summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorameerj <52414509+ameerj@users.noreply.github.com>2021-03-25 21:53:51 +0100
committerameerj <52414509+ameerj@users.noreply.github.com>2021-03-25 21:53:51 +0100
commit2f83d9a61bca42d9ef24074beb2b11b19bd4cecd (patch)
tree514e40eb750280c2e3025f9301befb6f8c9b46e9
parentastc_decoder: Reimplement Layers (diff)
downloadyuzu-2f83d9a61bca42d9ef24074beb2b11b19bd4cecd.tar
yuzu-2f83d9a61bca42d9ef24074beb2b11b19bd4cecd.tar.gz
yuzu-2f83d9a61bca42d9ef24074beb2b11b19bd4cecd.tar.bz2
yuzu-2f83d9a61bca42d9ef24074beb2b11b19bd4cecd.tar.lz
yuzu-2f83d9a61bca42d9ef24074beb2b11b19bd4cecd.tar.xz
yuzu-2f83d9a61bca42d9ef24074beb2b11b19bd4cecd.tar.zst
yuzu-2f83d9a61bca42d9ef24074beb2b11b19bd4cecd.zip
-rw-r--r--src/video_core/CMakeLists.txt1
-rw-r--r--src/video_core/host_shaders/astc_decoder.comp569
-rw-r--r--src/video_core/renderer_opengl/gl_texture_cache.cpp11
-rw-r--r--src/video_core/renderer_opengl/util_shaders.cpp96
-rw-r--r--src/video_core/renderer_opengl/util_shaders.h8
-rw-r--r--src/video_core/renderer_vulkan/vk_compute_pass.cpp175
-rw-r--r--src/video_core/texture_cache/util.cpp14
-rw-r--r--src/video_core/textures/astc.cpp1710
-rw-r--r--src/video_core/textures/astc.h174
9 files changed, 502 insertions, 2256 deletions
diff --git a/src/video_core/CMakeLists.txt b/src/video_core/CMakeLists.txt
index 9b931976a..47190c464 100644
--- a/src/video_core/CMakeLists.txt
+++ b/src/video_core/CMakeLists.txt
@@ -236,7 +236,6 @@ add_library(video_core STATIC
texture_cache/types.h
texture_cache/util.cpp
texture_cache/util.h
- textures/astc.cpp
textures/astc.h
textures/decoders.cpp
textures/decoders.h
diff --git a/src/video_core/host_shaders/astc_decoder.comp b/src/video_core/host_shaders/astc_decoder.comp
index b903a2d37..703e34587 100644
--- a/src/video_core/host_shaders/astc_decoder.comp
+++ b/src/video_core/host_shaders/astc_decoder.comp
@@ -9,13 +9,13 @@
#define BEGIN_PUSH_CONSTANTS layout(push_constant) uniform PushConstants {
#define END_PUSH_CONSTANTS };
#define UNIFORM(n)
-#define BINDING_SWIZZLE_BUFFER 0
-#define BINDING_INPUT_BUFFER 1
-#define BINDING_ENC_BUFFER 2
-#define BINDING_6_TO_8_BUFFER 3
-#define BINDING_7_TO_8_BUFFER 4
-#define BINDING_8_TO_8_BUFFER 5
-#define BINDING_BYTE_TO_16_BUFFER 6
+#define BINDING_INPUT_BUFFER 0
+#define BINDING_ENC_BUFFER 1
+#define BINDING_6_TO_8_BUFFER 2
+#define BINDING_7_TO_8_BUFFER 3
+#define BINDING_8_TO_8_BUFFER 4
+#define BINDING_BYTE_TO_16_BUFFER 5
+#define BINDING_SWIZZLE_BUFFER 6
#define BINDING_OUTPUT_IMAGE 7
#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
@@ -37,28 +37,16 @@
layout(local_size_x = 32, local_size_y = 32, local_size_z = 1) in;
BEGIN_PUSH_CONSTANTS
-UNIFORM(0) uvec2 num_image_blocks;
UNIFORM(1) uvec2 block_dims;
-UNIFORM(2) uvec3 origin;
-UNIFORM(3) ivec3 destination;
-UNIFORM(4) uint bytes_per_block_log2;
-UNIFORM(5) uint layer_stride;
-UNIFORM(6) uint block_size;
-UNIFORM(7) uint x_shift;
-UNIFORM(8) uint block_height;
-UNIFORM(9) uint block_height_mask;
+UNIFORM(2) uint bytes_per_block_log2;
+UNIFORM(3) uint layer_stride;
+UNIFORM(4) uint block_size;
+UNIFORM(5) uint x_shift;
+UNIFORM(6) uint block_height;
+UNIFORM(7) uint block_height_mask;
END_PUSH_CONSTANTS
-uint current_index = 0;
-int bitsread = 0;
-uint total_bitsread = 0;
-uint local_buff[16];
-
-const int JustBits = 0;
-const int Quint = 1;
-const int Trit = 2;
-
struct EncodingData {
uint encoding;
uint num_bits;
@@ -68,11 +56,11 @@ struct EncodingData {
struct TexelWeightParams {
uvec2 size;
- bool dual_plane;
uint max_weight;
- bool Error;
- bool VoidExtentLDR;
- bool VoidExtentHDR;
+ bool dual_plane;
+ bool error_state;
+ bool void_extent_ldr;
+ bool void_extent_hdr;
};
// Swizzle data
@@ -116,6 +104,75 @@ const uint GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT + GOB_SIZE_Z_SHI
const uvec2 SWIZZLE_MASK = uvec2(GOB_SIZE_X - 1, GOB_SIZE_Y - 1);
+const int BLOCK_SIZE_IN_BYTES = 16;
+
+const int BLOCK_INFO_ERROR = 0;
+const int BLOCK_INFO_VOID_EXTENT_HDR = 1;
+const int BLOCK_INFO_VOID_EXTENT_LDR = 2;
+const int BLOCK_INFO_NORMAL = 3;
+
+const int JUST_BITS = 0;
+const int QUINT = 1;
+const int TRIT = 2;
+
+// The following constants are expanded variants of the Replicate()
+// function calls corresponding to the following arguments:
+// value: index into the generated table
+// num_bits: the after "REPLICATE" in the table name. i.e. 4 is num_bits in REPLICATE_4.
+// to_bit: the integer after "TO_"
+const uint REPLICATE_BIT_TO_7_TABLE[2] = uint[](0, 127);
+const uint REPLICATE_1_BIT_TO_9_TABLE[2] = uint[](0, 511);
+
+const uint REPLICATE_1_BIT_TO_8_TABLE[2] = uint[](0, 255);
+const uint REPLICATE_2_BIT_TO_8_TABLE[4] = uint[](0, 85, 170, 255);
+const uint REPLICATE_3_BIT_TO_8_TABLE[8] = uint[](0, 36, 73, 109, 146, 182, 219, 255);
+const uint REPLICATE_4_BIT_TO_8_TABLE[16] =
+ uint[](0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255);
+const uint REPLICATE_5_BIT_TO_8_TABLE[32] =
+ uint[](0, 8, 16, 24, 33, 41, 49, 57, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165,
+ 173, 181, 189, 198, 206, 214, 222, 231, 239, 247, 255);
+const uint REPLICATE_1_BIT_TO_6_TABLE[2] = uint[](0, 63);
+const uint REPLICATE_2_BIT_TO_6_TABLE[4] = uint[](0, 21, 42, 63);
+const uint REPLICATE_3_BIT_TO_6_TABLE[8] = uint[](0, 9, 18, 27, 36, 45, 54, 63);
+const uint REPLICATE_4_BIT_TO_6_TABLE[16] =
+ uint[](0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63);
+const uint REPLICATE_5_BIT_TO_6_TABLE[32] =
+ uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 45,
+ 47, 49, 51, 53, 55, 57, 59, 61, 63);
+
+// Input ASTC texture globals
+uint current_index = 0;
+int bitsread = 0;
+uint total_bitsread = 0;
+uint local_buff[16];
+
+// Color data globals
+uint color_endpoint_data[16];
+int color_bitsread = 0;
+uint total_color_bitsread = 0;
+int color_index = 0;
+
+// Four values, two endpoints, four maximum paritions
+uint color_values[32];
+int colvals_index = 0;
+
+// Weight data globals
+uint texel_weight_data[16];
+int texel_bitsread = 0;
+uint total_texel_bitsread = 0;
+int texel_index = 0;
+
+bool texel_flag = false;
+
+// Global "vectors" to be pushed into when decoding
+EncodingData result_vector[100];
+int result_index = 0;
+
+EncodingData texel_vector[100];
+int texel_vector_index = 0;
+
+uint unquantized_texel_weights[2][144];
+
uint SwizzleOffset(uvec2 pos) {
pos = pos & SWIZZLE_MASK;
return swizzle_table[pos.y * 64 + pos.x];
@@ -126,21 +183,10 @@ uint ReadTexel(uint offset) {
return bitfieldExtract(astc_data[offset / 4], int((offset * 8) & 24), 8);
}
-
-const int BLOCK_SIZE_IN_BYTES = 16;
-
-const int BLOCK_INFO_ERROR = 0;
-const int BLOCK_INFO_VOID_EXTENT_HDR = 1;
-const int BLOCK_INFO_VOID_EXTENT_LDR = 2;
-const int BLOCK_INFO_NORMAL = 3;
-
-// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)]
-// is the same as [(numBits - 1):0] and repeats all the way down.
+// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
+// is the same as [(num_bits - 1):0] and repeats all the way down.
uint Replicate(uint val, uint num_bits, uint to_bit) {
- if (num_bits == 0) {
- return 0;
- }
- if (to_bit == 0) {
+ if (num_bits == 0 || to_bit == 0) {
return 0;
}
const uint v = val & uint((1 << num_bits) - 1);
@@ -165,26 +211,14 @@ uvec4 ReplicateByteTo16(uvec4 value) {
REPLICATE_BYTE_TO_16_TABLE[value.z], REPLICATE_BYTE_TO_16_TABLE[value.w]);
}
-const uint REPLICATE_BIT_TO_7_TABLE[2] = uint[](0, 127);
uint ReplicateBitTo7(uint value) {
return REPLICATE_BIT_TO_7_TABLE[value];
- ;
}
-const uint REPLICATE_1_BIT_TO_9_TABLE[2] = uint[](0, 511);
uint ReplicateBitTo9(uint value) {
return REPLICATE_1_BIT_TO_9_TABLE[value];
}
-const uint REPLICATE_1_BIT_TO_8_TABLE[2] = uint[](0, 255);
-const uint REPLICATE_2_BIT_TO_8_TABLE[4] = uint[](0, 85, 170, 255);
-const uint REPLICATE_3_BIT_TO_8_TABLE[8] = uint[](0, 36, 73, 109, 146, 182, 219, 255);
-const uint REPLICATE_4_BIT_TO_8_TABLE[16] =
- uint[](0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255);
-const uint REPLICATE_5_BIT_TO_8_TABLE[32] =
- uint[](0, 8, 16, 24, 33, 41, 49, 57, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165,
- 173, 181, 189, 198, 206, 214, 222, 231, 239, 247, 255);
-
uint FastReplicateTo8(uint value, uint num_bits) {
switch (num_bits) {
case 1:
@@ -207,15 +241,6 @@ uint FastReplicateTo8(uint value, uint num_bits) {
return Replicate(value, num_bits, 8);
}
-const uint REPLICATE_1_BIT_TO_6_TABLE[2] = uint[](0, 63);
-const uint REPLICATE_2_BIT_TO_6_TABLE[4] = uint[](0, 21, 42, 63);
-const uint REPLICATE_3_BIT_TO_6_TABLE[8] = uint[](0, 9, 18, 27, 36, 45, 54, 63);
-const uint REPLICATE_4_BIT_TO_6_TABLE[16] =
- uint[](0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63);
-const uint REPLICATE_5_BIT_TO_6_TABLE[32] =
- uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 45,
- 47, 49, 51, 53, 55, 57, 59, 61, 63);
-
uint FastReplicateTo6(uint value, uint num_bits) {
switch (num_bits) {
case 1:
@@ -232,7 +257,23 @@ uint FastReplicateTo6(uint value, uint num_bits) {
return Replicate(value, num_bits, 6);
}
-uint hash52(uint p) {
+uint Div3Floor(uint v) {
+ return (v * 0x5556) >> 16;
+}
+
+uint Div3Ceil(uint v) {
+ return Div3Floor(v + 2);
+}
+
+uint Div5Floor(uint v) {
+ return (v * 0x3334) >> 16;
+}
+
+uint Div5Ceil(uint v) {
+ return Div5Floor(v + 4);
+}
+
+uint Hash52(uint p) {
p ^= p >> 15;
p -= p << 17;
p += p << 7;
@@ -247,9 +288,9 @@ uint hash52(uint p) {
}
uint SelectPartition(uint seed, uint x, uint y, uint z, uint partition_count, bool small_block) {
- if (1 == partition_count)
+ if (partition_count == 1) {
return 0;
-
+ }
if (small_block) {
x <<= 1;
y <<= 1;
@@ -258,7 +299,7 @@ uint SelectPartition(uint seed, uint x, uint y, uint z, uint partition_count, bo
seed += (partition_count - 1) * 1024;
- uint rnum = hash52(uint(seed));
+ uint rnum = Hash52(uint(seed));
uint seed1 = uint(rnum & 0xF);
uint seed2 = uint((rnum >> 4) & 0xF);
uint seed3 = uint((rnum >> 8) & 0xF);
@@ -318,18 +359,22 @@ uint SelectPartition(uint seed, uint x, uint y, uint z, uint partition_count, bo
c &= 0x3F;
d &= 0x3F;
- if (partition_count < 4)
+ if (partition_count < 4) {
d = 0;
- if (partition_count < 3)
+ }
+ if (partition_count < 3) {
c = 0;
+ }
- if (a >= b && a >= c && a >= d)
+ if (a >= b && a >= c && a >= d) {
return 0;
- else if (b >= c && b >= d)
+ } else if (b >= c && b >= d) {
return 1;
- else if (c >= d)
+ } else if (c >= d) {
return 2;
- return 3;
+ } else {
+ return 3;
+ }
}
uint Select2DPartition(uint seed, uint x, uint y, uint partition_count, bool small_block) {
@@ -341,10 +386,10 @@ uint ReadBit() {
return 0;
}
uint bit = bitfieldExtract(local_buff[current_index], bitsread, 1);
- bitsread++;
- total_bitsread++;
+ ++bitsread;
+ ++total_bitsread;
if (bitsread == 8) {
- current_index++;
+ ++current_index;
bitsread = 0;
}
return bit;
@@ -358,36 +403,22 @@ uint StreamBits(uint num_bits) {
return ret;
}
-// Define color data.
