0);
+ }
+ return branch;
+}
+
+FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
+{
+ FixupBranch branch;
+ branch.type = force5bytes ? 1 : 0;
+ branch.ptr = code + (force5bytes ? 6 : 2);
+ if (!force5bytes)
+ {
+ //8 bits will do
+ Write8(0x70 + conditionCode);
+ Write8(0);
+ }
+ else
+ {
+ Write8(0x0F);
+ Write8(0x80 + conditionCode);
+ Write32(0);
+ }
+ return branch;
+}
+
+void XEmitter::J_CC(CCFlags conditionCode, const u8* addr, bool force5bytes)
+{
+ u64 fn = (u64)addr;
+ s64 distance = (s64)(fn - ((u64)code + 2));
+ if (distance < -0x80 || distance >= 0x80 || force5bytes)
+ {
+ distance = (s64)(fn - ((u64)code + 6));
+ ASSERT_MSG(
+ distance >= -0x80000000LL && distance < 0x80000000LL,
+ "Jump target too far away, needs indirect register");
+ Write8(0x0F);
+ Write8(0x80 + conditionCode);
+ Write32((u32)(s32)distance);
+ }
+ else
+ {
+ Write8(0x70 + conditionCode);
+ Write8((u8)(s8)distance);
+ }
+}
+
+void XEmitter::SetJumpTarget(const FixupBranch &branch)
+{
+ if (branch.type == 0)
+ {
+ s64 distance = (s64)(code - branch.ptr);
+ ASSERT_MSG(distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true");
+ branch.ptr[-1] = (u8)(s8)distance;
+ }
+ else if (branch.type == 1)
+ {
+ s64 distance = (s64)(code - branch.ptr);
+ ASSERT_MSG(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register");
+ ((s32*)branch.ptr)[-1] = (s32)distance;
+ }
+}
+
+// INC/DEC considered harmful on newer CPUs due to partial flag set.
+// Use ADD, SUB instead.
+
+/*
+void XEmitter::INC(int bits, OpArg arg)
+{
+ if (arg.IsImm()) ASSERT_MSG(0, "INC - Imm argument");
+ arg.operandReg = 0;
+ if (bits == 16) {Write8(0x66);}
+ arg.WriteRex(this, bits, bits);
+ Write8(bits == 8 ? 0xFE : 0xFF);
+ arg.WriteRest(this);
+}
+void XEmitter::DEC(int bits, OpArg arg)
+{
+ if (arg.IsImm()) ASSERT_MSG(0, "DEC - Imm argument");
+ arg.operandReg = 1;
+ if (bits == 16) {Write8(0x66);}
+ arg.WriteRex(this, bits, bits);
+ Write8(bits == 8 ? 0xFE : 0xFF);
+ arg.WriteRest(this);
+}
+*/
+
+//Single byte opcodes
+//There is no PUSHAD/POPAD in 64-bit mode.
+void XEmitter::INT3() {Write8(0xCC);}
+void XEmitter::RET() {Write8(0xC3);}
+void XEmitter::RET_FAST() {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret
+
+// The first sign of decadence: optimized NOPs.
+void XEmitter::NOP(size_t size)
+{
+ DEBUG_ASSERT((int)size > 0);
+ while (true)
+ {
+ switch (size)
+ {
+ case 0:
+ return;
+ case 1:
+ Write8(0x90);
+ return;
+ case 2:
+ Write8(0x66); Write8(0x90);
+ return;
+ case 3:
+ Write8(0x0F); Write8(0x1F); Write8(0x00);
+ return;
+ case 4:
+ Write8(0x0F); Write8(0x1F); Write8(0x40); Write8(0x00);
+ return;
+ case 5:
+ Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00);
+ Write8(0x00);
+ return;
+ case 6:
+ Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x44);
+ Write8(0x00); Write8(0x00);
+ return;
+ case 7:
+ Write8(0x0F); Write8(0x1F); Write8(0x80); Write8(0x00);
+ Write8(0x00); Write8(0x00); Write8(0x00);
+ return;
+ case 8:
+ Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00);
+ Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00);
+ return;
+ case 9:
+ Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84);
+ Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00);
+ Write8(0x00);
+ return;
+ case 10:
+ Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F);
+ Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00);
+ Write8(0x00); Write8(0x00);
+ return;
+ default:
+ // Even though x86 instructions are allowed to be up to 15 bytes long,
+ // AMD advises against using NOPs longer than 11 bytes because they
+ // carry a performance penalty on CPUs older than AMD family 16h.
+ Write8(0x66); Write8(0x66); Write8(0x66); Write8(0x0F);
+ Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00);
+ Write8(0x00); Write8(0x00); Write8(0x00);
+ size -= 11;
+ continue;
+ }
+ }
+}
+
+void XEmitter::PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu
+void XEmitter::CLC() {CheckFlags(); Write8(0xF8);} //clear carry
+void XEmitter::CMC() {CheckFlags(); Write8(0xF5);} //flip carry
+void XEmitter::STC() {CheckFlags(); Write8(0xF9);} //set carry
+
+//TODO: xchg ah, al ???
+void XEmitter::XCHG_AHAL()
+{
+ Write8(0x86);
+ Write8(0xe0);
+ // alt. 86 c4
+}
+
+//These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
+void XEmitter::LAHF() {Write8(0x9F);}
+void XEmitter::SAHF() {CheckFlags(); Write8(0x9E);}
+
+void XEmitter::PUSHF() {Write8(0x9C);}
+void XEmitter::POPF() {CheckFlags(); Write8(0x9D);}
+
+void XEmitter::LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);}
+void XEmitter::MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);}
+void XEmitter::SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);}
+
+void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
+{
+ if (bits == 16)
+ Write8(0x66);
+ Rex(bits == 64, 0, 0, (int)reg >> 3);
+ Write8(byte + ((int)reg & 7));
+}
+
+void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
+{
+ if (bits == 16)
+ Write8(0x66);
+ Rex(bits==64, 0, 0, (int)reg >> 3);
+ Write8(byte1);
+ Write8(byte2 + ((int)reg & 7));
+}
+
+void XEmitter::CWD(int bits)
+{
+ if (bits == 16)
+ Write8(0x66);
+ Rex(bits == 64, 0, 0, 0);
+ Write8(0x99);
+}
+
+void XEmitter::CBW(int bits)
+{
+ if (bits == 8)
+ Write8(0x66);
+ Rex(bits == 32, 0, 0, 0);
+ Write8(0x98);
+}
+
+//Simple opcodes
+
+
+//push/pop do not need wide to be 64-bit
+void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);}
+void XEmitter::POP(X64Reg reg) {WriteSimple1Byte(32, 0x58, reg);}
+
+void XEmitter::PUSH(int bits, const OpArg &reg)
+{
+ if (reg.IsSimpleReg())
+ PUSH(reg.GetSimpleReg());
+ else if (reg.IsImm())
+ {
+ switch (reg.GetImmBits())
+ {
+ case 8:
+ Write8(0x6A);
+ Write8((u8)(s8)reg.offset);
+ break;
+ case 16:
+ Write8(0x66);
+ Write8(0x68);
+ Write16((u16)(s16)(s32)reg.offset);
+ break;
+ case 32:
+ Write8(0x68);
+ Write32((u32)reg.offset);
+ break;
+ default:
+ ASSERT_MSG(0, "PUSH - Bad imm bits");
+ break;
+ }
+ }
+ else
+ {
+ if (bits == 16)
+ Write8(0x66);
+ reg.WriteRex(this, bits, bits);
+ Write8(0xFF);
+ reg.WriteRest(this, 0, (X64Reg)6);
+ }
+}
+
+void XEmitter::POP(int /*bits*/, const OpArg &reg)
+{
+ if (reg.IsSimpleReg())
+ POP(reg.GetSimpleReg());
+ else
+ ASSERT_MSG(0, "POP - Unsupported encoding");
+}
+
+void XEmitter::BSWAP(int bits, X64Reg reg)
+{
+ if (bits >= 32)
+ {
+ WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
+ }
+ else if (bits == 16)
+ {
+ ROL(16, R(reg), Imm8(8));
+ }
+ else if (bits == 8)
+ {
+ // Do nothing - can't bswap a single byte...
+ }
+ else
+ {
+ ASSERT_MSG(0, "BSWAP - Wrong number of bits");
+ }
+}
+
+// Undefined opcode - reserved
+// If we ever need a way to always cause a non-breakpoint hard exception...
+void XEmitter::UD2()
+{
+ Write8(0x0F);
+ Write8(0x0B);
+}
+
+void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg)
+{
+ ASSERT_MSG(!arg.IsImm(), "PREFETCH - Imm argument");
+ arg.operandReg = (u8)level;
+ arg.WriteRex(this, 0, 0);
+ Write8(0x0F);
+ Write8(0x18);
+ arg.WriteRest(this);
+}
+
+void XEmitter::SETcc(CCFlags flag, OpArg dest)
+{
+ ASSERT_MSG(!dest.IsImm(), "SETcc - Imm argument");
+ dest.operandReg = 0;
+ dest.WriteRex(this, 0, 8);
+ Write8(0x0F);
+ Write8(0x90 + (u8)flag);
+ dest.WriteRest(this);
+}
+
+void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
+{
+ ASSERT_MSG(!src.IsImm(), "CMOVcc - Imm argument");
+ ASSERT_MSG(bits != 8, "CMOVcc - 8 bits unsupported");
+ if (bits == 16)
+ Write8(0x66);
+ src.operandReg = dest;
+ src.WriteRex(this, bits, bits);
+ Write8(0x0F);
+ Write8(0x40 + (u8)flag);
+ src.WriteRest(this);
+}
+
+void XEmitter::WriteMulDivType(int bits, OpArg src, int ext)
+{
+ ASSERT_MSG(!src.IsImm(), "WriteMulDivType - Imm argument");
+ CheckFlags();
+ src.operandReg = ext;
+ if (bits == 16)
+ Write8(0x66);
+ src.WriteRex(this, bits, bits, 0);
+ if (bits == 8)
+ {
+ Write8(0xF6);
+ }
+ else
+ {
+ Write8(0xF7);
+ }
+ src.WriteRest(this);
+}
+
+void XEmitter::MUL(int bits, OpArg src) {WriteMulDivType(bits, src, 4);}
+void XEmitter::DIV(int bits, OpArg src) {WriteMulDivType(bits, src, 6);}
+void XEmitter::IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);}
+void XEmitter::IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);}
+void XEmitter::NEG(int bits, OpArg src) {WriteMulDivType(bits, src, 3);}
+void XEmitter::NOT(int bits, OpArg src) {WriteMulDivType(bits, src, 2);}
+
+void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep)
+{
+ ASSERT_MSG(!src.IsImm(), "WriteBitSearchType - Imm argument");
+ CheckFlags();
+ src.operandReg = (u8)dest;
+ if (bits == 16)
+ Write8(0x66);
+ if (rep)
+ Write8(0xF3);
+ src.WriteRex(this, bits, bits);
+ Write8(0x0F);
+ Write8(byte2);
+ src.WriteRest(this);
+}
+
+void XEmitter::MOVNTI(int bits, OpArg dest, X64Reg src)
+{
+ if (bits <= 16)
+ ASSERT_MSG(0, "MOVNTI - bits<=16");
+ WriteBitSearchType(bits, src, dest, 0xC3);
+}
+
+void XEmitter::BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit
+void XEmitter::BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit
+
+void XEmitter::TZCNT(int bits, X64Reg dest, OpArg src)
+{
+ CheckFlags();
+ if (!Common::GetCPUCaps().bmi1)
+ ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
+ WriteBitSearchType(bits, dest, src, 0xBC, true);
+}
+void XEmitter::LZCNT(int bits, X64Reg dest, OpArg src)
+{
+ CheckFlags();
+ if (!Common::GetCPUCaps().lzcnt)
+ ASSERT_MSG(0, "Trying to use LZCNT on a system that doesn't support it. Bad programmer.");
+ WriteBitSearchType(bits, dest, src, 0xBD, true);
+}
+
+void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
+{
+ ASSERT_MSG(!src.IsImm(), "MOVSX - Imm argument");
+ if (dbits == sbits)
+ {
+ MOV(dbits, R(dest), src);
+ return;
+ }
+ src.operandReg = (u8)dest;
+ if (dbits == 16)
+ Write8(0x66);
+ src.WriteRex(this, dbits, sbits);
+ if (sbits == 8)
+ {
+ Write8(0x0F);
+ Write8(0xBE);
+ }
+ else if (sbits == 16)
+ {
+ Write8(0x0F);
+ Write8(0xBF);
+ }
+ else if (sbits == 32 && dbits == 64)
+ {
+ Write8(0x63);
+ }
+ else
+ {
+ Crash();
+ }
+ src.WriteRest(this);
+}
+
+void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
+{
+ ASSERT_MSG(!src.IsImm(), "MOVZX - Imm argument");
+ if (dbits == sbits)
+ {
+ MOV(dbits, R(dest), src);
+ return;
+ }
+ src.operandReg = (u8)dest;
+ if (dbits == 16)
+ Write8(0x66);
+ //the 32bit result is automatically zero extended to 64bit
+ src.WriteRex(this, dbits == 64 ? 32 : dbits, sbits);
+ if (sbits == 8)
+ {
+ Write8(0x0F);
+ Write8(0xB6);
+ }
+ else if (sbits == 16)
+ {
+ Write8(0x0F);
+ Write8(0xB7);
+ }
+ else if (sbits == 32 && dbits == 64)
+ {
+ Write8(0x8B);
+ }
+ else
+ {
+ ASSERT_MSG(0, "MOVZX - Invalid size");
+ }
+ src.WriteRest(this);
+}
+
+void XEmitter::MOVBE(int bits, const OpArg& dest, const OpArg& src)
+{
+ ASSERT_MSG(Common::GetCPUCaps().movbe, "Generating MOVBE on a system that does not support it.");
+ if (bits == 8)
+ {
+ MOV(bits, dest, src);
+ return;
+ }
+
+ if (bits == 16)
+ Write8(0x66);
+
+ if (dest.IsSimpleReg())
+ {
+ ASSERT_MSG(!src.IsSimpleReg() && !src.IsImm(), "MOVBE: Loading from !mem");
+ src.WriteRex(this, bits, bits, dest.GetSimpleReg());
+ Write8(0x0F); Write8(0x38); Write8(0xF0);
+ src.WriteRest(this, 0, dest.GetSimpleReg());
+ }
+ else if (src.IsSimpleReg())
+ {
+ ASSERT_MSG(!dest.IsSimpleReg() && !dest.IsImm(), "MOVBE: Storing to !mem");
+ dest.WriteRex(this, bits, bits, src.GetSimpleReg());
+ Write8(0x0F); Write8(0x38); Write8(0xF1);
+ dest.WriteRest(this, 0, src.GetSimpleReg());
+ }
+ else
+ {
+ ASSERT_MSG(0, "MOVBE: Not loading or storing to mem");
+ }
+}
+
+
+void XEmitter::LEA(int bits, X64Reg dest, OpArg src)
+{
+ ASSERT_MSG(!src.IsImm(), "LEA - Imm argument");
+ src.operandReg = (u8)dest;
+ if (bits == 16)
+ Write8(0x66); //TODO: performance warning
+ src.WriteRex(this, bits, bits);
+ Write8(0x8D);
+ src.WriteRest(this, 0, INVALID_REG, bits == 64);
+}
+
+//shift can be either imm8 or cl
+void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext)
+{
+ CheckFlags();
+ bool writeImm = false;
+ if (dest.IsImm())
+ {
+ ASSERT_MSG(0, "WriteShift - can't shift imms");
+ }
+ if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
+ {
+ ASSERT_MSG(0, "WriteShift - illegal argument");
+ }
+ dest.operandReg = ext;
+ if (bits == 16)
+ Write8(0x66);
+ dest.WriteRex(this, bits, bits, 0);
+ if (shift.GetImmBits() == 8)
+ {
+ //ok an imm
+ u8 imm = (u8)shift.offset;
+ if (imm == 1)
+ {
+ Write8(bits == 8 ? 0xD0 : 0xD1);
+ }
+ else
+ {
+ writeImm = true;
+ Write8(bits == 8 ? 0xC0 : 0xC1);
+ }
+ }
+ else
+ {
+ Write8(bits == 8 ? 0xD2 : 0xD3);
+ }
+ dest.WriteRest(this, writeImm ? 1 : 0);
+ if (writeImm)
+ Write8((u8)shift.offset);
+}
+
+// large rotates and shift are slower on intel than amd
+// intel likes to rotate by 1, and the op is smaller too
+void XEmitter::ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);}
+void XEmitter::ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);}
+void XEmitter::RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);}
+void XEmitter::RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);}
+void XEmitter::SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);}
+void XEmitter::SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);}
+void XEmitter::SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);}
+
+// index can be either imm8 or register, don't use memory destination because it's slow
+void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext)
+{
+ CheckFlags();
+ if (dest.IsImm())
+ {
+ ASSERT_MSG(0, "WriteBitTest - can't test imms");
+ }
+ if ((index.IsImm() && index.GetImmBits() != 8))
+ {
+ ASSERT_MSG(0, "WriteBitTest - illegal argument");
+ }
+ if (bits == 16)
+ Write8(0x66);
+ if (index.IsImm())
+ {
+ dest.WriteRex(this, bits, bits);
+ Write8(0x0F); Write8(0xBA);
+ dest.WriteRest(this, 1, (X64Reg)ext);
+ Write8((u8)index.offset);
+ }
+ else
+ {
+ X64Reg operand = index.GetSimpleReg();
+ dest.WriteRex(this, bits, bits, operand);
+ Write8(0x0F); Write8(0x83 + 8*ext);
+ dest.WriteRest(this, 1, operand);
+ }
+}
+
+void XEmitter::BT(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 4);}
+void XEmitter::BTS(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 5);}
+void XEmitter::BTR(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 6);}
+void XEmitter::BTC(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 7);}
+
+//shift can be either imm8 or cl
+void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift)
+{
+ CheckFlags();
+ if (dest.IsImm())
+ {
+ ASSERT_MSG(0, "SHRD - can't use imms as destination");
+ }
+ if (!src.IsSimpleReg())
+ {
+ ASSERT_MSG(0, "SHRD - must use simple register as source");
+ }
+ if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
+ {
+ ASSERT_MSG(0, "SHRD - illegal shift");
+ }
+ if (bits == 16)
+ Write8(0x66);
+ X64Reg operand = src.GetSimpleReg();
+ dest.WriteRex(this, bits, bits, operand);
+ if (shift.GetImmBits() == 8)
+ {
+ Write8(0x0F); Write8(0xAC);
+ dest.WriteRest(this, 1, operand);
+ Write8((u8)shift.offset);
+ }
+ else
+ {
+ Write8(0x0F); Write8(0xAD);
+ dest.WriteRest(this, 0, operand);
+ }
+}
+
+void XEmitter::SHLD(int bits, OpArg dest, OpArg src, OpArg shift)
+{
+ CheckFlags();
+ if (dest.IsImm())
+ {
+ ASSERT_MSG(0, "SHLD - can't use imms as destination");
+ }
+ if (!src.IsSimpleReg())
+ {
+ ASSERT_MSG(0, "SHLD - must use simple register as source");
+ }
+ if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
+ {
+ ASSERT_MSG(0, "SHLD - illegal shift");
+ }
+ if (bits == 16)
+ Write8(0x66);
+ X64Reg operand = src.GetSimpleReg();
+ dest.WriteRex(this, bits, bits, operand);
+ if (shift.GetImmBits() == 8)
+ {
+ Write8(0x0F); Write8(0xA4);
+ dest.WriteRest(this, 1, operand);
+ Write8((u8)shift.offset);
+ }
+ else
+ {
+ Write8(0x0F); Write8(0xA5);
+ dest.WriteRest(this, 0, operand);
+ }
+}
+
+void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bits)
+{
+ if (bits == 16)
+ emit->Write8(0x66);
+
+ this->operandReg = (u8)_operandReg;
+ WriteRex(emit, bits, bits);
+ emit->Write8(op);
+ WriteRest(emit);
+}
+
+//operand can either be immediate or register
+void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const
+{
+ X64Reg _operandReg;
+ if (IsImm())
+ {
+ ASSERT_MSG(0, "WriteNormalOp - Imm argument, wrong order");
+ }
+
+ if (bits == 16)
+ emit->Write8(0x66);
+
+ int immToWrite = 0;
+
+ if (operand.IsImm())
+ {
+ WriteRex(emit, bits, bits);
+
+ if (!toRM)
+ {
+ ASSERT_MSG(0, "WriteNormalOp - Writing to Imm (!toRM)");
+ }
+
+ if (operand.scale == SCALE_IMM8 && bits == 8)
+ {
+ // op al, imm8
+ if (!scale && offsetOrBaseReg == AL && normalops[op].eaximm8 != 0xCC)
+ {
+ emit->Write8(normalops[op].eaximm8);
+ emit->Write8((u8)operand.offset);
+ return;
+ }
+ // mov reg, imm8
+ if (!scale && op == nrmMOV)
+ {
+ emit->Write8(0xB0 + (offsetOrBaseReg & 7));
+ emit->Write8((u8)operand.offset);
+ return;
+ }
+ // op r/m8, imm8
+ emit->Write8(normalops[op].imm8);
+ immToWrite = 8;
+ }
+ else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
+ (operand.scale == SCALE_IMM32 && bits == 32) ||
+ (operand.scale == SCALE_IMM32 && bits == 64))
+ {
+ // Try to save immediate size if we can, but first check to see
+ // if the instruction supports simm8.