-uint color_endpoint_data[16];
-int color_bitsread = 0;
-uint total_color_bitsread = 0;
-int color_index = 0;
-
-// Define color data.
-uint texel_weight_data[16];
-int texel_bitsread = 0;
-uint total_texel_bitsread = 0;
-int texel_index = 0;
-
-bool texel_flag = false;
-
uint ReadColorBit() {
uint bit = 0;
if (texel_flag) {
bit = bitfieldExtract(texel_weight_data[texel_index], texel_bitsread, 1);
- texel_bitsread++;
- total_texel_bitsread++;
+ ++texel_bitsread;
+ ++total_texel_bitsread;
if (texel_bitsread == 8) {
- texel_index++;
+ ++texel_index;
texel_bitsread = 0;
}
} else {
bit = bitfieldExtract(color_endpoint_data[color_index], color_bitsread, 1);
- color_bitsread++;
- total_color_bitsread++;
+ ++color_bitsread;
+ ++total_color_bitsread;
if (color_bitsread == 8) {
- color_index++;
+ ++color_index;
color_bitsread = 0;
}
}
@@ -402,31 +433,25 @@ uint StreamColorBits(uint num_bits) {
return ret;
}
-EncodingData result_vector[100];
-int result_index = 0;
-
-EncodingData texel_vector[100];
-int texel_vector_index = 0;
-
void ResultEmplaceBack(EncodingData val) {
if (texel_flag) {
texel_vector[texel_vector_index] = val;
- texel_vector_index++;
+ ++texel_vector_index;
} else {
result_vector[result_index] = val;
- result_index++;
+ ++result_index;
}
}
// Returns the number of bits required to encode n_vals values.
uint GetBitLength(uint n_vals, uint encoding_index) {
- uint totalBits = encoding_values[encoding_index].num_bits * n_vals;
- if (encoding_values[encoding_index].encoding == Trit) {
- totalBits += (n_vals * 8 + 4) / 5;
- } else if (encoding_values[encoding_index].encoding == Quint) {
- totalBits += (n_vals * 7 + 2) / 3;
+ uint total_bits = encoding_values[encoding_index].num_bits * n_vals;
+ if (encoding_values[encoding_index].encoding == TRIT) {
+ total_bits += Div5Ceil(n_vals * 8);
+ } else if (encoding_values[encoding_index].encoding == QUINT) {
+ total_bits += Div3Ceil(n_vals * 7);
}
- return totalBits;
+ return total_bits;
}
uint GetNumWeightValues(uvec2 size, bool dual_plane) {
@@ -459,7 +484,7 @@ uint BitsOp(uint bits, uint start, uint end) {
return ((bits >> start) & mask);
}
-void DecodeQuintBlock(uint num_bits) { // Value number of bits
+void DecodeQuintBlock(uint num_bits) {
uint m[3];
uint q[3];
uint Q;
@@ -483,7 +508,6 @@ void DecodeQuintBlock(uint num_bits) { // Value number of bits
q[2] = BitsOp(Q, 5, 6);
C = BitsOp(Q, 0, 4);
}
-
if (BitsOp(C, 0, 2) == 5) {
q[1] = 4;
q[0] = BitsOp(C, 3, 4);
@@ -492,10 +516,9 @@ void DecodeQuintBlock(uint num_bits) { // Value number of bits
q[0] = BitsOp(C, 0, 2);
}
}
-
for (uint i = 0; i < 3; i++) {
EncodingData val;
- val.encoding = Quint;
+ val.encoding = QUINT;
val.num_bits = num_bits;
val.bit_value = m[i];
val.quint_trit_value = q[i];
@@ -547,29 +570,28 @@ void DecodeTritBlock(uint num_bits) {
}
for (uint i = 0; i < 5; i++) {
EncodingData val;
- val.encoding = Trit;
+ val.encoding = TRIT;
val.num_bits = num_bits;
val.bit_value = m[i];
val.quint_trit_value = t[i];
ResultEmplaceBack(val);
}
}
+
void DecodeIntegerSequence(uint max_range, uint num_values) {
EncodingData val = encoding_values[max_range];
uint vals_decoded = 0;
while (vals_decoded < num_values) {
switch (val.encoding) {
- case Quint:
+ case QUINT:
DecodeQuintBlock(val.num_bits);
vals_decoded += 3;
break;
-
- case Trit:
+ case TRIT:
DecodeTritBlock(val.num_bits);
vals_decoded += 5;
break;
-
- case JustBits:
+ case JUST_BITS:
val.bit_value = StreamColorBits(val.num_bits);
ResultEmplaceBack(val);
vals_decoded++;
@@ -578,8 +600,7 @@ void DecodeIntegerSequence(uint max_range, uint num_values) {
}
}
-void DecodeColorValues(out uint color_values[32], uvec4 modes, uint num_partitions,
- uint color_data_bits) {
+void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
uint num_values = 0;
for (uint i = 0; i < num_partitions; i++) {
num_values += ((modes[i] >> 2) + 1) << 1;
@@ -587,21 +608,21 @@ void DecodeColorValues(out uint color_values[32], uvec4 modes, uint num_partitio
int range = 256;
while (--range > 0) {
EncodingData val = encoding_values[range];
- uint bitLength = GetBitLength(num_values, range);
- if (bitLength <= color_data_bits) {
+ uint bit_length = GetBitLength(num_values, range);
+ if (bit_length <= color_data_bits) {
while (--range > 0) {
EncodingData newval = encoding_values[range];
if (newval.encoding != val.encoding && newval.num_bits != val.num_bits) {
break;
}
}
- range++;
+ ++range;
break;
}
}
DecodeIntegerSequence(range, num_values);
uint out_index = 0;
- for (int itr = 0; itr < result_index; itr++) {
+ for (int itr = 0; itr < result_index; ++itr) {
if (out_index >= num_values) {
break;
}
@@ -611,77 +632,83 @@ void DecodeColorValues(out uint color_values[32], uvec4 modes, uint num_partitio
uint A = 0, B = 0, C = 0, D = 0;
A = ReplicateBitTo9((bitval & 1));
switch (val.encoding) {
- case JustBits:
+ case JUST_BITS:
color_values[out_index++] = FastReplicateTo8(bitval, bitlen);
break;
- case Trit: {
+ case TRIT: {
D = val.quint_trit_value;
switch (bitlen) {
- case 1: {
+ case 1:
C = 204;
- } break;
+ break;
case 2: {
C = 93;
uint b = (bitval >> 1) & 1;
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
- } break;
-
+ break;
+ }
case 3: {
C = 44;
uint cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 2) | cb;
- } break;
-
+ break;
+ }
case 4: {
C = 22;
uint dcb = (bitval >> 1) & 7;
B = (dcb << 6) | dcb;
- } break;
-
+ break;
+ }
case 5: {
C = 11;
uint edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 2);
- } break;
-
+ break;
+ }
case 6: {
C = 5;
uint fedcb = (bitval >> 1) & 0x1F;
B = (fedcb << 4) | (fedcb >> 4);
- } break;
+ break;
}
- } break;
- case Quint: {
+ }
+ break;
+ }
+ case QUINT: {
D = val.quint_trit_value;
switch (bitlen) {
- case 1: {
+ case 1:
C = 113;
- } break;
+ break;
case 2: {
C = 54;
uint b = (bitval >> 1) & 1;
B = (b << 8) | (b << 3) | (b << 2);
- } break;
+ break;
+ }
case 3: {
C = 26;
uint cb = (bitval >> 1) & 3;
B = (cb << 7) | (cb << 1) | (cb >> 1);
- } break;
+ break;
+ }
case 4: {
C = 13;
uint dcb = (bitval >> 1) & 7;
B = (dcb << 6) | (dcb >> 1);
- } break;
+ break;
+ }
case 5: {
C = 6;
uint edcb = (bitval >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 3);
- } break;
+ break;
}
- } break;
+ }
+ break;
}
-
- if (val.encoding != JustBits) {
+ }
+ if (val.encoding != JUST_BITS) {
uint T = (D * C) + B;
T ^= A;
T = (A & 0x80) | (T >> 2);
@@ -689,30 +716,31 @@ void DecodeColorValues(out uint color_values[32], uvec4 modes, uint num_partitio
}
}
}
+
ivec2 BitTransferSigned(int a, int b) {
ivec2 transferred;
- transferred[1] = b >> 1;
- transferred[1] |= a & 0x80;
- transferred[0] = a >> 1;
- transferred[0] &= 0x3F;
- if ((transferred[0] & 0x20) > 0) {
- transferred[0] -= 0x40;
+ transferred.y = b >> 1;
+ transferred.y |= a & 0x80;
+ transferred.x = a >> 1;
+ transferred.x &= 0x3F;
+ if ((transferred.x & 0x20) > 0) {
+ transferred.x -= 0x40;
}
return transferred;
}
uvec4 ClampByte(ivec4 color) {
- for (uint i = 0; i < 4; i++) {
+ for (uint i = 0; i < 4; ++i) {
color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
}
return uvec4(color);
}
+
ivec4 BlueContract(int a, int r, int g, int b) {
return ivec4(a, (r + b) >> 1, (g + b) >> 1, b);
}
-int colvals_index = 0;
-void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_values[32],
- uint color_endpoint_mode) {
+
+void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode) {
#define READ_UINT_VALUES(N) \
uint v[N]; \
for (uint i = 0; i < N; i++) { \
@@ -730,113 +758,120 @@ void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_values[32],
READ_UINT_VALUES(2)
ep1 = uvec4(0xFF, v[0], v[0], v[0]);
ep2 = uvec4(0xFF, v[1], v[1], v[1]);
- } break;
-
+ break;
+ }
case 1: {
READ_UINT_VALUES(2)
uint L0 = (v[0] >> 2) | (v[1] & 0xC0);
uint L1 = max(L0 + (v[1] & 0x3F), 0xFFU);
ep1 = uvec4(0xFF, L0, L0, L0);
ep2 = uvec4(0xFF, L1, L1, L1);
- } break;
-
+ break;
+ }
case 4: {
READ_UINT_VALUES(4)
ep1 = uvec4(v[2], v[0], v[0], v[0]);
ep2 = uvec4(v[3], v[1], v[1], v[1]);
- } break;
-
+ break;
+ }
case 5: {
READ_INT_VALUES(4)
ivec2 transferred = BitTransferSigned(v[1], v[0]);
- v[1] = transferred[0];
- v[0] = transferred[1];
+ v[1] = transferred.x;
+ v[0] = transferred.y;
transferred = BitTransferSigned(v[3], v[2]);
- v[3] = transferred[0];
- v[2] = transferred[1];
+ v[3] = transferred.x;
+ v[2] = transferred.y;
ep1 = ClampByte(ivec4(v[2], v[0], v[0], v[0]));
- ep2 = ClampByte(ivec4((v[2] + v[3]), v[0] + v[1], v[0] + v[1], v[0] + v[1]));
- } break;
-
+ ep2 = ClampByte(ivec4(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]));
+ break;
+ }
case 6: {
READ_UINT_VALUES(4)
- ep1 = uvec4(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
+ ep1 = uvec4(0xFF, (v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8);
ep2 = uvec4(0xFF, v[0], v[1], v[2]);
- } break;
-
+ break;
+ }
case 8: {
READ_UINT_VALUES(6)
- if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
+ if ((v[1] + v[3] + v[5]) >= (v[0] + v[2] + v[4])) {
ep1 = uvec4(0xFF, v[0], v[2], v[4]);
ep2 = uvec4(0xFF, v[1], v[3], v[5]);
} else {
ep1 = uvec4(BlueContract(0xFF, int(v[1]), int(v[3]), int(v[5])));
ep2 = uvec4(BlueContract(0xFF, int(v[0]), int(v[2]), int(v[4])));
}
- } break;
-
+ break;
+ }
case 9: {
READ_INT_VALUES(6)
ivec2 transferred = BitTransferSigned(v[1], v[0]);
- v[1] = transferred[0];
- v[0] = transferred[1];
+ v[1] = transferred.x;
+ v[0] = transferred.y;
transferred = BitTransferSigned(v[3], v[2]);
- v[3] = transferred[0];
- v[2] = transferred[1];
+ v[3] = transferred.x;
+ v[2] = transferred.y;
transferred = BitTransferSigned(v[5], v[4]);
- v[5] = transferred[0];