+ // op r/m, imm8
+ if (normalops[op].simm8 != 0xCC &&
+ ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) ||
+ (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset)))
+ {
+ emit->Write8(normalops[op].simm8);
+ immToWrite = 8;
+ }
+ else
+ {
+ // mov reg, imm
+ if (!scale && op == nrmMOV && bits != 64)
+ {
+ emit->Write8(0xB8 + (offsetOrBaseReg & 7));
+ if (bits == 16)
+ emit->Write16((u16)operand.offset);
+ else
+ emit->Write32((u32)operand.offset);
+ return;
+ }
+ // op eax, imm
+ if (!scale && offsetOrBaseReg == EAX && normalops[op].eaximm32 != 0xCC)
+ {
+ emit->Write8(normalops[op].eaximm32);
+ if (bits == 16)
+ emit->Write16((u16)operand.offset);
+ else
+ emit->Write32((u32)operand.offset);
+ return;
+ }
+ // op r/m, imm
+ emit->Write8(normalops[op].imm32);
+ immToWrite = bits == 16 ? 16 : 32;
+ }
+ }
+ else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
+ (operand.scale == SCALE_IMM8 && bits == 32) ||
+ (operand.scale == SCALE_IMM8 && bits == 64))
+ {
+ // op r/m, imm8
+ emit->Write8(normalops[op].simm8);
+ immToWrite = 8;
+ }
+ else if (operand.scale == SCALE_IMM64 && bits == 64)
+ {
+ if (scale)
+ {
+ ASSERT_MSG(0, "WriteNormalOp - MOV with 64-bit imm requres register destination");
+ }
+ // mov reg64, imm64
+ else if (op == nrmMOV)
+ {
+ emit->Write8(0xB8 + (offsetOrBaseReg & 7));
+ emit->Write64((u64)operand.offset);
+ return;
+ }
+ ASSERT_MSG(0, "WriteNormalOp - Only MOV can take 64-bit imm");
+ }
+ else
+ {
+ ASSERT_MSG(0, "WriteNormalOp - Unhandled case");
+ }
+ _operandReg = (X64Reg)normalops[op].ext; //pass extension in REG of ModRM
+ }
+ else
+ {
+ _operandReg = (X64Reg)operand.offsetOrBaseReg;
+ WriteRex(emit, bits, bits, _operandReg);
+ // op r/m, reg
+ if (toRM)
+ {
+ emit->Write8(bits == 8 ? normalops[op].toRm8 : normalops[op].toRm32);
+ }
+ // op reg, r/m
+ else
+ {
+ emit->Write8(bits == 8 ? normalops[op].fromRm8 : normalops[op].fromRm32);
+ }
+ }
+ WriteRest(emit, immToWrite >> 3, _operandReg);
+ switch (immToWrite)
+ {
+ case 0:
+ break;
+ case 8:
+ emit->Write8((u8)operand.offset);
+ break;
+ case 16:
+ emit->Write16((u16)operand.offset);
+ break;
+ case 32:
+ emit->Write32((u32)operand.offset);
+ break;
+ default:
+ ASSERT_MSG(0, "WriteNormalOp - Unhandled case");
+ }
+}
+
+void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2)
+{
+ if (a1.IsImm())
+ {
+ //Booh! Can't write to an imm
+ ASSERT_MSG(0, "WriteNormalOp - a1 cannot be imm");
+ return;
+ }
+ if (a2.IsImm())
+ {
+ a1.WriteNormalOp(emit, true, op, a2, bits);
+ }
+ else
+ {
+ if (a1.IsSimpleReg())
+ {
+ a2.WriteNormalOp(emit, false, op, a1, bits);
+ }
+ else
+ {
+ ASSERT_MSG(a2.IsSimpleReg() || a2.IsImm(), "WriteNormalOp - a1 and a2 cannot both be memory");
+ a1.WriteNormalOp(emit, true, op, a2, bits);
+ }
+ }
+}
+
+void XEmitter::ADD (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADD, a1, a2);}
+void XEmitter::ADC (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmADC, a1, a2);}
+void XEmitter::SUB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSUB, a1, a2);}
+void XEmitter::SBB (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmSBB, a1, a2);}
+void XEmitter::AND (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmAND, a1, a2);}
+void XEmitter::OR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmOR , a1, a2);}
+void XEmitter::XOR (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmXOR, a1, a2);}
+void XEmitter::MOV (int bits, const OpArg &a1, const OpArg &a2)
+{
+ if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg())
+ LOG_ERROR(Common, "Redundant MOV @ %p - bug in JIT?", code);
+ WriteNormalOp(this, bits, nrmMOV, a1, a2);
+}
+void XEmitter::TEST(int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmTEST, a1, a2);}
+void XEmitter::CMP (int bits, const OpArg &a1, const OpArg &a2) {CheckFlags(); WriteNormalOp(this, bits, nrmCMP, a1, a2);}
+void XEmitter::XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);}
+
+void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2)
+{
+ CheckFlags();
+ if (bits == 8)
+ {
+ ASSERT_MSG(0, "IMUL - illegal bit size!");
+ return;
+ }
+
+ if (a1.IsImm())
+ {
+ ASSERT_MSG(0, "IMUL - second arg cannot be imm!");
+ return;
+ }
+
+ if (!a2.IsImm())
+ {
+ ASSERT_MSG(0, "IMUL - third arg must be imm!");
+ return;
+ }
+
+ if (bits == 16)
+ Write8(0x66);
+ a1.WriteRex(this, bits, bits, regOp);
+
+ if (a2.GetImmBits() == 8 ||
+ (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) ||
+ (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset))
+ {
+ Write8(0x6B);
+ a1.WriteRest(this, 1, regOp);
+ Write8((u8)a2.offset);
+ }
+ else
+ {
+ Write8(0x69);
+ if (a2.GetImmBits() == 16 && bits == 16)
+ {
+ a1.WriteRest(this, 2, regOp);
+ Write16((u16)a2.offset);
+ }
+ else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64))
+ {
+ a1.WriteRest(this, 4, regOp);
+ Write32((u32)a2.offset);
+ }
+ else
+ {
+ ASSERT_MSG(0, "IMUL - unhandled case!");
+ }
+ }
+}
+
+void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a)
+{
+ CheckFlags();
+ if (bits == 8)
+ {
+ ASSERT_MSG(0, "IMUL - illegal bit size!");
+ return;
+ }
+
+ if (a.IsImm())
+ {
+ IMUL(bits, regOp, R(regOp), a) ;
+ return;
+ }
+
+ if (bits == 16)
+ Write8(0x66);
+ a.WriteRex(this, bits, bits, regOp);
+ Write8(0x0F);
+ Write8(0xAF);
+ a.WriteRest(this, 0, regOp);
+}
+
+
+void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+{
+ if (opPrefix)
+ Write8(opPrefix);
+ arg.operandReg = regOp;
+ arg.WriteRex(this, 0, 0);
+ Write8(0x0F);
+ if (op > 0xFF)
+ Write8((op >> 8) & 0xFF);
+ Write8(op & 0xFF);
+ arg.WriteRest(this, extrabytes);
+}
+
+void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+{
+ WriteAVXOp(opPrefix, op, regOp, INVALID_REG, arg, extrabytes);
+}
+
+static int GetVEXmmmmm(u16 op)
+{
+ // Currently, only 0x38 and 0x3A are used as secondary escape byte.
+ if ((op >> 8) == 0x3A)
+ return 3;
+ else if ((op >> 8) == 0x38)
+ return 2;
+ else
+ return 1;
+}
+
+static int GetVEXpp(u8 opPrefix)
+{
+ if (opPrefix == 0x66)
+ return 1;
+ else if (opPrefix == 0xF3)
+ return 2;
+ else if (opPrefix == 0xF2)
+ return 3;
+ else
+ return 0;
+}
+
+void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+{
+ if (!Common::GetCPUCaps().avx)
+ ASSERT_MSG(0, "Trying to use AVX on a system that doesn't support it. Bad programmer.");
+ int mmmmm = GetVEXmmmmm(op);
+ int pp = GetVEXpp(opPrefix);
+ // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here
+ arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm);
+ Write8(op & 0xFF);
+ arg.WriteRest(this, extrabytes, regOp1);
+}
+
+// Like the above, but more general; covers GPR-based VEX operations, like BMI1/2
+void XEmitter::WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+{
+ if (size != 32 && size != 64)
+ ASSERT_MSG(0, "VEX GPR instructions only support 32-bit and 64-bit modes!");
+ int mmmmm = GetVEXmmmmm(op);
+ int pp = GetVEXpp(opPrefix);
+ arg.WriteVex(this, regOp1, regOp2, 0, pp, mmmmm, size == 64);
+ Write8(op & 0xFF);
+ arg.WriteRest(this, extrabytes, regOp1);
+}
+
+void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+{
+ CheckFlags();
+ if (!Common::GetCPUCaps().bmi1)
+ ASSERT_MSG(0, "Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
+ WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
+}
+
+void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
+{
+ CheckFlags();
+ if (!Common::GetCPUCaps().bmi2)
+ ASSERT_MSG(0, "Trying to use BMI2 on a system that doesn't support it. Bad programmer.");
+ WriteVEXOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
+}
+
+void XEmitter::MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6E, dest, arg, 0);}
+void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(0x66, 0x7E, src, arg, 0);}
+
+void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg)
+{
+#ifdef ARCHITECTURE_x86_64
+ // Alternate encoding
+ // This does not display correctly in MSVC's debugger, it thinks it's a MOVD
+ arg.operandReg = dest;
+ Write8(0x66);
+ arg.WriteRex(this, 64, 0);
+ Write8(0x0f);
+ Write8(0x6E);
+ arg.WriteRest(this, 0);
+#else
+ arg.operandReg = dest;
+ Write8(0xF3);
+ Write8(0x0f);
+ Write8(0x7E);
+ arg.WriteRest(this, 0);
+#endif
+}
+
+void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src)
+{
+ if (src > 7 || arg.IsSimpleReg())
+ {
+ // Alternate encoding
+ // This does not display correctly in MSVC's debugger, it thinks it's a MOVD
+ arg.operandReg = src;
+ Write8(0x66);
+ arg.WriteRex(this, 64, 0);
+ Write8(0x0f);
+ Write8(0x7E);
+ arg.WriteRest(this, 0);
+ }
+ else
+ {
+ arg.operandReg = src;
+ arg.WriteRex(this, 0, 0);
+ Write8(0x66);
+ Write8(0x0f);
+ Write8(0xD6);
+ arg.WriteRest(this, 0);
+ }
+}
+
+void XEmitter::WriteMXCSR(OpArg arg, int ext)
+{
+ if (arg.IsImm() || arg.IsSimpleReg())
+ ASSERT_MSG(0, "MXCSR - invalid operand");
+
+ arg.operandReg = ext;
+ arg.WriteRex(this, 0, 0);
+ Write8(0x0F);
+ Write8(0xAE);
+ arg.WriteRest(this);
+}
+
+void XEmitter::STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);}
+void XEmitter::LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);}
+
+void XEmitter::MOVNTDQ(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);}
+void XEmitter::MOVNTPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVNTP, regOp, arg);}
+void XEmitter::MOVNTPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVNTP, regOp, arg);}
+
+void XEmitter::ADDSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseADD, regOp, arg);}
+void XEmitter::ADDSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseADD, regOp, arg);}
+void XEmitter::SUBSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseSUB, regOp, arg);}
+void XEmitter::SUBSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseSUB, regOp, arg);}
+void XEmitter::CMPSS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::CMPSD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::MULSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMUL, regOp, arg);}
+void XEmitter::MULSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMUL, regOp, arg);}
+void XEmitter::DIVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseDIV, regOp, arg);}
+void XEmitter::DIVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseDIV, regOp, arg);}
+void XEmitter::MINSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMIN, regOp, arg);}
+void XEmitter::MINSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMIN, regOp, arg);}
+void XEmitter::MAXSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMAX, regOp, arg);}
+void XEmitter::MAXSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMAX, regOp, arg);}
+void XEmitter::SQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseSQRT, regOp, arg);}
+void XEmitter::SQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseSQRT, regOp, arg);}
+void XEmitter::RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseRSQRT, regOp, arg);}
+
+void XEmitter::ADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseADD, regOp, arg);}
+void XEmitter::ADDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseADD, regOp, arg);}
+void XEmitter::SUBPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseSUB, regOp, arg);}
+void XEmitter::SUBPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseSUB, regOp, arg);}
+void XEmitter::CMPPS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0x00, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::CMPPD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(0x66, sseCMP, regOp, arg, 1); Write8(compare);}
+void XEmitter::ANDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseAND, regOp, arg);}
+void XEmitter::ANDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseAND, regOp, arg);}
+void XEmitter::ANDNPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseANDN, regOp, arg);}
+void XEmitter::ANDNPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseANDN, regOp, arg);}
+void XEmitter::ORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseOR, regOp, arg);}
+void XEmitter::ORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseOR, regOp, arg);}
+void XEmitter::XORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseXOR, regOp, arg);}
+void XEmitter::XORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseXOR, regOp, arg);}
+void XEmitter::MULPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMUL, regOp, arg);}
+void XEmitter::MULPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMUL, regOp, arg);}
+void XEmitter::DIVPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseDIV, regOp, arg);}
+void XEmitter::DIVPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseDIV, regOp, arg);}
+void XEmitter::MINPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMIN, regOp, arg);}
+void XEmitter::MINPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMIN, regOp, arg);}
+void XEmitter::MAXPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMAX, regOp, arg);}
+void XEmitter::MAXPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMAX, regOp, arg);}
+void XEmitter::SQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseSQRT, regOp, arg);}
+void XEmitter::SQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseSQRT, regOp, arg);}
+void XEmitter::RCPPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseRCP, regOp, arg); }
+void XEmitter::RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseRSQRT, regOp, arg);}
+void XEmitter::SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x00, sseSHUF, regOp, arg,1); Write8(shuffle);}
+void XEmitter::SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, sseSHUF, regOp, arg,1); Write8(shuffle);}
+
+void XEmitter::HADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseHADD, regOp, arg);}
+
+void XEmitter::COMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseCOMIS, regOp, arg);} //weird that these should be packed
+void XEmitter::COMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseCOMIS, regOp, arg);} //ordered
+void XEmitter::UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseUCOMIS, regOp, arg);} //unordered
+void XEmitter::UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseUCOMIS, regOp, arg);}
+
+void XEmitter::MOVAPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);}
+void XEmitter::MOVAPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);}
+void XEmitter::MOVAPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);}
+void XEmitter::MOVAPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);}
+
+void XEmitter::MOVUPS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVUPD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVUPS(OpArg arg, X64Reg regOp) {WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);}
+void XEmitter::MOVUPD(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);}
+
+void XEmitter::MOVDQA(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);}
+void XEmitter::MOVDQA(OpArg arg, X64Reg regOp) {WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);}
+void XEmitter::MOVDQU(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);}
+void XEmitter::MOVDQU(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);}
+
+void XEmitter::MOVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);}
+void XEmitter::MOVSS(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);}
+void XEmitter::MOVSD(OpArg arg, X64Reg regOp) {WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);}
+
+void XEmitter::MOVLPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); }
+void XEmitter::MOVLPD(X64Reg regOp, OpArg arg) { WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); }
+void XEmitter::MOVLPS(OpArg arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); }
+void XEmitter::MOVLPD(OpArg arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); }
+
+void XEmitter::MOVHPS(X64Reg regOp, OpArg arg) { WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); }
+void XEmitter::MOVHPD(X64Reg regOp, OpArg arg) { WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); }
+void XEmitter::MOVHPS(OpArg arg, X64Reg regOp) { WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); }
+void XEmitter::MOVHPD(OpArg arg, X64Reg regOp) { WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); }
+
+void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));}
+void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) {WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));}
+
+void XEmitter::CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5A, regOp, arg);}
+void XEmitter::CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5A, regOp, arg);}
+
+void XEmitter::CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x5A, regOp, arg);}
+void XEmitter::CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5A, regOp, arg);}
+void XEmitter::CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2D, regOp, arg);}
+void XEmitter::CVTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2D, regOp, arg);}
+void XEmitter::CVTSI2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2A, regOp, arg);}
+void XEmitter::CVTSI2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2A, regOp, arg);}
+
+void XEmitter::CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0xE6, regOp, arg);}
+void XEmitter::CVTDQ2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(0x00, 0x5B, regOp, arg);}
+void XEmitter::CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0xE6, regOp, arg);}
+void XEmitter::CVTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0x5B, regOp, arg);}
+
+void XEmitter::CVTTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF2, 0x2C, regOp, arg);}
+void XEmitter::CVTTSS2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x2C, regOp, arg);}
+void XEmitter::CVTTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0xF3, 0x5B, regOp, arg);}
+void XEmitter::CVTTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(0x66, 0xE6, regOp, arg);}
+
+void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) {WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));}
+
+void XEmitter::MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x50, dest, arg);}
+void XEmitter::MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x50, dest, arg);}
+
+void XEmitter::LDDQU(X64Reg dest, OpArg arg) {WriteSSEOp(0xF2, sseLDDQU, dest, arg);} // For integer data only
+
+// THESE TWO ARE UNTESTED.
+void XEmitter::UNPCKLPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x14, dest, arg);}
+void XEmitter::UNPCKHPS(X64Reg dest, OpArg arg) {WriteSSEOp(0x00, 0x15, dest, arg);}
+
+void XEmitter::UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x14, dest, arg);}
+void XEmitter::UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x15, dest, arg);}
+
+void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg)
+{
+ if (Common::GetCPUCaps().sse3)
+ {
+ WriteSSEOp(0xF2, 0x12, regOp, arg); //SSE3 movddup
+ }
+ else
+ {
+ // Simulate this instruction with SSE2 instructions
+ if (!arg.IsSimpleReg(regOp))
+ MOVSD(regOp, arg);
+ UNPCKLPD(regOp, R(regOp));
+ }
+}
+
+//There are a few more left
+
+// Also some integer instructions are missing
+void XEmitter::PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x6B, dest, arg);}
+void XEmitter::PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x63, dest, arg);}
+void XEmitter::PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x67, dest, arg);}
+
+void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x60, dest, arg);}
+void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x61, dest, arg);}
+void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x62, dest, arg);}
+void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(0x66, 0x6C, dest, arg);}
+
+void XEmitter::PSRLW(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSRLD(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSRLQ(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSRLQ(X64Reg reg, OpArg arg)
+{
+ WriteSSEOp(0x66, 0xd3, reg, arg);
+}
+
+void XEmitter::PSRLDQ(X64Reg reg, int shift) {
+ WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSLLW(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSLLD(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSLLQ(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSLLDQ(X64Reg reg, int shift) {
+ WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSRAW(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x71, (X64Reg)4, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::PSRAD(X64Reg reg, int shift)
+{
+ WriteSSEOp(0x66, 0x72, (X64Reg)4, R(reg));
+ Write8(shift);
+}
+
+void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+{
+ if (!Common::GetCPUCaps().ssse3)
+ ASSERT_MSG(0, "Trying to use SSSE3 on a system that doesn't support it. Bad programmer.");
+ WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
+}
+
+void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
+{
+ if (!Common::GetCPUCaps().sse4_1)
+ ASSERT_MSG(0, "Trying to use SSE4.1 on a system that doesn't support it. Bad programmer.");
+ WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
+}
+
+void XEmitter::PSHUFB(X64Reg dest, OpArg arg) {WriteSSSE3Op(0x66, 0x3800, dest, arg);}
+void XEmitter::PTEST(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3817, dest, arg);}
+void XEmitter::PACKUSDW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x382b, dest, arg);}
+void XEmitter::DPPS(X64Reg dest, OpArg arg, u8 mask) {WriteSSE41Op(0x66, 0x3A40, dest, arg, 1); Write8(mask);}
+
+void XEmitter::PMINSB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3838, dest, arg);}
+void XEmitter::PMINSD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3839, dest, arg);}
+void XEmitter::PMINUW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383a, dest, arg);}
+void XEmitter::PMINUD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383b, dest, arg);}
+void XEmitter::PMAXSB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383c, dest, arg);}
+void XEmitter::PMAXSD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383d, dest, arg);}
+void XEmitter::PMAXUW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383e, dest, arg);}
+void XEmitter::PMAXUD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x383f, dest, arg);}
+
+void XEmitter::PMOVSXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3820, dest, arg);}
+void XEmitter::PMOVSXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3821, dest, arg);}
+void XEmitter::PMOVSXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3822, dest, arg);}
+void XEmitter::PMOVSXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3823, dest, arg);}
+void XEmitter::PMOVSXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3824, dest, arg);}
+void XEmitter::PMOVSXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3825, dest, arg);}
+void XEmitter::PMOVZXBW(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3830, dest, arg);}
+void XEmitter::PMOVZXBD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3831, dest, arg);}
+void XEmitter::PMOVZXBQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3832, dest, arg);}
+void XEmitter::PMOVZXWD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3833, dest, arg);}
+void XEmitter::PMOVZXWQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3834, dest, arg);}
+void XEmitter::PMOVZXDQ(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3835, dest, arg);}
+
+void XEmitter::PBLENDVB(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3810, dest, arg);}
+void XEmitter::BLENDVPS(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3814, dest, arg);}
+void XEmitter::BLENDVPD(X64Reg dest, OpArg arg) {WriteSSE41Op(0x66, 0x3815, dest, arg);}
+void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); Write8(blend); }
+void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) { WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); Write8(blend); }
+
+void XEmitter::ROUNDSS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0A, dest, arg, 1); Write8(mode);}
+void XEmitter::ROUNDSD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A0B, dest, arg, 1); Write8(mode);}
+void XEmitter::ROUNDPS(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A08, dest, arg, 1); Write8(mode);}
+void XEmitter::ROUNDPD(X64Reg dest, OpArg arg, u8 mode) {WriteSSE41Op(0x66, 0x3A09, dest, arg, 1); Write8(mode);}
+
+void XEmitter::PAND(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDB, dest, arg);}
+void XEmitter::PANDN(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDF, dest, arg);}
+void XEmitter::PXOR(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEF, dest, arg);}
+void XEmitter::POR(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEB, dest, arg);}
+
+void XEmitter::PADDB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFC, dest, arg);}
+void XEmitter::PADDW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFD, dest, arg);}
+void XEmitter::PADDD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFE, dest, arg);}
+void XEmitter::PADDQ(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD4, dest, arg);}
+
+void XEmitter::PADDSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEC, dest, arg);}
+void XEmitter::PADDSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xED, dest, arg);}
+void XEmitter::PADDUSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDC, dest, arg);}
+void XEmitter::PADDUSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDD, dest, arg);}
+
+void XEmitter::PSUBB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF8, dest, arg);}
+void XEmitter::PSUBW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF9, dest, arg);}
+void XEmitter::PSUBD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFA, dest, arg);}
+void XEmitter::PSUBQ(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xFB, dest, arg);}
+
+void XEmitter::PSUBSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE8, dest, arg);}
+void XEmitter::PSUBSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE9, dest, arg);}
+void XEmitter::PSUBUSB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD8, dest, arg);}