- v[4] = transferred[1];
- if (v[1] + v[3] + v[5] >= 0) {
+ v[5] = transferred.x;
+ v[4] = transferred.y;
+ if ((v[1] + v[3] + v[5]) >= 0) {
ep1 = ClampByte(ivec4(0xFF, v[0], v[2], v[4]));
ep2 = ClampByte(ivec4(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]));
} else {
ep1 = ClampByte(BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]));
ep2 = ClampByte(BlueContract(0xFF, v[0], v[2], v[4]));
}
- } break;
-
+ break;
+ }
case 10: {
READ_UINT_VALUES(6)
- ep1 = uvec4(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
+ ep1 = uvec4(v[4], (v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8);
ep2 = uvec4(v[5], v[0], v[1], v[2]);
- } break;
-
+ break;
+ }
case 12: {
READ_UINT_VALUES(8)
- if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
+ if ((v[1] + v[3] + v[5]) >= (v[0] + v[2] + v[4])) {
ep1 = uvec4(v[6], v[0], v[2], v[4]);
ep2 = uvec4(v[7], v[1], v[3], v[5]);
} else {
ep1 = uvec4(BlueContract(int(v[7]), int(v[1]), int(v[3]), int(v[5])));
ep2 = uvec4(BlueContract(int(v[6]), int(v[0]), int(v[2]), int(v[4])));
}
- } break;
-
+ break;
+ }
case 13: {
READ_INT_VALUES(8)
ivec2 transferred = BitTransferSigned(v[1], v[0]);
- v[1] = transferred[0];
- v[0] = transferred[1];
+ v[1] = transferred.x;
+ v[0] = transferred.y;
transferred = BitTransferSigned(v[3], v[2]);
- v[3] = transferred[0];
- v[2] = transferred[1];
+ v[3] = transferred.x;
+ v[2] = transferred.y;
transferred = BitTransferSigned(v[5], v[4]);
- v[5] = transferred[0];
- v[4] = transferred[1];
+ v[5] = transferred.x;
+ v[4] = transferred.y;
transferred = BitTransferSigned(v[7], v[6]);
- v[7] = transferred[0];
- v[6] = transferred[1];
+ v[7] = transferred.x;
+ v[6] = transferred.y;
- if (v[1] + v[3] + v[5] >= 0) {
+ if ((v[1] + v[3] + v[5]) >= 0) {
ep1 = ClampByte(ivec4(v[6], v[0], v[2], v[4]));
ep2 = ClampByte(ivec4(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]));
} else {
ep1 = ClampByte(BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]));
ep2 = ClampByte(BlueContract(v[6], v[0], v[2], v[4]));
}
- } break;
+ break;
+ }
+ default: {
+ // HDR mode, or more likely a bug computing the color_endpoint_mode
+ ep1 = uvec4(0xFF, 0xFF, 0, 0);
+ ep2 = uvec4(0xFF, 0xFF, 0, 0);
+ break;
+ }
}
#undef READ_UINT_VALUES
#undef READ_INT_VALUES
@@ -849,52 +884,61 @@ uint UnquantizeTexelWeight(EncodingData val) {
uint B = 0, C = 0, D = 0;
uint result = 0;
switch (val.encoding) {
- case JustBits:
+ case JUST_BITS:
result = FastReplicateTo6(bitval, bitlen);
break;
- case Trit: {
+ case TRIT: {
D = val.quint_trit_value;
switch (bitlen) {
case 0: {
uint results[3] = {0, 32, 63};
result = results[D];
- } break;
+ break;
+ }
case 1: {
C = 50;
- } break;
+ break;
+ }
case 2: {
C = 23;
uint b = (bitval >> 1) & 1;
B = (b << 6) | (b << 2) | b;
- } break;
+ break;
+ }
case 3: {
C = 11;
uint cb = (bitval >> 1) & 3;
B = (cb << 5) | cb;
- } break;
+ break;
+ }
default:
break;
}
- } break;
- case Quint: {
+ break;
+ }
+ case QUINT: {
D = val.quint_trit_value;
switch (bitlen) {
case 0: {
uint results[5] = {0, 16, 32, 47, 63};
result = results[D];
- } break;
+ break;
+ }
case 1: {
C = 28;
- } break;
+ break;
+ }
case 2: {
C = 13;
uint b = (bitval >> 1) & 1;
B = (b << 6) | (b << 1);
- } break;
+ break;
}
- } break;
+ }
+ break;
}
- if (val.encoding != JustBits && bitlen > 0) {
+ }
+ if (val.encoding != JUST_BITS && bitlen > 0) {
result = D * C + B;
result ^= A;
result = (A & 0x20) | (result >> 2);
@@ -905,7 +949,7 @@ uint UnquantizeTexelWeight(EncodingData val) {
return result;
}
-void UnquantizeTexelWeights(out uint outbuffer[2][144], bool dual_plane, uvec2 size) {
+void UnquantizeTexelWeights(bool dual_plane, uvec2 size) {
uint weight_idx = 0;
uint unquantized[2][144];
uint area = size.x * size.y;
@@ -921,11 +965,12 @@ void UnquantizeTexelWeights(out uint outbuffer[2][144], bool dual_plane, uvec2 s
if (++weight_idx >= (area))
break;
}
- uint Ds = uint((block_dims.x * 0.5f + 1024) / (block_dims.x - 1));
- uint Dt = uint((block_dims.y * 0.5f + 1024) / (block_dims.y - 1));
- uint kPlaneScale = dual_plane ? 2 : 1;
- for (uint plane = 0; plane < kPlaneScale; plane++)
- for (uint t = 0; t < block_dims.y; t++)
+
+ const uint Ds = uint((block_dims.x * 0.5f + 1024) / (block_dims.x - 1));
+ const uint Dt = uint((block_dims.y * 0.5f + 1024) / (block_dims.y - 1));
+ const uint k_plane_scale = dual_plane ? 2 : 1;
+ for (uint plane = 0; plane < k_plane_scale; plane++) {
+ for (uint t = 0; t < block_dims.y; t++) {
for (uint s = 0; s < block_dims.x; s++) {
uint cs = Ds * s;
uint ct = Dt * t;
@@ -955,8 +1000,10 @@ void UnquantizeTexelWeights(out uint outbuffer[2][144], bool dual_plane, uvec2 s
if ((v0 + size.x + 1) < (area)) {
p.w = unquantized[plane][(v0 + size.x + 1)];
}
- outbuffer[plane][t * block_dims.x + s] = (uint(dot(p, w)) + 8) >> 4;
+ unquantized_texel_weights[plane][t * block_dims.x + s] = (uint(dot(p, w)) + 8) >> 4;
}
+ }
+ }
}
int FindLayout(uint mode) {
@@ -991,25 +1038,25 @@ int FindLayout(uint mode) {
}
TexelWeightParams DecodeBlockInfo(uint block_index) {
- TexelWeightParams params = TexelWeightParams(uvec2(0), false, 0, false, false, false);
+ TexelWeightParams params = TexelWeightParams(uvec2(0), 0, false, false, false, false);
uint mode = StreamBits(11);
if ((mode & 0x1ff) == 0x1fc) {
if ((mode & 0x200) != 0) {
- params.VoidExtentHDR = true;
+ params.void_extent_hdr = true;
} else {
- params.VoidExtentLDR = true;
+ params.void_extent_ldr = true;
}
if ((mode & 0x400) == 0 || StreamBits(1) == 0) {
- params.Error = true;
+ params.error_state = true;
}
return params;
}
if ((mode & 0xf) == 0) {
- params.Error = true;
+ params.error_state = true;
return params;
}
if ((mode & 3) == 0 && (mode & 0x1c0) == 0x1c0) {
- params.Error = true;
+ params.error_state = true;
return params;
}
uint A, B;
@@ -1060,7 +1107,7 @@ TexelWeightParams DecodeBlockInfo(uint block_index) {
params.size = uvec2(A + 6, B + 6);
break;
default:
- params.Error = true;
+ params.error_state = true;
break;
}
params.dual_plane = (mode_layout != 9) && ((mode & 0x400) != 0);
@@ -1089,11 +1136,8 @@ void FillError(ivec3 coord) {
}
}
-void FillVoidExtentLDR(ivec3 coord, uint block_index) {
- for (int i = 0; i < 4; i++) {
- StreamBits(13);
- }
-
+void FillVoidExtentLDR(ivec3 coord) {
+ StreamBits(52);
uint r_u = StreamBits(16);
uint g_u = StreamBits(16);
uint b_u = StreamBits(16);
@@ -1110,21 +1154,20 @@ void FillVoidExtentLDR(ivec3 coord, uint block_index) {
}
void DecompressBlock(ivec3 coord, uint block_index) {
- TexelWeightParams params;
- params = DecodeBlockInfo(block_index);
- if (params.Error) {
+ TexelWeightParams params = DecodeBlockInfo(block_index);
+ if (params.error_state) {
FillError(coord);
return;
}
- if (params.VoidExtentHDR) {
+ if (params.void_extent_hdr) {
FillError(coord);
return;
}
- if (params.VoidExtentLDR) {
- FillVoidExtentLDR(coord, block_index);
+ if (params.void_extent_ldr) {
+ FillVoidExtentLDR(coord);
return;
}
- if (params.size.x > block_dims.x || params.size.y > block_dims.y) {
+ if ((params.size.x > block_dims.x) || (params.size.y > block_dims.y)) {
FillError(coord);
return;
}
@@ -1139,7 +1182,7 @@ void DecompressBlock(ivec3 coord, uint block_index) {
uint ced_pointer = 0;
uint base_cem = 0;
if (num_partitions == 1) {
- color_endpoint_mode[0] = StreamBits(4);
+ color_endpoint_mode.x = StreamBits(4);
partition_index = 0;
} else {
partition_index = StreamBits(10);
@@ -1181,7 +1224,7 @@ void DecompressBlock(ivec3 coord, uint block_index) {
int nb = int(min(remaining_bits, 8U));
uint b = StreamBits(nb);
color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb));
- ced_pointer++;
+ ++ced_pointer;
remaining_bits -= nb;
}
plane_index = int(StreamBits(plane_selector_bits));
@@ -1189,20 +1232,20 @@ void DecompressBlock(ivec3 coord, uint block_index) {
uint extra_cem = StreamBits(extra_cem_bits);
uint cem = (extra_cem << 6) | base_cem;
cem >>= 2;
- uint C[4] = {0, 0, 0, 0};
+ uvec4 C = uvec4(0);
for (uint i = 0; i < num_partitions; i++) {
- C[i] = cem & 1;
+ C[i] = (cem & 1);
cem >>= 1;
}
- uint M[4] = {0, 0, 0, 0};
+ uvec4 M = uvec4(0);
for (uint i = 0; i < num_partitions; i++) {
M[i] = cem & 3;
cem >>= 2;
}
for (uint i = 0; i < num_partitions; i++) {
color_endpoint_mode[i] = base_mode;
- if ((C[i]) == 0) {
- color_endpoint_mode[i] -= 1;
+ if (C[i] == 0) {
+ --color_endpoint_mode[i];
}
color_endpoint_mode[i] <<= 2;
color_endpoint_mode[i] |= M[i];
@@ -1213,13 +1256,13 @@ void DecompressBlock(ivec3 coord, uint block_index) {
color_endpoint_mode[i] = cem;
}
}
+ DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits);
- uint color_values[32]; // Four values, two endpoints, four maximum paritions
- DecodeColorValues(color_values, color_endpoint_mode, num_partitions, color_data_bits);
uvec4 endpoints[4][2];
for (uint i = 0; i < num_partitions; i++) {
- ComputeEndpoints(endpoints[i][0], endpoints[i][1], color_values, color_endpoint_mode[i]);
+ ComputeEndpoints(endpoints[i][0], endpoints[i][1], color_endpoint_mode[i]);
}
+
for (uint i = 0; i < 16; i++) {
texel_weight_data[i] = local_buff[i];
}
@@ -1238,12 +1281,13 @@ void DecompressBlock(ivec3 coord, uint block_index) {
uint(
((1 << (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) % 8)) - 1));
for (uint i = 0; i < 16 - clear_byte_start; i++) {
- texel_weight_data[clear_byte_start + i] = uint(0U);
+ texel_weight_data[clear_byte_start + i] = 0U;
}
texel_flag = true; // use texel "vector" and bit stream in integer decoding
DecodeIntegerSequence(params.max_weight, GetNumWeightValues(params.size, params.dual_plane));
- uint weights[2][144];
- UnquantizeTexelWeights(weights, params.dual_plane, params.size);
+
+ UnquantizeTexelWeights(params.dual_plane, params.size);
+
for (uint j = 0; j < block_dims.y; j++) {
for (uint i = 0; i < block_dims.x; i++) {
uint local_partition = Select2DPartition(partition_index, i, j, num_partitions,
@@ -1257,9 +1301,9 @@ void DecompressBlock(ivec3 coord, uint block_index) {
if (params.dual_plane && (((plane_index + 1) & 3) == c)) {
plane_vec[c] = 1;
}
- weight_vec[c] = weights[plane_vec[c]][j * block_dims.x + i];
+ weight_vec[c] = unquantized_texel_weights[plane_vec[c]][j * block_dims.x + i];
}
- vec4 Cf = vec4((C0 * (uvec4(64) - weight_vec) + C1 * weight_vec + uvec4(32)) >> 6);
+ vec4 Cf = vec4((C0 * (uvec4(64) - weight_vec) + C1 * weight_vec + uvec4(32)) / 64);
p = (Cf / 65535.0);
imageStore(dest_image, coord + ivec3(i, j, 0), p.gbar);
}
@@ -1267,7 +1311,7 @@ void DecompressBlock(ivec3 coord, uint block_index) {
}
void main() {
- uvec3 pos = gl_GlobalInvocationID + origin;
+ uvec3 pos = gl_GlobalInvocationID;
pos.x <<= bytes_per_block_log2;
// Read as soon as possible due to its latency
@@ -1282,9 +1326,10 @@ void main() {
offset += (pos.x >> GOB_SIZE_X_SHIFT) << x_shift;
offset += swizzle;
- const ivec3 coord = ivec3(gl_GlobalInvocationID * uvec3(block_dims, 1.0));
+ const ivec3 coord = ivec3(gl_GlobalInvocationID * uvec3(block_dims, 1));
uint block_index =
- pos.z * num_image_blocks.x * num_image_blocks.y + pos.y * num_image_blocks.x + pos.x;
+ pos.z * gl_WorkGroupSize.x * gl_WorkGroupSize.y + pos.y * gl_WorkGroupSize.x + pos.x;
+
current_index = 0;
bitsread = 0;
for (int i = 0; i < 16; i++) {
diff --git a/src/video_core/renderer_opengl/gl_texture_cache.cpp b/src/video_core/renderer_opengl/gl_texture_cache.cpp
index 29105ecad..623b43d8a 100644
--- a/src/video_core/renderer_opengl/gl_texture_cache.cpp
+++ b/src/video_core/renderer_opengl/gl_texture_cache.cpp
@@ -307,7 +307,7 @@ void ApplySwizzle(GLuint handle, PixelFormat format, std::array<SwizzleSource, 4
[[nodiscard]] bool CanBeAccelerated(const TextureCacheRuntime& runtime,
const VideoCommon::ImageInfo& info) {
- return (!runtime.HasNativeASTC() && IsPixelFormatASTC(info.format));
+ return !runtime.HasNativeASTC() && IsPixelFormatASTC(info.format);
// Disable other accelerated uploads for now as they don't implement swizzled uploads
return false;
switch (info.type) {
@@ -568,12 +568,13 @@ void TextureCacheRuntime::BlitFramebuffer(Framebuffer* dst, Framebuffer* src,
void TextureCacheRuntime::AccelerateImageUpload(Image& image, const ImageBufferMap& map,
std::span<const SwizzleParameters> swizzles) {
- if (IsPixelFormatASTC(image.info.format)) {
- return util_shaders.ASTCDecode(image, map, swizzles);
- }
switch (image.info.type) {
case ImageType::e2D:
- return util_shaders.BlockLinearUpload2D(image, map, swizzles);
+ if (IsPixelFormatASTC(image.info.format)) {
+ return util_shaders.ASTCDecode(image, map, swizzles);
+ } else {
+ return util_shaders.BlockLinearUpload2D(image, map, swizzles);
+ }
case ImageType::e3D:
return util_shaders.BlockLinearUpload3D(image, map, swizzles);
case ImageType::Linear:
diff --git a/src/video_core/renderer_opengl/util_shaders.cpp b/src/video_core/renderer_opengl/util_shaders.cpp
index 85722c54a..47fddcb6e 100644
--- a/src/video_core/renderer_opengl/util_shaders.cpp
+++ b/src/video_core/renderer_opengl/util_shaders.cpp
@@ -2,11 +2,7 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
-#include <bit>
-#include <fstream>
#include <span>
-#include <streambuf>
-#include <string>
#include <string_view>
#include <glad/glad.h>
@@ -24,7 +20,6 @@
#include "video_core/renderer_opengl/gl_shader_manager.h"
#include "video_core/renderer_opengl/gl_texture_cache.h"
#include "video_core/renderer_opengl/util_shaders.h"
-#include "video_core/surface.h"
#include "video_core/texture_cache/accelerated_swizzle.h"
#include "video_core/texture_cache/types.h"
#include "video_core/texture_cache/util.h"
@@ -36,6 +31,7 @@ namespace OpenGL {
using namespace HostShaders;
using namespace Tegra::Texture::ASTC;
+using VideoCommon::Extent2D;
using VideoCommon::Extent3D;
using VideoCommon::ImageCopy;
using VideoCommon::ImageType;
@@ -69,33 +65,15 @@ UtilShaders::UtilShaders(ProgramManager& program_manager_)
pitch_unswizzle_program(MakeProgram(PITCH_UNSWIZZLE_COMP)),
copy_bgra_program(MakeProgram(OPENGL_COPY_BGRA_COMP)),
copy_bc4_program(MakeProgram(OPENGL_COPY_BC4_COMP)) {
- MakeBuffers();
-}
-
-UtilShaders::~UtilShaders() = default;
-
-void UtilShaders::MakeBuffers() {
const auto swizzle_table = Tegra::Texture::MakeSwizzleTable();
swizzle_table_buffer.Create();
+ astc_buffer.Create();
glNamedBufferStorage(swizzle_table_buffer.handle, sizeof(swizzle_table), &swizzle_table, 0);
-
- astc_encodings_buffer.Create();
- glNamedBufferStorage(astc_encodings_buffer.handle, sizeof(EncodingsValues), &EncodingsValues,
- 0);
- replicate_6_to_8_buffer.Create();
- glNamedBufferStorage(replicate_6_to_8_buffer.handle, sizeof(REPLICATE_6_BIT_TO_8_TABLE),
- &REPLICATE_6_BIT_TO_8_TABLE, 0);
- replicate_7_to_8_buffer.Create();
- glNamedBufferStorage(replicate_7_to_8_buffer.handle, sizeof(REPLICATE_7_BIT_TO_8_TABLE),
- &REPLICATE_7_BIT_TO_8_TABLE, 0);
- replicate_8_to_8_buffer.Create();
- glNamedBufferStorage(replicate_8_to_8_buffer.handle, sizeof(REPLICATE_8_BIT_TO_8_TABLE),
- &REPLICATE_8_BIT_TO_8_TABLE, 0);
- replicate_byte_to_16_buffer.Create();
- glNamedBufferStorage(replicate_byte_to_16_buffer.handle, sizeof(REPLICATE_BYTE_TO_16_TABLE),
- &REPLICATE_BYTE_TO_16_TABLE, 0);
+ glNamedBufferStorage(astc_buffer.handle, sizeof(ASTC_BUFFER_DATA), &ASTC_BUFFER_DATA, 0);
}
+UtilShaders::~UtilShaders() = default;
+
void UtilShaders::ASTCDecode(Image& image, const ImageBufferMap& map,
std::span<const VideoCommon::SwizzleParameters> swizzles) {
static constexpr GLuint BINDING_SWIZZLE_BUFFER = 0;
@@ -108,47 +86,51 @@ void UtilShaders::ASTCDecode(Image& image, const ImageBufferMap& map,
static constexpr GLuint BINDING_BYTE_TO_16_BUFFER = 6;
static constexpr GLuint BINDING_OUTPUT_IMAGE = 0;
- static constexpr GLuint LOC_NUM_IMAGE_BLOCKS = 0;
- static constexpr GLuint LOC_BLOCK_DIMS = 1;
- const Extent3D tile_size = {
- VideoCore::Surface::DefaultBlockWidth(image.info.format),
- VideoCore::Surface::DefaultBlockHeight(image.info.format),
+ const Extent2D tile_size{
+ .width = VideoCore::Surface::DefaultBlockWidth(image.info.format),
+ .height = VideoCore::Surface::DefaultBlockHeight(image.info.format),
};
program_manager.BindHostCompute(astc_decoder_program.handle);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_SWIZZLE_BUFFER, swizzle_table_buffer.handle);
- glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_ENC_BUFFER, astc_encodings_buffer.handle);
- glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_6_TO_8_BUFFER,
- replicate_6_to_8_buffer.handle);
- glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_7_TO_8_BUFFER,
- replicate_7_to_8_buffer.handle);
- glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_8_TO_8_BUFFER,
- replicate_8_to_8_buffer.handle);
- glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_BYTE_TO_16_BUFFER,
- replicate_byte_to_16_buffer.handle);
+ glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_ENC_BUFFER, astc_buffer.handle,
+ offsetof(AstcBufferData, encoding_values),
+ sizeof(AstcBufferData::encoding_values));
+ glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_6_TO_8_BUFFER, astc_buffer.handle,
+ offsetof(AstcBufferData, replicate_6_to_8),
+ sizeof(AstcBufferData::replicate_6_to_8));
+ glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_7_TO_8_BUFFER, astc_buffer.handle,
+ offsetof(AstcBufferData, replicate_7_to_8),
+ sizeof(AstcBufferData::replicate_7_to_8));
+ glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_8_TO_8_BUFFER, astc_buffer.handle,
+ offsetof(AstcBufferData, replicate_8_to_8),
+ sizeof(AstcBufferData::replicate_8_to_8));
+ glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_BYTE_TO_16_BUFFER, astc_buffer.handle,
+ offsetof(AstcBufferData, replicate_byte_to_16),
+ sizeof(AstcBufferData::replicate_byte_to_16));
glFlushMappedNamedBufferRange(map.buffer, map.offset, image.guest_size_bytes);
- glUniform2ui(LOC_BLOCK_DIMS, tile_size.width, tile_size.height);
+ glUniform2ui(1, tile_size.width, tile_size.height);
+ // Ensure buffer data is valid before dispatching
+ glFlush();
for (const SwizzleParameters& swizzle : swizzles) {
- glBindImageTexture(BINDING_OUTPUT_IMAGE, image.StorageHandle(), swizzle.level, GL_TRUE, 0,
- GL_WRITE_ONLY, GL_RGBA8);
const size_t input_offset = swizzle.buffer_offset + map.offset;
- const auto num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 32U);
- const auto num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 32U);
-
- glUniform2ui(LOC_NUM_IMAGE_BLOCKS, swizzle.num_tiles.width, swizzle.num_tiles.height);
+ const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 32U);
+ const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 32U);
- // To unswizzle the ASTC data
const auto params = MakeBlockLinearSwizzle2DParams(swizzle, image.info);
- glUniform3uiv(2, 1, params.origin.data());
- glUniform3iv(3, 1, params.destination.data());
- glUniform1ui(4, params.bytes_per_block_log2);
- glUniform1ui(5, params.layer_stride);
- glUniform1ui(6, params.block_size);
- glUniform1ui(7, params.x_shift);
- glUniform1ui(8, params.block_height);
- glUniform1ui(9, params.block_height_mask);
+ ASSERT(params.origin == (std::array<u32, 3>{0, 0, 0}));
+ ASSERT(params.destination == (std::array<s32, 3>{0, 0, 0}));
+ glUniform1ui(2, params.bytes_per_block_log2);