+void XEmitter::PSUBUSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD9, dest, arg);}
+
+void XEmitter::PAVGB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE0, dest, arg);}
+void XEmitter::PAVGW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xE3, dest, arg);}
+
+void XEmitter::PCMPEQB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x74, dest, arg);}
+void XEmitter::PCMPEQW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x75, dest, arg);}
+void XEmitter::PCMPEQD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x76, dest, arg);}
+
+void XEmitter::PCMPGTB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x64, dest, arg);}
+void XEmitter::PCMPGTW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x65, dest, arg);}
+void XEmitter::PCMPGTD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0x66, dest, arg);}
+
+void XEmitter::PEXTRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(0x66, 0xC5, dest, arg, 1); Write8(subreg);}
+void XEmitter::PINSRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(0x66, 0xC4, dest, arg, 1); Write8(subreg);}
+
+void XEmitter::PMADDWD(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF5, dest, arg); }
+void XEmitter::PSADBW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xF6, dest, arg);}
+
+void XEmitter::PMAXSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEE, dest, arg); }
+void XEmitter::PMAXUB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDE, dest, arg); }
+void XEmitter::PMINSW(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xEA, dest, arg); }
+void XEmitter::PMINUB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xDA, dest, arg); }
+
+void XEmitter::PMOVMSKB(X64Reg dest, OpArg arg) {WriteSSEOp(0x66, 0xD7, dest, arg); }
+void XEmitter::PSHUFD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0x66, 0x70, regOp, arg, 1); Write8(shuffle);}
+void XEmitter::PSHUFLW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0xF2, 0x70, regOp, arg, 1); Write8(shuffle);}
+void XEmitter::PSHUFHW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(0xF3, 0x70, regOp, arg, 1); Write8(shuffle);}
+
+// VEX
+void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);}
+void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);}
+void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);}
+void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);}
+void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);}
+void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);}
+void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);}
+void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);}
+void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);}
+void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle) {WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 1); Write8(shuffle);}
+void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg){WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);}
+void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg){WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);}
+
+void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); }
+void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); }
+void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); }
+void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); }
+void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); }
+void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); }
+void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); }
+void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); }
+
+void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); }
+void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); }
+void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); }
+void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); }
+
+void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg); }
+void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg); }
+void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg); }
+void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3898, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A8, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B8, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg); }
+void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg); }
+void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg); }
+void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3899, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A9, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B9, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389A, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AA, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BA, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg); }
+void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389B, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AB, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BB, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389C, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AC, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BC, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg); }
+void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389D, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AD, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BD, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389E, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AE, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BE, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg); }
+void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x389F, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38AF, regOp1, regOp2, arg, 1); }
+void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38BF, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg); }
+void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg); }
+void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg); }
+void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3896, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A6, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B6, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg); }
+void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg); }
+void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg); }
+void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x3897, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38A7, regOp1, regOp2, arg, 1); }
+void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg) { WriteAVXOp(0x66, 0x38B7, regOp1, regOp2, arg, 1); }
+
+void XEmitter::SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate) {WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); Write8(rotate);}
+void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);}
+void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);}
+void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);}
+void XEmitter::BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2) {WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);}
+void XEmitter::BLSR(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);}
+void XEmitter::BLSMSK(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);}
+void XEmitter::BLSI(int bits, X64Reg regOp, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);}
+void XEmitter::BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2){WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);}
+void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);}
+
+// Prefixes
+
+void XEmitter::LOCK() { Write8(0xF0); }
+void XEmitter::REP() { Write8(0xF3); }
+void XEmitter::REPNE() { Write8(0xF2); }
+void XEmitter::FSOverride() { Write8(0x64); }
+void XEmitter::GSOverride() { Write8(0x65); }
+
+void XEmitter::FWAIT()
+{
+ Write8(0x9B);
+}
+
+// TODO: make this more generic
+void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg)
+{
+ int mf = 0;
+ ASSERT_MSG(!(bits == 80 && op_80b == floatINVALID), "WriteFloatLoadStore: 80 bits not supported for this instruction");
+ switch (bits)
+ {
+ case 32: mf = 0; break;
+ case 64: mf = 4; break;
+ case 80: mf = 2; break;
+ default: ASSERT_MSG(0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)");
+ }
+ Write8(0xd9 | mf);
+ // x87 instructions use the reg field of the ModR/M byte as opcode:
+ if (bits == 80)
+ op = op_80b;
+ arg.WriteRest(this, 0, (X64Reg) op);
+}
+
+void XEmitter::FLD(int bits, OpArg src) {WriteFloatLoadStore(bits, floatLD, floatLD80, src);}
+void XEmitter::FST(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatST, floatINVALID, dest);}
+void XEmitter::FSTP(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);}
+void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); }
+
+void XEmitter::RDTSC() { Write8(0x0F); Write8(0x31); }
+
+void XCodeBlock::PoisonMemory() {
+ // x86/64: 0xCC = breakpoint
+ memset(region, 0xCC, region_size);
+}
+
+}
diff --git a/src/common/x64/emitter.h b/src/common/x64/emitter.h
new file mode 100644
index 000000000..e9c924126
--- /dev/null
+++ b/src/common/x64/emitter.h
@@ -0,0 +1,1067 @@
+// Copyright (C) 2003 Dolphin Project.
+
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, version 2.0 or later versions.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License 2.0 for more details.
+
+// A copy of the GPL 2.0 should have been included with the program.
+// If not, see http://www.gnu.org/licenses/
+
+// Official SVN repository and contact information can be found at
+// http://code.google.com/p/dolphin-emu/
+
+#pragma once
+
+#include "common/assert.h"
+#include "common/common_types.h"
+#include "common/code_block.h"
+
+#if defined(ARCHITECTURE_x86_64) && !defined(_ARCH_64)
+#define _ARCH_64
+#endif
+
+#ifdef _ARCH_64
+#define PTRBITS 64
+#else
+#define PTRBITS 32
+#endif
+
+namespace Gen
+{
+
+enum X64Reg
+{
+ EAX = 0, EBX = 3, ECX = 1, EDX = 2,
+ ESI = 6, EDI = 7, EBP = 5, ESP = 4,
+
+ RAX = 0, RBX = 3, RCX = 1, RDX = 2,
+ RSI = 6, RDI = 7, RBP = 5, RSP = 4,
+ R8 = 8, R9 = 9, R10 = 10,R11 = 11,
+ R12 = 12,R13 = 13,R14 = 14,R15 = 15,
+
+ AL = 0, BL = 3, CL = 1, DL = 2,
+ SIL = 6, DIL = 7, BPL = 5, SPL = 4,
+ AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106,
+
+ AX = 0, BX = 3, CX = 1, DX = 2,
+ SI = 6, DI = 7, BP = 5, SP = 4,
+
+ XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15,
+
+ YMM0=0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
+ YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15,
+
+ INVALID_REG = 0xFFFFFFFF
+};
+
+enum CCFlags
+{
+ CC_O = 0,
+ CC_NO = 1,
+ CC_B = 2, CC_C = 2, CC_NAE = 2,
+ CC_NB = 3, CC_NC = 3, CC_AE = 3,
+ CC_Z = 4, CC_E = 4,
+ CC_NZ = 5, CC_NE = 5,
+ CC_BE = 6, CC_NA = 6,
+ CC_NBE = 7, CC_A = 7,
+ CC_S = 8,
+ CC_NS = 9,
+ CC_P = 0xA, CC_PE = 0xA,
+ CC_NP = 0xB, CC_PO = 0xB,
+ CC_L = 0xC, CC_NGE = 0xC,
+ CC_NL = 0xD, CC_GE = 0xD,
+ CC_LE = 0xE, CC_NG = 0xE,
+ CC_NLE = 0xF, CC_G = 0xF
+};
+
+enum
+{
+ NUMGPRs = 16,
+ NUMXMMs = 16,
+};
+
+enum
+{
+ SCALE_NONE = 0,
+ SCALE_1 = 1,
+ SCALE_2 = 2,
+ SCALE_4 = 4,
+ SCALE_8 = 8,
+ SCALE_ATREG = 16,
+ //SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
+ SCALE_NOBASE_2 = 34,
+ SCALE_NOBASE_4 = 36,
+ SCALE_NOBASE_8 = 40,
+ SCALE_RIP = 0xFF,
+ SCALE_IMM8 = 0xF0,
+ SCALE_IMM16 = 0xF1,
+ SCALE_IMM32 = 0xF2,
+ SCALE_IMM64 = 0xF3,
+};
+
+enum NormalOp {
+ nrmADD,
+ nrmADC,
+ nrmSUB,
+ nrmSBB,
+ nrmAND,
+ nrmOR ,
+ nrmXOR,
+ nrmMOV,
+ nrmTEST,
+ nrmCMP,
+ nrmXCHG,
+};
+
+enum {
+ CMP_EQ = 0,
+ CMP_LT = 1,
+ CMP_LE = 2,
+ CMP_UNORD = 3,
+ CMP_NEQ = 4,
+ CMP_NLT = 5,
+ CMP_NLE = 6,
+ CMP_ORD = 7,
+};
+
+enum FloatOp {
+ floatLD = 0,
+ floatST = 2,
+ floatSTP = 3,
+ floatLD80 = 5,
+ floatSTP80 = 7,
+
+ floatINVALID = -1,
+};
+
+enum FloatRound {
+ FROUND_NEAREST = 0,
+ FROUND_FLOOR = 1,
+ FROUND_CEIL = 2,
+ FROUND_ZERO = 3,
+ FROUND_MXCSR = 4,
+
+ FROUND_RAISE_PRECISION = 0,
+ FROUND_IGNORE_PRECISION = 8,
+};
+
+class XEmitter;
+
+// RIP addressing does not benefit from micro op fusion on Core arch
+struct OpArg
+{
+ OpArg() {} // dummy op arg, used for storage
+ OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
+ {
+ operandReg = 0;
+ scale = (u8)_scale;
+ offsetOrBaseReg = (u16)rmReg;
+ indexReg = (u16)scaledReg;
+ //if scale == 0 never mind offsetting
+ offset = _offset;
+ }
+ bool operator==(const OpArg &b) const
+ {
+ return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg &&
+ indexReg == b.indexReg && offset == b.offset;
+ }
+ void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const;
+ void WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W = 0) const;
+ void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const;
+ void WriteFloatModRM(XEmitter *emit, FloatOp op);
+ void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
+ // This one is public - must be written to
+ u64 offset; // use RIP-relative as much as possible - 64-bit immediates are not available.