+ glUniform1ui(3, params.layer_stride);
+ glUniform1ui(4, params.block_size);
+ glUniform1ui(5, params.x_shift);
+ glUniform1ui(6, params.block_height);
+ glUniform1ui(7, params.block_height_mask);
+
+ glBindImageTexture(BINDING_OUTPUT_IMAGE, image.StorageHandle(), swizzle.level, GL_TRUE, 0,
+ GL_WRITE_ONLY, GL_RGBA8);
// ASTC texture data
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.buffer, input_offset,
image.guest_size_bytes - swizzle.buffer_offset);
diff --git a/src/video_core/renderer_opengl/util_shaders.h b/src/video_core/renderer_opengl/util_shaders.h
index 08a1cb9b2..53d65f368 100644
--- a/src/video_core/renderer_opengl/util_shaders.h
+++ b/src/video_core/renderer_opengl/util_shaders.h
@@ -40,8 +40,6 @@ public:
explicit UtilShaders(ProgramManager& program_manager);
~UtilShaders();
- void MakeBuffers();
-
void ASTCDecode(Image& image, const ImageBufferMap& map,
std::span<const VideoCommon::SwizzleParameters> swizzles);
@@ -64,11 +62,7 @@ private:
ProgramManager& program_manager;
OGLBuffer swizzle_table_buffer;
- OGLBuffer astc_encodings_buffer;
- OGLBuffer replicate_6_to_8_buffer;
- OGLBuffer replicate_7_to_8_buffer;
- OGLBuffer replicate_8_to_8_buffer;
- OGLBuffer replicate_byte_to_16_buffer;
+ OGLBuffer astc_buffer;
OGLProgram astc_decoder_program;
OGLProgram block_linear_unswizzle_2d_program;
diff --git a/src/video_core/renderer_vulkan/vk_compute_pass.cpp b/src/video_core/renderer_vulkan/vk_compute_pass.cpp
index a0050b68f..e11406e58 100644
--- a/src/video_core/renderer_vulkan/vk_compute_pass.cpp
+++ b/src/video_core/renderer_vulkan/vk_compute_pass.cpp
@@ -35,13 +35,13 @@ using namespace Tegra::Texture::ASTC;
namespace {
-constexpr u32 ASTC_BINDING_SWIZZLE_BUFFER = 0;
-constexpr u32 ASTC_BINDING_INPUT_BUFFER = 1;
-constexpr u32 ASTC_BINDING_ENC_BUFFER = 2;
-constexpr u32 ASTC_BINDING_6_TO_8_BUFFER = 3;
-constexpr u32 ASTC_BINDING_7_TO_8_BUFFER = 4;
-constexpr u32 ASTC_BINDING_8_TO_8_BUFFER = 5;
-constexpr u32 ASTC_BINDING_BYTE_TO_16_BUFFER = 6;
+constexpr u32 ASTC_BINDING_INPUT_BUFFER = 0;
+constexpr u32 ASTC_BINDING_ENC_BUFFER = 1;
+constexpr u32 ASTC_BINDING_6_TO_8_BUFFER = 2;
+constexpr u32 ASTC_BINDING_7_TO_8_BUFFER = 3;
+constexpr u32 ASTC_BINDING_8_TO_8_BUFFER = 4;
+constexpr u32 ASTC_BINDING_BYTE_TO_16_BUFFER = 5;
+constexpr u32 ASTC_BINDING_SWIZZLE_BUFFER = 6;
constexpr u32 ASTC_BINDING_OUTPUT_IMAGE = 7;
VkPushConstantRange BuildComputePushConstantRange(std::size_t size) {
@@ -74,56 +74,56 @@ std::array<VkDescriptorSetLayoutBinding, 2> BuildInputOutputDescriptorSetBinding
std::array<VkDescriptorSetLayoutBinding, 8> BuildASTCDescriptorSetBindings() {
return {{
{
- .binding = ASTC_BINDING_SWIZZLE_BUFFER, // Swizzle buffer
+ .binding = ASTC_BINDING_INPUT_BUFFER,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
{
- .binding = ASTC_BINDING_INPUT_BUFFER, // ASTC Img data buffer
+ .binding = ASTC_BINDING_ENC_BUFFER,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
{
- .binding = ASTC_BINDING_ENC_BUFFER, // Encodings buffer
+ .binding = ASTC_BINDING_6_TO_8_BUFFER,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
{
- .binding = ASTC_BINDING_6_TO_8_BUFFER, // BINDING_6_TO_8_BUFFER
+ .binding = ASTC_BINDING_7_TO_8_BUFFER,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
{
- .binding = ASTC_BINDING_7_TO_8_BUFFER, // BINDING_7_TO_8_BUFFER
+ .binding = ASTC_BINDING_8_TO_8_BUFFER,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
{
- .binding = ASTC_BINDING_8_TO_8_BUFFER, // BINDING_8_TO_8_BUFFER
+ .binding = ASTC_BINDING_BYTE_TO_16_BUFFER,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
{
- .binding = ASTC_BINDING_BYTE_TO_16_BUFFER, // BINDING_BYTE_TO_16_BUFFER
+ .binding = ASTC_BINDING_SWIZZLE_BUFFER,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = nullptr,
},
{
- .binding = ASTC_BINDING_OUTPUT_IMAGE, // Output image
+ .binding = ASTC_BINDING_OUTPUT_IMAGE,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
@@ -146,19 +146,11 @@ VkDescriptorUpdateTemplateEntryKHR BuildInputOutputDescriptorUpdateTemplate() {
std::array<VkDescriptorUpdateTemplateEntryKHR, 8> BuildASTCPassDescriptorUpdateTemplateEntry() {
return {{
{
- .dstBinding = ASTC_BINDING_SWIZZLE_BUFFER,
- .dstArrayElement = 0,
- .descriptorCount = 1,
- .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
- .offset = 0 * sizeof(DescriptorUpdateEntry),
- .stride = sizeof(DescriptorUpdateEntry),
- },
- {
.dstBinding = ASTC_BINDING_INPUT_BUFFER,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
- .offset = 1 * sizeof(DescriptorUpdateEntry),
+ .offset = ASTC_BINDING_INPUT_BUFFER * sizeof(DescriptorUpdateEntry),
.stride = sizeof(DescriptorUpdateEntry),
},
{
@@ -166,7 +158,7 @@ std::array<VkDescriptorUpdateTemplateEntryKHR, 8> BuildASTCPassDescriptorUpdateT
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
- .offset = 2 * sizeof(DescriptorUpdateEntry),
+ .offset = ASTC_BINDING_ENC_BUFFER * sizeof(DescriptorUpdateEntry),
.stride = sizeof(DescriptorUpdateEntry),
},
{
@@ -174,7 +166,7 @@ std::array<VkDescriptorUpdateTemplateEntryKHR, 8> BuildASTCPassDescriptorUpdateT
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
- .offset = 3 * sizeof(DescriptorUpdateEntry),
+ .offset = ASTC_BINDING_6_TO_8_BUFFER * sizeof(DescriptorUpdateEntry),
.stride = sizeof(DescriptorUpdateEntry),
},
{
@@ -182,7 +174,7 @@ std::array<VkDescriptorUpdateTemplateEntryKHR, 8> BuildASTCPassDescriptorUpdateT
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
- .offset = 4 * sizeof(DescriptorUpdateEntry),
+ .offset = ASTC_BINDING_7_TO_8_BUFFER * sizeof(DescriptorUpdateEntry),
.stride = sizeof(DescriptorUpdateEntry),
},
{
@@ -190,7 +182,7 @@ std::array<VkDescriptorUpdateTemplateEntryKHR, 8> BuildASTCPassDescriptorUpdateT
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
- .offset = 5 * sizeof(DescriptorUpdateEntry),
+ .offset = ASTC_BINDING_8_TO_8_BUFFER * sizeof(DescriptorUpdateEntry),
.stride = sizeof(DescriptorUpdateEntry),
},
{
@@ -198,7 +190,15 @@ std::array<VkDescriptorUpdateTemplateEntryKHR, 8> BuildASTCPassDescriptorUpdateT
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
- .offset = 6 * sizeof(DescriptorUpdateEntry),
+ .offset = ASTC_BINDING_BYTE_TO_16_BUFFER * sizeof(DescriptorUpdateEntry),
+ .stride = sizeof(DescriptorUpdateEntry),
+ },
+ {
+ .dstBinding = ASTC_BINDING_SWIZZLE_BUFFER,
+ .dstArrayElement = 0,
+ .descriptorCount = 1,
+ .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+ .offset = ASTC_BINDING_SWIZZLE_BUFFER * sizeof(DescriptorUpdateEntry),
.stride = sizeof(DescriptorUpdateEntry),
},
{
@@ -206,16 +206,20 @@ std::array<VkDescriptorUpdateTemplateEntryKHR, 8> BuildASTCPassDescriptorUpdateT
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
- .offset = 7 * sizeof(DescriptorUpdateEntry),
+ .offset = ASTC_BINDING_OUTPUT_IMAGE * sizeof(DescriptorUpdateEntry),
.stride = sizeof(DescriptorUpdateEntry),
},
}};
}
struct AstcPushConstants {
- std::array<u32, 2> num_image_blocks;
std::array<u32, 2> blocks_dims;
- VideoCommon::Accelerated::BlockLinearSwizzle2DParams params;
+ u32 bytes_per_block_log2;
+ u32 layer_stride;
+ u32 block_size;
+ u32 x_shift;
+ u32 block_height;
+ u32 block_height_mask;
};
struct AstcBufferData {
@@ -419,11 +423,12 @@ ASTCDecoderPass::ASTCDecoderPass(const Device& device_, VKScheduler& scheduler_,
ASTCDecoderPass::~ASTCDecoderPass() = default;
void ASTCDecoderPass::MakeDataBuffer() {
+ constexpr size_t TOTAL_BUFFER_SIZE = sizeof(ASTC_BUFFER_DATA) + sizeof(SWIZZLE_TABLE);
data_buffer = device.GetLogical().CreateBuffer(VkBufferCreateInfo{
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
- .size = sizeof(ASTC_BUFFER_DATA),
+ .size = TOTAL_BUFFER_SIZE,
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
@@ -431,15 +436,19 @@ void ASTCDecoderPass::MakeDataBuffer() {
});
data_buffer_commit = memory_allocator.Commit(data_buffer, MemoryUsage::Upload);
- const auto staging_ref =
- staging_buffer_pool.Request(sizeof(ASTC_BUFFER_DATA), MemoryUsage::Upload);
+ const auto staging_ref = staging_buffer_pool.Request(TOTAL_BUFFER_SIZE, MemoryUsage::Upload);
std::memcpy(staging_ref.mapped_span.data(), &ASTC_BUFFER_DATA, sizeof(ASTC_BUFFER_DATA));
- scheduler.Record([src = staging_ref.buffer, dst = *data_buffer](vk::CommandBuffer cmdbuf) {
+ // Tack on the swizzle table at the end of the buffer
+ std::memcpy(staging_ref.mapped_span.data() + sizeof(ASTC_BUFFER_DATA), &SWIZZLE_TABLE,
+ sizeof(SWIZZLE_TABLE));
+
+ scheduler.Record([src = staging_ref.buffer, offset = staging_ref.offset, dst = *data_buffer,
+ TOTAL_BUFFER_SIZE](vk::CommandBuffer cmdbuf) {
cmdbuf.CopyBuffer(src, dst,
VkBufferCopy{
- .srcOffset = 0,
+ .srcOffset = offset,
.dstOffset = 0,
- .size = sizeof(ASTC_BUFFER_DATA),
+ .size = TOTAL_BUFFER_SIZE,
});
cmdbuf.PipelineBarrier(
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0,
@@ -448,61 +457,58 @@ void ASTCDecoderPass::MakeDataBuffer() {
.pNext = nullptr,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT,
- },
- {}, {});
+ });
});
}
void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map,
std::span<const VideoCommon::SwizzleParameters> swizzles) {
using namespace VideoCommon::Accelerated;
- const VideoCommon::Extent2D tile_size{
- .width = VideoCore::Surface::DefaultBlockWidth(image.info.format),
- .height = VideoCore::Surface::DefaultBlockHeight(image.info.format),
+ const std::array<u32, 2> block_dims{
+ VideoCore::Surface::DefaultBlockWidth(image.info.format),
+ VideoCore::Surface::DefaultBlockHeight(image.info.format),
};
scheduler.RequestOutsideRenderPassOperationContext();
if (!data_buffer) {
MakeDataBuffer();
}
+ const VkPipeline vk_pipeline = *pipeline;
const VkImageAspectFlags aspect_mask = image.AspectMask();
const VkImage vk_image = image.Handle();
const bool is_initialized = image.ExchangeInitialization();
- scheduler.Record([vk_image, aspect_mask, is_initialized](vk::CommandBuffer cmdbuf) {
- const VkImageMemoryBarrier image_barrier{
- .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
- .pNext = nullptr,
- .srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
- .dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
- .oldLayout = is_initialized ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_UNDEFINED,
- .newLayout = VK_IMAGE_LAYOUT_GENERAL,
- .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
- .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
- .image = vk_image,
- .subresourceRange{
- .aspectMask = aspect_mask,
- .baseMipLevel = 0,
- .levelCount = VK_REMAINING_MIP_LEVELS,
- .baseArrayLayer = 0,
- .layerCount = VK_REMAINING_ARRAY_LAYERS,
- },
- };
- cmdbuf.PipelineBarrier(0, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, image_barrier);
- });
- const std::array<u32, 2> block_dims{tile_size.width, tile_size.height};
+ scheduler.Record(
+ [vk_pipeline, vk_image, aspect_mask, is_initialized](vk::CommandBuffer cmdbuf) {
+ const VkImageMemoryBarrier image_barrier{
+ .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
+ .pNext = nullptr,
+ .srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
+ .dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
+ .oldLayout = is_initialized ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_UNDEFINED,
+ .newLayout = VK_IMAGE_LAYOUT_GENERAL,
+ .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
+ .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
+ .image = vk_image,
+ .subresourceRange{
+ .aspectMask = aspect_mask,
+ .baseMipLevel = 0,
+ .levelCount = VK_REMAINING_MIP_LEVELS,
+ .baseArrayLayer = 0,
+ .layerCount = VK_REMAINING_ARRAY_LAYERS,
+ },
+ };
+ cmdbuf.PipelineBarrier(is_initialized ? VK_PIPELINE_STAGE_ALL_COMMANDS_BIT : 0,
+ VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, image_barrier);
+ cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, vk_pipeline);
+ });
for (const VideoCommon::SwizzleParameters& swizzle : swizzles) {
const size_t input_offset = swizzle.buffer_offset + map.offset;
const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 32U);
const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 32U);
const u32 num_dispatches_z = image.info.resources.layers;
- const std::array num_image_blocks{swizzle.num_tiles.width, swizzle.num_tiles.height};
- const u32 layer_image_size =
- image.guest_size_bytes - static_cast<u32>(swizzle.buffer_offset);
update_descriptor_queue.Acquire();
- update_descriptor_queue.AddBuffer(*data_buffer,
- offsetof(AstcBufferData, swizzle_table_buffer),
- sizeof(AstcBufferData::swizzle_table_buffer));
- update_descriptor_queue.AddBuffer(map.buffer, input_offset, layer_image_size);
+ update_descriptor_queue.AddBuffer(map.buffer, input_offset,
+ image.guest_size_bytes - swizzle.buffer_offset);
update_descriptor_queue.AddBuffer(*data_buffer, offsetof(AstcBufferData, encoding_values),
sizeof(AstcBufferData::encoding_values));
update_descriptor_queue.AddBuffer(*data_buffer, offsetof(AstcBufferData, replicate_6_to_8),
@@ -514,18 +520,28 @@ void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map,
update_descriptor_queue.AddBuffer(*data_buffer,
offsetof(AstcBufferData, replicate_byte_to_16),
sizeof(AstcBufferData::replicate_byte_to_16));
+ update_descriptor_queue.AddBuffer(*data_buffer, sizeof(AstcBufferData),
+ sizeof(SWIZZLE_TABLE));
update_descriptor_queue.AddImage(image.StorageImageView(swizzle.level));
const VkDescriptorSet set = CommitDescriptorSet(update_descriptor_queue);
const VkPipelineLayout vk_layout = *layout;
- const VkPipeline vk_pipeline = *pipeline;
+
// To unswizzle the ASTC data
const auto params = MakeBlockLinearSwizzle2DParams(swizzle, image.info);
- scheduler.Record([vk_layout, vk_pipeline, buffer = map.buffer, num_dispatches_x,
- num_dispatches_y, num_dispatches_z, num_image_blocks, block_dims, params,
- set, input_offset](vk::CommandBuffer cmdbuf) {
- const AstcPushConstants uniforms{num_image_blocks, block_dims, params};
- cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, vk_pipeline);
+ ASSERT(params.origin == (std::array<u32, 3>{0, 0, 0}));
+ ASSERT(params.destination == (std::array<s32, 3>{0, 0, 0}));
+ scheduler.Record([vk_layout, num_dispatches_x, num_dispatches_y, num_dispatches_z,
+ block_dims, params, set](vk::CommandBuffer cmdbuf) {
+ const AstcPushConstants uniforms{
+ .blocks_dims = block_dims,
+ .bytes_per_block_log2 = params.bytes_per_block_log2,
+ .layer_stride = params.layer_stride,
+ .block_size = params.block_size,
+ .x_shift = params.x_shift,
+ .block_height = params.block_height,
+ .block_height_mask = params.block_height_mask,
+ };
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, vk_layout, 0, set, {});
cmdbuf.PushConstants(vk_layout, VK_SHADER_STAGE_COMPUTE_BIT, uniforms);
cmdbuf.Dispatch(num_dispatches_x, num_dispatches_y, num_dispatches_z);
@@ -550,7 +566,8 @@ void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
};
- cmdbuf.PipelineBarrier(0, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, image_barrier);
+ cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
+ VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, image_barrier);
});
}
diff --git a/src/video_core/texture_cache/util.cpp b/src/video_core/texture_cache/util.cpp
index 2c42d1449..c22dd0148 100644
--- a/src/video_core/texture_cache/util.cpp
+++ b/src/video_core/texture_cache/util.cpp
@@ -47,7 +47,6 @@
#include "video_core/texture_cache/formatter.h"
#include "video_core/texture_cache/samples_helper.h"
#include "video_core/texture_cache/util.h"
-#include "video_core/textures/astc.h"
#include "video_core/textures/decoders.h"
namespace VideoCommon {
@@ -879,17 +878,8 @@ void ConvertImage(std::span<const u8> input, const ImageInfo& info, std::span<u8
ASSERT(copy.image_extent == mip_size);
ASSERT(copy.buffer_row_length == Common::AlignUp(mip_size.width, tile_size.width));
ASSERT(copy.buffer_image_height == Common::AlignUp(mip_size.height, tile_size.height));
-
- if (IsPixelFormatASTC(info.format)) {
- ASSERT(copy.image_extent.depth == 1);
- Tegra::Texture::ASTC::Decompress(input.subspan(copy.buffer_offset),
- copy.image_extent.width, copy.image_extent.height,
- copy.image_subresource.num_layers, tile_size.width,
- tile_size.height, output.subspan(output_offset));
- } else {
- DecompressBC4(input.subspan(copy.buffer_offset), copy.image_extent,
- output.subspan(output_offset));
- }
+ DecompressBC4(input.subspan(copy.buffer_offset), copy.image_extent,
+ output.subspan(output_offset));
copy.buffer_offset = output_offset;
copy.buffer_row_length = mip_size.width;
copy.buffer_image_height = mip_size.height;
diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp
deleted file mode 100644
index 3625b666c..000000000
--- a/src/video_core/textures/astc.cpp
+++ /dev/null
@@ -1,1710 +0,0 @@
-// Copyright 2016 The University of North Carolina at Chapel Hill
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// Please send all BUG REPORTS to <pavel@cs.unc.edu>.
-// <http://gamma.cs.unc.edu/FasTC/>
-
-#include <algorithm>
-#include <cassert>
-#include <cstring>
-#include <span>
-#include <vector>
-
-#include <boost/container/static_vector.hpp>
-
-#include "common/common_types.h"
-
-#include "video_core/textures/astc.h"
-
-namespace {
-
-/// Count the number of bits set in a number.
-constexpr u32 Popcnt(u32 n) {
- u32 c = 0;
- for (; n; c++) {
- n &= n - 1;
- }
- return c;
-}
-
-} // Anonymous namespace
-
-class InputBitStream {
-public:
- constexpr explicit InputBitStream(std::span<const u8> data, size_t start_offset = 0)
- : cur_byte{data.data()}, total_bits{data.size()}, next_bit{start_offset % 8} {}
-
- constexpr size_t GetBitsRead() const {
- return bits_read;
- }
-
- constexpr bool ReadBit() {
- if (bits_read >= total_bits * 8) {
- return 0;
- }
- const bool bit = ((*cur_byte >> next_bit) & 1) != 0;
- ++next_bit;
- while (next_bit >= 8) {
- next_bit -= 8;
- ++cur_byte;
- }
- ++bits_read;
- return bit;
- }
-
- constexpr u32 ReadBits(std::size_t nBits) {
- u32 ret = 0;
- for (std::size_t i = 0; i < nBits; ++i) {
- ret |= (ReadBit() & 1) << i;
- }
- return ret;
- }
-
- template <std::size_t nBits>
- constexpr u32 ReadBits() {
- u32 ret = 0;
- for (std::size_t i = 0; i < nBits; ++i) {
- ret |= (ReadBit() & 1) << i;
- }
- return ret;
- }
-
-private:
- const u8* cur_byte;
- size_t total_bits = 0;
- size_t next_bit = 0;
- size_t bits_read = 0;
-};
-
-class OutputBitStream {
-public:
- constexpr explicit OutputBitStream(u8* ptr, std::size_t bits = 0, std::size_t start_offset = 0)
- : cur_byte{ptr}, num_bits{bits}, next_bit{start_offset % 8} {}
-
- constexpr std::size_t GetBitsWritten() const {
- return bits_written;
- }
-
- constexpr void WriteBitsR(u32 val, u32 nBits) {
- for (u32 i = 0; i < nBits; i++) {
- WriteBit((val >> (nBits - i - 1)) & 1);
- }
- }
-
- constexpr void WriteBits(u32 val, u32 nBits) {
- for (u32 i = 0; i < nBits; i++) {
- WriteBit((val >> i) & 1);
- }
- }
-
-private:
- constexpr void WriteBit(bool b) {
- if (bits_written >= num_bits) {
- return;
- }
-
- const u32 mask = 1 << next_bit++;
-
- // clear the bit
- *cur_byte &= static_cast<u8>(~mask);
-
- // Write the bit, if necessary
- if (b)
- *cur_byte |= static_cast<u8>(mask);
-
- // Next byte?