+ u16 operandReg;
+
+ void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
+ bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
+ bool IsSimpleReg() const {return scale == SCALE_NONE;}
+ bool IsSimpleReg(X64Reg reg) const
+ {
+ if (!IsSimpleReg())
+ return false;
+ return GetSimpleReg() == reg;
+ }
+
+ bool CanDoOpWith(const OpArg &other) const
+ {
+ if (IsSimpleReg()) return true;
+ if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false;
+ return true;
+ }
+
+ int GetImmBits() const
+ {
+ switch (scale)
+ {
+ case SCALE_IMM8: return 8;
+ case SCALE_IMM16: return 16;
+ case SCALE_IMM32: return 32;
+ case SCALE_IMM64: return 64;
+ default: return -1;
+ }
+ }
+
+ void SetImmBits(int bits) {
+ switch (bits)
+ {
+ case 8: scale = SCALE_IMM8; break;
+ case 16: scale = SCALE_IMM16; break;
+ case 32: scale = SCALE_IMM32; break;
+ case 64: scale = SCALE_IMM64; break;
+ }
+ }
+
+ X64Reg GetSimpleReg() const
+ {
+ if (scale == SCALE_NONE)
+ return (X64Reg)offsetOrBaseReg;
+ else
+ return INVALID_REG;
+ }
+
+ u32 GetImmValue() const {
+ return (u32)offset;
+ }
+
+ // For loops.
+ void IncreaseOffset(int sz) {
+ offset += sz;
+ }
+
+private:
+ u8 scale;
+ u16 offsetOrBaseReg;
+ u16 indexReg;
+};
+
+inline OpArg M(const void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);}
+template <typename T>
+inline OpArg M(const T *ptr) {return OpArg((u64)(const void *)ptr, (int)SCALE_RIP);}
+inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);}
+inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}
+
+inline OpArg MDisp(X64Reg value, int offset)
+{
+ return OpArg((u32)offset, SCALE_ATREG, value);
+}
+
+inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
+{
+ return OpArg(offset, scale, base, scaled);
+}
+
+inline OpArg MScaled(X64Reg scaled, int scale, int offset)
+{
+ if (scale == SCALE_1)
+ return OpArg(offset, SCALE_ATREG, scaled);
+ else
+ return OpArg(offset, scale | 0x20, RAX, scaled);
+}
+
+inline OpArg MRegSum(X64Reg base, X64Reg offset)
+{
+ return MComplex(base, offset, 1, 0);
+}
+
+inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);}
+inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
+inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
+inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);}
+inline OpArg UImmAuto(u32 imm) {
+ return OpArg(imm, imm >= 128 ? SCALE_IMM32 : SCALE_IMM8);
+}
+inline OpArg SImmAuto(s32 imm) {
+ return OpArg(imm, (imm >= 128 || imm < -128) ? SCALE_IMM32 : SCALE_IMM8);
+}
+
+#ifdef _ARCH_64
+inline OpArg ImmPtr(const void* imm) {return Imm64((u64)imm);}
+#else
+inline OpArg ImmPtr(const void* imm) {return Imm32((u32)imm);}
+#endif
+
+inline u32 PtrOffset(const void* ptr, const void* base)
+{
+#ifdef _ARCH_64
+ s64 distance = (s64)ptr-(s64)base;
+ if (distance >= 0x80000000LL ||
+ distance < -0x80000000LL)
+ {
+ ASSERT_MSG(0, "pointer offset out of range");
+ return 0;
+ }
+
+ return (u32)distance;
+#else
+ return (u32)ptr-(u32)base;
+#endif
+}
+
+//usage: int a[]; ARRAY_OFFSET(a,10)
+#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0]))
+//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
+#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))
+
+struct FixupBranch
+{
+ u8 *ptr;
+ int type; //0 = 8bit 1 = 32bit
+};
+
+enum SSECompare
+{
+ EQ = 0,
+ LT,
+ LE,
+ UNORD,
+ NEQ,
+ NLT,
+ NLE,
+ ORD,
+};
+
+typedef const u8* JumpTarget;
+
+class XEmitter
+{
+ friend struct OpArg; // for Write8 etc
+private:
+ u8 *code;
+ bool flags_locked;
+
+ void CheckFlags();
+
+ void Rex(int w, int r, int x, int b);
+ void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
+ void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
+ void WriteMulDivType(int bits, OpArg src, int ext);
+ void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
+ void WriteShift(int bits, OpArg dest, OpArg &shift, int ext);
+ void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext);
+ void WriteMXCSR(OpArg arg, int ext);
+ void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+ void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+ void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+ void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+ void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+ void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+ void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+ void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+ void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg);
+ void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2);
+
+ void ABI_CalculateFrameSize(u32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
+
+protected:
+ inline void Write8(u8 value) {*code++ = value;}
+ inline void Write16(u16 value) {*(u16*)code = (value); code += 2;}
+ inline void Write32(u32 value) {*(u32*)code = (value); code += 4;}
+ inline void Write64(u64 value) {*(u64*)code = (value); code += 8;}
+
+public:
+ XEmitter() { code = nullptr; flags_locked = false; }
+ XEmitter(u8 *code_ptr) { code = code_ptr; flags_locked = false; }
+ virtual ~XEmitter() {}
+
+ void WriteModRM(int mod, int rm, int reg);
+ void WriteSIB(int scale, int index, int base);
+
+ void SetCodePtr(u8 *ptr);
+ void ReserveCodeSpace(int bytes);
+ const u8 *AlignCode4();
+ const u8 *AlignCode16();
+ const u8 *AlignCodePage();
+ const u8 *GetCodePtr() const;
+ u8 *GetWritableCodePtr();
+
+ void LockFlags() { flags_locked = true; }
+ void UnlockFlags() { flags_locked = false; }
+
+ // Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
+ // INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr.,
+ // INC and DEC are slow on Intel Core, but not on AMD. They create a
+ // false flag dependency because they only update a subset of the flags.
+ // XCHG is SLOW and should be avoided.
+
+ // Debug breakpoint
+ void INT3();
+
+ // Do nothing
+ void NOP(size_t count = 1);
+
+ // Save energy in wait-loops on P4 only. Probably not too useful.
+ void PAUSE();
+
+ // Flag control
+ void STC();
+ void CLC();
+ void CMC();
+
+ // These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD!
+ void LAHF(); // 3 cycle vector path
+ void SAHF(); // direct path fast
+
+
+ // Stack control
+ void PUSH(X64Reg reg);
+ void POP(X64Reg reg);
+ void PUSH(int bits, const OpArg &reg);
+ void POP(int bits, const OpArg &reg);
+ void PUSHF();
+ void POPF();
+
+ // Flow control
+ void RET();
+ void RET_FAST();
+ void UD2();
+ FixupBranch J(bool force5bytes = false);
+
+ void JMP(const u8 * addr, bool force5Bytes = false);
+ void JMP(OpArg arg);
+ void JMPptr(const OpArg &arg);
+ void JMPself(); //infinite loop!
+#ifdef CALL
+#undef CALL
+#endif
+ void CALL(const void *fnptr);
+ void CALLptr(OpArg arg);
+
+ FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
+ //void J_CC(CCFlags conditionCode, JumpTarget target);
+ void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false);
+
+ void SetJumpTarget(const FixupBranch &branch);
+
+ void SETcc(CCFlags flag, OpArg dest);
+ // Note: CMOV brings small if any benefit on current cpus.
+ void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
+
+ // Fences
+ void LFENCE();
+ void MFENCE();
+ void SFENCE();
+
+ // Bit scan
+ void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit
+ void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit
+
+ // Cache control
+ enum PrefetchLevel
+ {
+ PF_NTA, //Non-temporal (data used once and only once)
+ PF_T0, //All cache levels
+ PF_T1, //Levels 2+ (aliased to T0 on AMD)
+ PF_T2, //Levels 3+ (aliased to T0 on AMD)
+ };
+ void PREFETCH(PrefetchLevel level, OpArg arg);
+ void MOVNTI(int bits, OpArg dest, X64Reg src);
+ void MOVNTDQ(OpArg arg, X64Reg regOp);
+ void MOVNTPS(OpArg arg, X64Reg regOp);
+ void MOVNTPD(OpArg arg, X64Reg regOp);
+
+ // Multiplication / division
+ void MUL(int bits, OpArg src); //UNSIGNED
+ void IMUL(int bits, OpArg src); //SIGNED
+ void IMUL(int bits, X64Reg regOp, OpArg src);
+ void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm);
+ void DIV(int bits, OpArg src);
+ void IDIV(int bits, OpArg src);
+
+ // Shift
+ void ROL(int bits, OpArg dest, OpArg shift);
+ void ROR(int bits, OpArg dest, OpArg shift);
+ void RCL(int bits, OpArg dest, OpArg shift);
+ void RCR(int bits, OpArg dest, OpArg shift);
+ void SHL(int bits, OpArg dest, OpArg shift);
+ void SHR(int bits, OpArg dest, OpArg shift);
+ void SAR(int bits, OpArg dest, OpArg shift);
+
+ // Bit Test
+ void BT(int bits, OpArg dest, OpArg index);
+ void BTS(int bits, OpArg dest, OpArg index);
+ void BTR(int bits, OpArg dest, OpArg index);
+ void BTC(int bits, OpArg dest, OpArg index);
+
+ // Double-Precision Shift
+ void SHRD(int bits, OpArg dest, OpArg src, OpArg shift);
+ void SHLD(int bits, OpArg dest, OpArg src, OpArg shift);
+
+ // Extend EAX into EDX in various ways
+ void CWD(int bits = 16);
+ inline void CDQ() {CWD(32);}
+ inline void CQO() {CWD(64);}
+ void CBW(int bits = 8);
+ inline void CWDE() {CBW(16);}
+ inline void CDQE() {CBW(32);}
+
+ // Load effective address
+ void LEA(int bits, X64Reg dest, OpArg src);
+
+ // Integer arithmetic
+ void NEG (int bits, OpArg src);
+ void ADD (int bits, const OpArg &a1, const OpArg &a2);
+ void ADC (int bits, const OpArg &a1, const OpArg &a2);
+ void SUB (int bits, const OpArg &a1, const OpArg &a2);
+ void SBB (int bits, const OpArg &a1, const OpArg &a2);
+ void AND (int bits, const OpArg &a1, const OpArg &a2);
+ void CMP (int bits, const OpArg &a1, const OpArg &a2);
+
+ // Bit operations
+ void NOT (int bits, OpArg src);
+ void OR (int bits, const OpArg &a1, const OpArg &a2);
+ void XOR (int bits, const OpArg &a1, const OpArg &a2);
+ void MOV (int bits, const OpArg &a1, const OpArg &a2);
+ void TEST(int bits, const OpArg &a1, const OpArg &a2);
+
+ // Are these useful at all? Consider removing.