- if (next_bit >= 8) {
- cur_byte += 1;
- next_bit = 0;
- }
- }
-
- u8* cur_byte;
- std::size_t num_bits;
- std::size_t bits_written = 0;
- std::size_t next_bit = 0;
-};
-
-template <typename IntType>
-class Bits {
-public:
- explicit Bits(const IntType& v) : m_Bits(v) {}
-
- Bits(const Bits&) = delete;
- Bits& operator=(const Bits&) = delete;
-
- u8 operator[](u32 bitPos) const {
- return static_cast<u8>((m_Bits >> bitPos) & 1);
- }
-
- IntType operator()(u32 start, u32 end) const {
- if (start == end) {
- return (*this)[start];
- } else if (start > end) {
- u32 t = start;
- start = end;
- end = t;
- }
-
- u64 mask = (1 << (end - start + 1)) - 1;
- return (m_Bits >> start) & static_cast<IntType>(mask);
- }
-
-private:
- const IntType& m_Bits;
-};
-
-enum class IntegerEncoding { JustBits, Qus32, Trit };
-
-struct IntegerEncodedValue {
- constexpr IntegerEncodedValue() = default;
-
- constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_)
- : encoding{encoding_}, num_bits{num_bits_} {}
-
- constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const {
- return encoding == other.encoding && num_bits == other.num_bits;
- }
-
- // Returns the number of bits required to encode nVals values.
- u32 GetBitLength(u32 nVals) const {
- u32 totalBits = num_bits * nVals;
- if (encoding == IntegerEncoding::Trit) {
- totalBits += (nVals * 8 + 4) / 5;
- } else if (encoding == IntegerEncoding::Qus32) {
- totalBits += (nVals * 7 + 2) / 3;
- }
- return totalBits;
- }
-
- IntegerEncoding encoding{};
- u32 num_bits = 0;
- u32 bit_value = 0;
- union {
- u32 qus32_value = 0;
- u32 trit_value;
- };
-};
-using IntegerEncodedVector = boost::container::static_vector<
- IntegerEncodedValue, 256,
- boost::container::static_vector_options<
- boost::container::inplace_alignment<alignof(IntegerEncodedValue)>,
- boost::container::throw_on_overflow<false>>::type>;
-
-static void DecodeTritBlock(InputBitStream& bits, IntegerEncodedVector& result, u32 nBitsPerValue) {
- // Implement the algorithm in section C.2.12
- std::array<u32, 5> m;
- std::array<u32, 5> t;
- u32 T;
-
- // Read the trit encoded block according to
- // table C.2.14
- m[0] = bits.ReadBits(nBitsPerValue);
- T = bits.ReadBits<2>();
- m[1] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBits<2>() << 2;
- m[2] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBit() << 4;
- m[3] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBits<2>() << 5;
- m[4] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBit() << 7;
-
- u32 C = 0;
-
- Bits<u32> Tb(T);
- if (Tb(2, 4) == 7) {
- C = (Tb(5, 7) << 2) | Tb(0, 1);
- t[4] = t[3] = 2;
- } else {
- C = Tb(0, 4);
- if (Tb(5, 6) == 3) {
- t[4] = 2;
- t[3] = Tb[7];
- } else {
- t[4] = Tb[7];
- t[3] = Tb(5, 6);
- }
- }
-
- Bits<u32> Cb(C);
- if (Cb(0, 1) == 3) {
- t[2] = 2;
- t[1] = Cb[4];
- t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]);
- } else if (Cb(2, 3) == 3) {
- t[2] = 2;
- t[1] = 2;
- t[0] = Cb(0, 1);
- } else {
- t[2] = Cb[4];
- t[1] = Cb(2, 3);
- t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
- }
-
- for (std::size_t i = 0; i < 5; ++i) {
- IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Trit, nBitsPerValue);
- val.bit_value = m[i];
- val.trit_value = t[i];
- }
-}
-
-static void DecodeQus32Block(InputBitStream& bits, IntegerEncodedVector& result,
- u32 nBitsPerValue) {
- // Implement the algorithm in section C.2.12
- u32 m[3];
- u32 q[3];
- u32 Q;
-
- // Read the trit encoded block according to
- // table C.2.15
- m[0] = bits.ReadBits(nBitsPerValue);
- Q = bits.ReadBits<3>();
- m[1] = bits.ReadBits(nBitsPerValue);
- Q |= bits.ReadBits<2>() << 3;
- m[2] = bits.ReadBits(nBitsPerValue);
- Q |= bits.ReadBits<2>() << 5;
-
- Bits<u32> Qb(Q);
- if (Qb(1, 2) == 3 && Qb(5, 6) == 0) {
- q[0] = q[1] = 4;
- q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
- } else {
- u32 C = 0;
- if (Qb(1, 2) == 3) {
- q[2] = 4;
- C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
- } else {
- q[2] = Qb(5, 6);
- C = Qb(0, 4);
- }
-
- Bits<u32> Cb(C);
- if (Cb(0, 2) == 5) {
- q[1] = 4;
- q[0] = Cb(3, 4);
- } else {
- q[1] = Cb(3, 4);
- q[0] = Cb(0, 2);
- }
- }
-
- for (std::size_t i = 0; i < 3; ++i) {
- IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Qus32, nBitsPerValue);
- val.bit_value = m[i];
- val.qus32_value = q[i];
- }
-}
-
-// Returns a new instance of this struct that corresponds to the
-// can take no more than maxval values
-static constexpr IntegerEncodedValue CreateEncoding(u32 maxVal) {
- while (maxVal > 0) {
- u32 check = maxVal + 1;
-
- // Is maxVal a power of two?
- if (!(check & (check - 1))) {
- return IntegerEncodedValue(IntegerEncoding::JustBits, Popcnt(maxVal));
- }
-
- // Is maxVal of the type 3*2^n - 1?
- if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
- return IntegerEncodedValue(IntegerEncoding::Trit, Popcnt(check / 3 - 1));
- }
-
- // Is maxVal of the type 5*2^n - 1?
- if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
- return IntegerEncodedValue(IntegerEncoding::Qus32, Popcnt(check / 5 - 1));
- }
-
- // Apparently it can't be represented with a bounded integer sequence...
- // just iterate.
- maxVal--;
- }
- return IntegerEncodedValue(IntegerEncoding::JustBits, 0);
-}
-
-static constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
- std::array<IntegerEncodedValue, 256> encodings{};
- for (std::size_t i = 0; i < encodings.size(); ++i) {
- encodings[i] = CreateEncoding(static_cast<u32>(i));
- }
- return encodings;
-}
-
-static constexpr std::array EncodingsValues = MakeEncodedValues();
-
-// Fills result with the values that are encoded in the given
-// bitstream. We must know beforehand what the maximum possible
-// value is, and how many values we're decoding.
-static void DecodeIntegerSequence(IntegerEncodedVector& result, InputBitStream& bits, u32 maxRange,
- u32 nValues) {
- // Determine encoding parameters
- IntegerEncodedValue val = EncodingsValues[maxRange];
-
- // Start decoding
- u32 nValsDecoded = 0;
- while (nValsDecoded < nValues) {
- switch (val.encoding) {
- case IntegerEncoding::Qus32:
- DecodeQus32Block(bits, result, val.num_bits);
- nValsDecoded += 3;
- break;
-
- case IntegerEncoding::Trit:
- DecodeTritBlock(bits, result, val.num_bits);
- nValsDecoded += 5;
- break;
-
- case IntegerEncoding::JustBits:
- val.bit_value = bits.ReadBits(val.num_bits);
- result.push_back(val);
- nValsDecoded++;
- break;
- }
- }
-}
-
-namespace ASTCC {
-
-struct TexelWeightParams {
- u32 m_Width = 0;
- u32 m_Height = 0;
- bool m_bDualPlane = false;
- u32 m_MaxWeight = 0;
- bool m_bError = false;
- bool m_bVoidExtentLDR = false;
- bool m_bVoidExtentHDR = false;
-
- u32 GetPackedBitSize() const {
- // How many indices do we have?
- u32 nIdxs = m_Height * m_Width;
- if (m_bDualPlane) {
- nIdxs *= 2;
- }
-
- return EncodingsValues[m_MaxWeight].GetBitLength(nIdxs);
- }
-
- u32 GetNumWeightValues() const {
- u32 ret = m_Width * m_Height;
- if (m_bDualPlane) {
- ret *= 2;
- }
- return ret;
- }
-};
-
-static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
- TexelWeightParams params;
-
- // Read the entire block mode all at once
- u16 modeBits = static_cast<u16>(strm.ReadBits<11>());
-
- // Does this match the void extent block mode?
- if ((modeBits & 0x01FF) == 0x1FC) {
- if (modeBits & 0x200) {
- params.m_bVoidExtentHDR = true;
- } else {
- params.m_bVoidExtentLDR = true;
- }
-
- // Next two bits must be one.
- if (!(modeBits & 0x400) || !strm.ReadBit()) {
- params.m_bError = true;
- }
-
- return params;
- }
-
- // First check if the last four bits are zero
- if ((modeBits & 0xF) == 0) {
- params.m_bError = true;
- return params;
- }
-
- // If the last two bits are zero, then if bits
- // [6-8] are all ones, this is also reserved.
- if ((modeBits & 0x3) == 0 && (modeBits & 0x1C0) == 0x1C0) {
- params.m_bError = true;
- return params;
- }
-
- // Otherwise, there is no error... Figure out the layout
- // of the block mode. Layout is determined by a number
- // between 0 and 9 corresponding to table C.2.8 of the
- // ASTC spec.
- u32 layout = 0;
-
- if ((modeBits & 0x1) || (modeBits & 0x2)) {
- // layout is in [0-4]
- if (modeBits & 0x8) {
- // layout is in [2-4]
- if (modeBits & 0x4) {
- // layout is in [3-4]
- if (modeBits & 0x100) {
- layout = 4;
- } else {
- layout = 3;
- }
- } else {
- layout = 2;
- }
- } else {
- // layout is in [0-1]
- if (modeBits & 0x4) {
- layout = 1;
- } else {
- layout = 0;
- }
- }
- } else {
- // layout is in [5-9]
- if (modeBits & 0x100) {
- // layout is in [7-9]
- if (modeBits & 0x80) {
- // layout is in [7-8]
- assert((modeBits & 0x40) == 0U);
- if (modeBits & 0x20) {
- layout = 8;
- } else {
- layout = 7;
- }
- } else {
- layout = 9;
- }
- } else {
- // layout is in [5-6]
- if (modeBits & 0x80) {
- layout = 6;
- } else {
- layout = 5;
- }
- }
- }
-
- assert(layout < 10);
-
- // Determine R
- u32 R = !!(modeBits & 0x10);
- if (layout < 5) {
- R |= (modeBits & 0x3) << 1;
- } else {
- R |= (modeBits & 0xC) >> 1;
- }
- assert(2 <= R && R <= 7);
-
- // Determine width & height
- switch (layout) {
- case 0: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x3;
- params.m_Width = B + 4;
- params.m_Height = A + 2;
- break;
- }
-
- case 1: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x3;
- params.m_Width = B + 8;
- params.m_Height = A + 2;
- break;
- }
-
- case 2: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x3;
- params.m_Width = A + 2;
- params.m_Height = B + 8;
- break;
- }
-
- case 3: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x1;
- params.m_Width = A + 2;
- params.m_Height = B + 6;
- break;
- }
-
- case 4: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x1;
- params.m_Width = B + 2;
- params.m_Height = A + 2;
- break;
- }
-
- case 5: {
- u32 A = (modeBits >> 5) & 0x3;
- params.m_Width = 12;
- params.m_Height = A + 2;
- break;
- }
-
- case 6: {
- u32 A = (modeBits >> 5) & 0x3;
- params.m_Width = A + 2;
- params.m_Height = 12;
- break;
- }
-
- case 7: {
- params.m_Width = 6;
- params.m_Height = 10;
- break;
- }
-
- case 8: {
- params.m_Width = 10;
- params.m_Height = 6;
- break;
- }
-
- case 9: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 9) & 0x3;
- params.m_Width = A + 6;
- params.m_Height = B + 6;
- break;
- }
-
- default:
- assert(false && "Don't know this layout...");
- params.m_bError = true;
- break;
- }
-
- // Determine whether or not we're using dual planes
- // and/or high precision layouts.