+ void XCHG(int bits, const OpArg &a1, const OpArg &a2);
+ void XCHG_AHAL();
+
+ // Byte swapping (32 and 64-bit only).
+ void BSWAP(int bits, X64Reg reg);
+
+ // Sign/zero extension
+ void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary
+ void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
+
+ // Available only on Atom or >= Haswell so far. Test with GetCPUCaps().movbe.
+ void MOVBE(int dbits, const OpArg& dest, const OpArg& src);
+
+ // Available only on AMD >= Phenom or Intel >= Haswell
+ void LZCNT(int bits, X64Reg dest, OpArg src);
+ // Note: this one is actually part of BMI1
+ void TZCNT(int bits, X64Reg dest, OpArg src);
+
+ // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
+ void STMXCSR(OpArg memloc);
+ void LDMXCSR(OpArg memloc);
+
+ // Prefixes
+ void LOCK();
+ void REP();
+ void REPNE();
+ void FSOverride();
+ void GSOverride();
+
+ // x87
+ enum x87StatusWordBits {
+ x87_InvalidOperation = 0x1,
+ x87_DenormalizedOperand = 0x2,
+ x87_DivisionByZero = 0x4,
+ x87_Overflow = 0x8,
+ x87_Underflow = 0x10,
+ x87_Precision = 0x20,
+ x87_StackFault = 0x40,
+ x87_ErrorSummary = 0x80,
+ x87_C0 = 0x100,
+ x87_C1 = 0x200,
+ x87_C2 = 0x400,
+ x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
+ x87_C3 = 0x4000,
+ x87_FPUBusy = 0x8000,
+ };
+
+ void FLD(int bits, OpArg src);
+ void FST(int bits, OpArg dest);
+ void FSTP(int bits, OpArg dest);
+ void FNSTSW_AX();
+ void FWAIT();
+
+ // SSE/SSE2: Floating point arithmetic
+ void ADDSS(X64Reg regOp, OpArg arg);
+ void ADDSD(X64Reg regOp, OpArg arg);
+ void SUBSS(X64Reg regOp, OpArg arg);
+ void SUBSD(X64Reg regOp, OpArg arg);
+ void MULSS(X64Reg regOp, OpArg arg);
+ void MULSD(X64Reg regOp, OpArg arg);
+ void DIVSS(X64Reg regOp, OpArg arg);
+ void DIVSD(X64Reg regOp, OpArg arg);
+ void MINSS(X64Reg regOp, OpArg arg);
+ void MINSD(X64Reg regOp, OpArg arg);
+ void MAXSS(X64Reg regOp, OpArg arg);
+ void MAXSD(X64Reg regOp, OpArg arg);
+ void SQRTSS(X64Reg regOp, OpArg arg);
+ void SQRTSD(X64Reg regOp, OpArg arg);
+ void RSQRTSS(X64Reg regOp, OpArg arg);
+
+ // SSE/SSE2: Floating point bitwise (yes)
+ void CMPSS(X64Reg regOp, OpArg arg, u8 compare);
+ void CMPSD(X64Reg regOp, OpArg arg, u8 compare);
+
+ inline void CMPEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_EQ); }
+ inline void CMPLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LT); }
+ inline void CMPLESS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LE); }
+ inline void CMPUNORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_UNORD); }
+ inline void CMPNEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NEQ); }
+ inline void CMPNLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NLT); }
+ inline void CMPORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_ORD); }
+
+ // SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
+ void ADDPS(X64Reg regOp, OpArg arg);
+ void ADDPD(X64Reg regOp, OpArg arg);
+ void SUBPS(X64Reg regOp, OpArg arg);
+ void SUBPD(X64Reg regOp, OpArg arg);
+ void CMPPS(X64Reg regOp, OpArg arg, u8 compare);
+ void CMPPD(X64Reg regOp, OpArg arg, u8 compare);
+ void MULPS(X64Reg regOp, OpArg arg);
+ void MULPD(X64Reg regOp, OpArg arg);
+ void DIVPS(X64Reg regOp, OpArg arg);
+ void DIVPD(X64Reg regOp, OpArg arg);
+ void MINPS(X64Reg regOp, OpArg arg);
+ void MINPD(X64Reg regOp, OpArg arg);
+ void MAXPS(X64Reg regOp, OpArg arg);
+ void MAXPD(X64Reg regOp, OpArg arg);
+ void SQRTPS(X64Reg regOp, OpArg arg);
+ void SQRTPD(X64Reg regOp, OpArg arg);
+ void RCPPS(X64Reg regOp, OpArg arg);
+ void RSQRTPS(X64Reg regOp, OpArg arg);
+
+ // SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
+ void ANDPS(X64Reg regOp, OpArg arg);
+ void ANDPD(X64Reg regOp, OpArg arg);
+ void ANDNPS(X64Reg regOp, OpArg arg);
+ void ANDNPD(X64Reg regOp, OpArg arg);
+ void ORPS(X64Reg regOp, OpArg arg);
+ void ORPD(X64Reg regOp, OpArg arg);
+ void XORPS(X64Reg regOp, OpArg arg);
+ void XORPD(X64Reg regOp, OpArg arg);
+
+ // SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
+ void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle);
+ void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle);
+
+ // SSE/SSE2: Useful alternative to shuffle in some cases.
+ void MOVDDUP(X64Reg regOp, OpArg arg);
+
+ // TODO: Actually implement
+#if 0
+ // SSE3: Horizontal operations in SIMD registers. Could be useful for various VFPU things like dot products...
+ void ADDSUBPS(X64Reg dest, OpArg src);
+ void ADDSUBPD(X64Reg dest, OpArg src);
+ void HADDPD(X64Reg dest, OpArg src);
+ void HSUBPS(X64Reg dest, OpArg src);
+ void HSUBPD(X64Reg dest, OpArg src);
+
+ // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
+ void DPPD(X64Reg dest, OpArg src, u8 arg);
+
+ // These are probably useful for VFPU emulation.
+ void INSERTPS(X64Reg dest, OpArg src, u8 arg);
+ void EXTRACTPS(OpArg dest, X64Reg src, u8 arg);
+#endif
+
+ // SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily on Ivy.
+ void HADDPS(X64Reg dest, OpArg src);
+
+ // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
+ void DPPS(X64Reg dest, OpArg src, u8 arg);
+
+ void UNPCKLPS(X64Reg dest, OpArg src);
+ void UNPCKHPS(X64Reg dest, OpArg src);
+ void UNPCKLPD(X64Reg dest, OpArg src);
+ void UNPCKHPD(X64Reg dest, OpArg src);
+
+ // SSE/SSE2: Compares.
+ void COMISS(X64Reg regOp, OpArg arg);
+ void COMISD(X64Reg regOp, OpArg arg);
+ void UCOMISS(X64Reg regOp, OpArg arg);
+ void UCOMISD(X64Reg regOp, OpArg arg);
+
+ // SSE/SSE2: Moves. Use the right data type for your data, in most cases.
+ void MOVAPS(X64Reg regOp, OpArg arg);
+ void MOVAPD(X64Reg regOp, OpArg arg);
+ void MOVAPS(OpArg arg, X64Reg regOp);
+ void MOVAPD(OpArg arg, X64Reg regOp);
+
+ void MOVUPS(X64Reg regOp, OpArg arg);
+ void MOVUPD(X64Reg regOp, OpArg arg);
+ void MOVUPS(OpArg arg, X64Reg regOp);
+ void MOVUPD(OpArg arg, X64Reg regOp);
+
+ void MOVDQA(X64Reg regOp, OpArg arg);
+ void MOVDQA(OpArg arg, X64Reg regOp);
+ void MOVDQU(X64Reg regOp, OpArg arg);
+ void MOVDQU(OpArg arg, X64Reg regOp);
+
+ void MOVSS(X64Reg regOp, OpArg arg);
+ void MOVSD(X64Reg regOp, OpArg arg);
+ void MOVSS(OpArg arg, X64Reg regOp);
+ void MOVSD(OpArg arg, X64Reg regOp);
+
+ void MOVLPS(X64Reg regOp, OpArg arg);
+ void MOVLPD(X64Reg regOp, OpArg arg);
+ void MOVLPS(OpArg arg, X64Reg regOp);
+ void MOVLPD(OpArg arg, X64Reg regOp);
+
+ void MOVHPS(X64Reg regOp, OpArg arg);
+ void MOVHPD(X64Reg regOp, OpArg arg);
+ void MOVHPS(OpArg arg, X64Reg regOp);
+ void MOVHPD(OpArg arg, X64Reg regOp);
+
+ void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
+ void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
+
+ void MOVD_xmm(X64Reg dest, const OpArg &arg);
+ void MOVQ_xmm(X64Reg dest, OpArg arg);
+ void MOVD_xmm(const OpArg &arg, X64Reg src);
+ void MOVQ_xmm(OpArg arg, X64Reg src);
+
+ // SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
+ void MOVMSKPS(X64Reg dest, OpArg arg);
+ void MOVMSKPD(X64Reg dest, OpArg arg);
+
+ // SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
+ void MASKMOVDQU(X64Reg dest, X64Reg src);
+ void LDDQU(X64Reg dest, OpArg src);
+
+ // SSE/SSE2: Data type conversions.
+ void CVTPS2PD(X64Reg dest, OpArg src);
+ void CVTPD2PS(X64Reg dest, OpArg src);
+ void CVTSS2SD(X64Reg dest, OpArg src);
+ void CVTSI2SS(X64Reg dest, OpArg src);
+ void CVTSD2SS(X64Reg dest, OpArg src);
+ void CVTSI2SD(X64Reg dest, OpArg src);
+ void CVTDQ2PD(X64Reg regOp, OpArg arg);
+ void CVTPD2DQ(X64Reg regOp, OpArg arg);
+ void CVTDQ2PS(X64Reg regOp, OpArg arg);
+ void CVTPS2DQ(X64Reg regOp, OpArg arg);
+
+ void CVTTPS2DQ(X64Reg regOp, OpArg arg);
+ void CVTTPD2DQ(X64Reg regOp, OpArg arg);
+
+ // Destinations are X64 regs (rax, rbx, ...) for these instructions.
+ void CVTSS2SI(X64Reg xregdest, OpArg src);
+ void CVTSD2SI(X64Reg xregdest, OpArg src);
+ void CVTTSS2SI(X64Reg xregdest, OpArg arg);
+ void CVTTSD2SI(X64Reg xregdest, OpArg arg);
+
+ // SSE2: Packed integer instructions
+ void PACKSSDW(X64Reg dest, OpArg arg);
+ void PACKSSWB(X64Reg dest, OpArg arg);
+ void PACKUSDW(X64Reg dest, OpArg arg);
+ void PACKUSWB(X64Reg dest, OpArg arg);
+
+ void PUNPCKLBW(X64Reg dest, const OpArg &arg);
+ void PUNPCKLWD(X64Reg dest, const OpArg &arg);
+ void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
+ void PUNPCKLQDQ(X64Reg dest, const OpArg &arg);
+
+ void PTEST(X64Reg dest, OpArg arg);
+ void PAND(X64Reg dest, OpArg arg);
+ void PANDN(X64Reg dest, OpArg arg);
+ void PXOR(X64Reg dest, OpArg arg);
+ void POR(X64Reg dest, OpArg arg);
+
+ void PADDB(X64Reg dest, OpArg arg);
+ void PADDW(X64Reg dest, OpArg arg);
+ void PADDD(X64Reg dest, OpArg arg);
+ void PADDQ(X64Reg dest, OpArg arg);
+
+ void PADDSB(X64Reg dest, OpArg arg);
+ void PADDSW(X64Reg dest, OpArg arg);
+ void PADDUSB(X64Reg dest, OpArg arg);
+ void PADDUSW(X64Reg dest, OpArg arg);
+
+ void PSUBB(X64Reg dest, OpArg arg);
+ void PSUBW(X64Reg dest, OpArg arg);
+ void PSUBD(X64Reg dest, OpArg arg);
+ void PSUBQ(X64Reg dest, OpArg arg);
+
+ void PSUBSB(X64Reg dest, OpArg arg);
+ void PSUBSW(X64Reg dest, OpArg arg);
+ void PSUBUSB(X64Reg dest, OpArg arg);
+ void PSUBUSW(X64Reg dest, OpArg arg);
+
+ void PAVGB(X64Reg dest, OpArg arg);
+ void PAVGW(X64Reg dest, OpArg arg);
+
+ void PCMPEQB(X64Reg dest, OpArg arg);
+ void PCMPEQW(X64Reg dest, OpArg arg);
+ void PCMPEQD(X64Reg dest, OpArg arg);
+
+ void PCMPGTB(X64Reg dest, OpArg arg);
+ void PCMPGTW(X64Reg dest, OpArg arg);
+ void PCMPGTD(X64Reg dest, OpArg arg);
+
+ void PEXTRW(X64Reg dest, OpArg arg, u8 subreg);
+ void PINSRW(X64Reg dest, OpArg arg, u8 subreg);
+
+ void PMADDWD(X64Reg dest, OpArg arg);
+ void PSADBW(X64Reg dest, OpArg arg);
+
+ void PMAXSW(X64Reg dest, OpArg arg);
+ void PMAXUB(X64Reg dest, OpArg arg);
+ void PMINSW(X64Reg dest, OpArg arg);
+ void PMINUB(X64Reg dest, OpArg arg);
+ // SSE4: More MAX/MIN instructions.
+ void PMINSB(X64Reg dest, OpArg arg);
+ void PMINSD(X64Reg dest, OpArg arg);
+ void PMINUW(X64Reg dest, OpArg arg);
+ void PMINUD(X64Reg dest, OpArg arg);
+ void PMAXSB(X64Reg dest, OpArg arg);
+ void PMAXSD(X64Reg dest, OpArg arg);
+ void PMAXUW(X64Reg dest, OpArg arg);
+ void PMAXUD(X64Reg dest, OpArg arg);
+
+ void PMOVMSKB(X64Reg dest, OpArg arg);
+ void PSHUFD(X64Reg dest, OpArg arg, u8 shuffle);
+ void PSHUFB(X64Reg dest, OpArg arg);
+
+ void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle);
+ void PSHUFHW(X64Reg dest, OpArg arg, u8 shuffle);
+
+ void PSRLW(X64Reg reg, int shift);
+ void PSRLD(X64Reg reg, int shift);
+ void PSRLQ(X64Reg reg, int shift);
+ void PSRLQ(X64Reg reg, OpArg arg);
+ void PSRLDQ(X64Reg reg, int shift);
+
+ void PSLLW(X64Reg reg, int shift);
+ void PSLLD(X64Reg reg, int shift);
+ void PSLLQ(X64Reg reg, int shift);
+ void PSLLDQ(X64Reg reg, int shift);
+
+ void PSRAW(X64Reg reg, int shift);
+ void PSRAD(X64Reg reg, int shift);
+
+ // SSE4: data type conversions
+ void PMOVSXBW(X64Reg dest, OpArg arg);
+ void PMOVSXBD(X64Reg dest, OpArg arg);
+ void PMOVSXBQ(X64Reg dest, OpArg arg);
+ void PMOVSXWD(X64Reg dest, OpArg arg);
+ void PMOVSXWQ(X64Reg dest, OpArg arg);
+ void PMOVSXDQ(X64Reg dest, OpArg arg);
+ void PMOVZXBW(X64Reg dest, OpArg arg);
+ void PMOVZXBD(X64Reg dest, OpArg arg);
+ void PMOVZXBQ(X64Reg dest, OpArg arg);
+ void PMOVZXWD(X64Reg dest, OpArg arg);
+ void PMOVZXWQ(X64Reg dest, OpArg arg);
+ void PMOVZXDQ(X64Reg dest, OpArg arg);
+
+ // SSE4: variable blend instructions (xmm0 implicit argument)
+ void PBLENDVB(X64Reg dest, OpArg arg);
+ void BLENDVPS(X64Reg dest, OpArg arg);
+ void BLENDVPD(X64Reg dest, OpArg arg);
+ void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend);
+ void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend);
+
+ // SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.)
+ void ROUNDSS(X64Reg dest, OpArg arg, u8 mode);
+ void ROUNDSD(X64Reg dest, OpArg arg, u8 mode);
+ void ROUNDPS(X64Reg dest, OpArg arg, u8 mode);
+ void ROUNDPD(X64Reg dest, OpArg arg, u8 mode);
+
+ inline void ROUNDNEARSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_NEAREST); }
+ inline void ROUNDFLOORSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_FLOOR); }
+ inline void ROUNDCEILSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_CEIL); }
+ inline void ROUNDZEROSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_ZERO); }
+
+ inline void ROUNDNEARSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_NEAREST); }
+ inline void ROUNDFLOORSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_FLOOR); }
+ inline void ROUNDCEILSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_CEIL); }
+ inline void ROUNDZEROSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_ZERO); }
+
+ inline void ROUNDNEARPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_NEAREST); }
+ inline void ROUNDFLOORPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_FLOOR); }
+ inline void ROUNDCEILPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_CEIL); }
+ inline void ROUNDZEROPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_ZERO); }
+
+ inline void ROUNDNEARPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_NEAREST); }
+ inline void ROUNDFLOORPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_FLOOR); }
+ inline void ROUNDCEILPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_CEIL); }
+ inline void ROUNDZEROPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_ZERO); }
+
+ // AVX
+ void VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle);
+ void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+ void VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+ void VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+ // FMA3
+ void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+ // VEX GPR instructions
+ void SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+ void SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+ void SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+ void RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate);
+ void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+ void BLSR(int bits, X64Reg regOp, OpArg arg);
+ void BLSMSK(int bits, X64Reg regOp, OpArg arg);
+ void BLSI(int bits, X64Reg regOp, OpArg arg);
+ void BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+ void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+ void RDTSC();
+
+ // Utility functions
+ // The difference between this and CALL is that this aligns the stack
+ // where appropriate.
+ void ABI_CallFunction(const void *func);
+ template <typename T>
+ void ABI_CallFunction(T (*func)()) {
+ ABI_CallFunction((const void *)func);
+ }
+
+ void ABI_CallFunction(const u8 *func) {
+ ABI_CallFunction((const void *)func);
+ }
+ void ABI_CallFunctionC16(const void *func, u16 param1);
+ void ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2);
+
+
+ // These only support u32 parameters, but that's enough for a lot of uses.
+ // These will destroy the 1 or 2 first "parameter regs".
+ void ABI_CallFunctionC(const void *func, u32 param1);
+ void ABI_CallFunctionCC(const void *func, u32 param1, u32 param2);
+ void ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3);
+ void ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3);
+ void ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4);
+ void ABI_CallFunctionP(const void *func, void *param1);
+ void ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2);
+ void ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3);
+ void ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3);
+ void ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2);
+ void ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3);
+ void ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1);
+ void ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2);
+
+ // Pass a register as a parameter.
+ void ABI_CallFunctionR(const void *func, X64Reg reg1);
+ void ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2);
+
+ template <typename Tr, typename T1>
+ void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) {
+ ABI_CallFunctionC((const void *)func, param1);
+ }
+
+ // A function that doesn't have any control over what it will do to regs,
+ // such as the dispatcher, should be surrounded by these.
+ void ABI_PushAllCalleeSavedRegsAndAdjustStack();
+ void ABI_PopAllCalleeSavedRegsAndAdjustStack();
+
+ // A function that doesn't know anything about it's surroundings, should
+ // be surrounded by these to establish a safe environment, where it can roam free.
+ // An example is a backpatch injected function.
+ void ABI_PushAllCallerSavedRegsAndAdjustStack();
+ void ABI_PopAllCallerSavedRegsAndAdjustStack();
+
+ unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize);
+ void ABI_AlignStack(unsigned int frameSize);
+ void ABI_RestoreStack(unsigned int frameSize);
+
+ // Sets up a __cdecl function.
+ // Only x64 really needs the parameter count.
+ void ABI_EmitPrologue(int maxCallParams);
+ void ABI_EmitEpilogue(int maxCallParams);
+
+ #ifdef _M_IX86
+ inline int ABI_GetNumXMMRegs() { return 8; }
+ #else
+ inline int ABI_GetNumXMMRegs() { return 16; }
+ #endif
+}; // class XEmitter
+
+
+// Everything that needs to generate X86 code should inherit from this.
+// You get memory management for free, plus, you can use all the MOV etc functions without
+// having to prefix them with gen-> or something similar.
+
+class XCodeBlock : public CodeBlock<XEmitter> {
+public:
+ void PoisonMemory() override;
+};
+
+} // namespace