- bool D = (layout != 9) && (modeBits & 0x400);
- bool H = (layout != 9) && (modeBits & 0x200);
-
- if (H) {
- const u32 maxWeights[6] = {9, 11, 15, 19, 23, 31};
- params.m_MaxWeight = maxWeights[R - 2];
- } else {
- const u32 maxWeights[6] = {1, 2, 3, 4, 5, 7};
- params.m_MaxWeight = maxWeights[R - 2];
- }
-
- params.m_bDualPlane = D;
-
- return params;
-}
-
-static void FillVoidExtentLDR(InputBitStream& strm, std::span<u32> outBuf, u32 blockWidth,
- u32 blockHeight) {
- // Don't actually care about the void extent, just read the bits...
- for (s32 i = 0; i < 4; ++i) {
- strm.ReadBits<13>();
- }
-
- // Decode the RGBA components and renormalize them to the range [0, 255]
- u16 r = static_cast<u16>(strm.ReadBits<16>());
- u16 g = static_cast<u16>(strm.ReadBits<16>());
- u16 b = static_cast<u16>(strm.ReadBits<16>());
- u16 a = static_cast<u16>(strm.ReadBits<16>());
-
- u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast<u32>(b) & 0xFF00) << 8 |
- (static_cast<u32>(a) & 0xFF00) << 16;
-
- for (u32 j = 0; j < blockHeight; j++) {
- for (u32 i = 0; i < blockWidth; i++) {
- outBuf[j * blockWidth + i] = rgba;
- }
- }
-}
-
-static void FillError(std::span<u32> outBuf, u32 blockWidth, u32 blockHeight) {
- for (u32 j = 0; j < blockHeight; j++) {
- for (u32 i = 0; i < blockWidth; i++) {
- outBuf[j * blockWidth + i] = 0xFFFF00FF;
- }
- }
-}
-
-// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)]
-// is the same as [(numBits - 1):0] and repeats all the way down.
-template <typename IntType>
-static constexpr IntType Replicate(IntType val, u32 numBits, u32 toBit) {
- if (numBits == 0) {
- return 0;
- }
- if (toBit == 0) {
- return 0;
- }
- const IntType v = val & static_cast<IntType>((1 << numBits) - 1);
- IntType res = v;
- u32 reslen = numBits;
- while (reslen < toBit) {
- u32 comp = 0;
- if (numBits > toBit - reslen) {
- u32 newshift = toBit - reslen;
- comp = numBits - newshift;
- numBits = newshift;
- }
- res = static_cast<IntType>(res << numBits);
- res = static_cast<IntType>(res | (v >> comp));
- reslen += numBits;
- }
- return res;
-}
-
-static constexpr std::size_t NumReplicateEntries(u32 num_bits) {
- return std::size_t(1) << num_bits;
-}
-
-template <typename IntType, u32 num_bits, u32 to_bit>
-static constexpr auto MakeReplicateTable() {
- std::array<IntType, NumReplicateEntries(num_bits)> table{};
- for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) {
- table[value] = Replicate(value, num_bits, to_bit);
- }
- return table;
-}
-
-static constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>();
-static constexpr u32 ReplicateByteTo16(std::size_t value) {
- return REPLICATE_BYTE_TO_16_TABLE[value];
-}
-
-static constexpr auto REPLICATE_BIT_TO_7_TABLE = MakeReplicateTable<u32, 1, 7>();
-static constexpr u32 ReplicateBitTo7(std::size_t value) {
- return REPLICATE_BIT_TO_7_TABLE[value];
-}
-
-static constexpr auto REPLICATE_BIT_TO_9_TABLE = MakeReplicateTable<u32, 1, 9>();
-static constexpr u32 ReplicateBitTo9(std::size_t value) {
- return REPLICATE_BIT_TO_9_TABLE[value];
-}
-
-static constexpr auto REPLICATE_1_BIT_TO_8_TABLE = MakeReplicateTable<u32, 1, 8>();
-static constexpr auto REPLICATE_2_BIT_TO_8_TABLE = MakeReplicateTable<u32, 2, 8>();
-static constexpr auto REPLICATE_3_BIT_TO_8_TABLE = MakeReplicateTable<u32, 3, 8>();
-static constexpr auto REPLICATE_4_BIT_TO_8_TABLE = MakeReplicateTable<u32, 4, 8>();
-static constexpr auto REPLICATE_5_BIT_TO_8_TABLE = MakeReplicateTable<u32, 5, 8>();
-static constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>();
-static constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>();
-static constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>();
-/// Use a precompiled table with the most common usages, if it's not in the expected range, fallback
-/// to the runtime implementation
-static constexpr u32 FastReplicateTo8(u32 value, u32 num_bits) {
- switch (num_bits) {
- case 1:
- return REPLICATE_1_BIT_TO_8_TABLE[value];
- case 2:
- return REPLICATE_2_BIT_TO_8_TABLE[value];
- case 3:
- return REPLICATE_3_BIT_TO_8_TABLE[value];
- case 4:
- return REPLICATE_4_BIT_TO_8_TABLE[value];
- case 5:
- return REPLICATE_5_BIT_TO_8_TABLE[value];
- case 6:
- return REPLICATE_6_BIT_TO_8_TABLE[value];
- case 7:
- return REPLICATE_7_BIT_TO_8_TABLE[value];
- case 8:
- return REPLICATE_8_BIT_TO_8_TABLE[value];
- default:
- return Replicate(value, num_bits, 8);
- }
-}
-
-static constexpr auto REPLICATE_1_BIT_TO_6_TABLE = MakeReplicateTable<u32, 1, 6>();
-static constexpr auto REPLICATE_2_BIT_TO_6_TABLE = MakeReplicateTable<u32, 2, 6>();
-static constexpr auto REPLICATE_3_BIT_TO_6_TABLE = MakeReplicateTable<u32, 3, 6>();
-static constexpr auto REPLICATE_4_BIT_TO_6_TABLE = MakeReplicateTable<u32, 4, 6>();
-static constexpr auto REPLICATE_5_BIT_TO_6_TABLE = MakeReplicateTable<u32, 5, 6>();
-static constexpr u32 FastReplicateTo6(u32 value, u32 num_bits) {
- switch (num_bits) {
- case 1:
- return REPLICATE_1_BIT_TO_6_TABLE[value];
- case 2:
- return REPLICATE_2_BIT_TO_6_TABLE[value];
- case 3:
- return REPLICATE_3_BIT_TO_6_TABLE[value];
- case 4:
- return REPLICATE_4_BIT_TO_6_TABLE[value];
- case 5:
- return REPLICATE_5_BIT_TO_6_TABLE[value];
- default:
- return Replicate(value, num_bits, 6);
- }
-}
-
-class Pixel {
-protected:
- using ChannelType = s16;
- u8 m_BitDepth[4] = {8, 8, 8, 8};
- s16 color[4] = {};
-
-public:
- Pixel() = default;
- Pixel(u32 a, u32 r, u32 g, u32 b, u32 bitDepth = 8)
- : m_BitDepth{u8(bitDepth), u8(bitDepth), u8(bitDepth), u8(bitDepth)},
- color{static_cast<ChannelType>(a), static_cast<ChannelType>(r),
- static_cast<ChannelType>(g), static_cast<ChannelType>(b)} {}
-
- // Changes the depth of each pixel. This scales the values to
- // the appropriate bit depth by either truncating the least
- // significant bits when going from larger to smaller bit depth
- // or by repeating the most significant bits when going from
- // smaller to larger bit depths.
- void ChangeBitDepth() {
- for (u32 i = 0; i < 4; i++) {
- Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i]);
- m_BitDepth[i] = 8;
- }
- }
-
- template <typename IntType>
- static float ConvertChannelToFloat(IntType channel, u8 bitDepth) {
- float denominator = static_cast<float>((1 << bitDepth) - 1);
- return static_cast<float>(channel) / denominator;
- }
-
- // Changes the bit depth of a single component. See the comment
- // above for how we do this.
- static ChannelType ChangeBitDepth(Pixel::ChannelType val, u8 oldDepth) {
- assert(oldDepth <= 8);
-
- if (oldDepth == 8) {
- // Do nothing
- return val;
- } else if (oldDepth == 0) {
- return static_cast<ChannelType>((1 << 8) - 1);
- } else if (8 > oldDepth) {
- return static_cast<ChannelType>(FastReplicateTo8(static_cast<u32>(val), oldDepth));
- } else {
- // oldDepth > newDepth
- const u8 bitsWasted = static_cast<u8>(oldDepth - 8);
- u16 v = static_cast<u16>(val);
- v = static_cast<u16>((v + (1 << (bitsWasted - 1))) >> bitsWasted);
- v = ::std::min<u16>(::std::max<u16>(0, v), static_cast<u16>((1 << 8) - 1));
- return static_cast<u8>(v);
- }
-
- assert(false && "We shouldn't get here.");
- return 0;
- }
-
- const ChannelType& A() const {
- return color[0];
- }
- ChannelType& A() {
- return color[0];
- }
- const ChannelType& R() const {
- return color[1];
- }
- ChannelType& R() {
- return color[1];
- }
- const ChannelType& G() const {
- return color[2];
- }
- ChannelType& G() {
- return color[2];
- }
- const ChannelType& B() const {
- return color[3];
- }
- ChannelType& B() {
- return color[3];
- }
- const ChannelType& Component(u32 idx) const {
- return color[idx];
- }
- ChannelType& Component(u32 idx) {
- return color[idx];
- }
-
- void GetBitDepth(u8 (&outDepth)[4]) const {
- for (s32 i = 0; i < 4; i++) {
- outDepth[i] = m_BitDepth[i];
- }
- }
-
- // Take all of the components, transform them to their 8-bit variants,
- // and then pack each channel into an R8G8B8A8 32-bit integer. We assume
- // that the architecture is little-endian, so the alpha channel will end
- // up in the most-significant byte.
- u32 Pack() const {
- Pixel eightBit(*this);
- eightBit.ChangeBitDepth();
-
- u32 r = 0;
- r |= eightBit.A();
- r <<= 8;
- r |= eightBit.B();
- r <<= 8;
- r |= eightBit.G();
- r <<= 8;
- r |= eightBit.R();
- return r;
- }
-
- // Clamps the pixel to the range [0,255]
- void ClampByte() {
- for (u32 i = 0; i < 4; i++) {
- color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
- }
- }
-
- void MakeOpaque() {
- A() = 255;
- }
-};
-
-static void DecodeColorValues(u32* out, std::span<u8> data, const u32* modes, const u32 nPartitions,
- const u32 nBitsForColorData) {
- // First figure out how many color values we have
- u32 nValues = 0;
- for (u32 i = 0; i < nPartitions; i++) {
- nValues += ((modes[i] >> 2) + 1) << 1;
- }
-
- // Then based on the number of values and the remaining number of bits,
- // figure out the max value for each of them...
- u32 range = 256;
- while (--range > 0) {
- IntegerEncodedValue val = EncodingsValues[range];
- u32 bitLength = val.GetBitLength(nValues);
- if (bitLength <= nBitsForColorData) {
- // Find the smallest possible range that matches the given encoding
- while (--range > 0) {
- IntegerEncodedValue newval = EncodingsValues[range];
- if (!newval.MatchesEncoding(val)) {
- break;
- }
- }
-
- // Return to last matching range.
- range++;
- break;
- }
- }
-
- // We now have enough to decode our integer sequence.
- IntegerEncodedVector decodedColorValues;
-
- InputBitStream colorStream(data, 0);
- DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
-
- // Once we have the decoded values, we need to dequantize them to the 0-255 range
- // This procedure is outlined in ASTC spec C.2.13
- u32 outIdx = 0;
- for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) {
- // Have we already decoded all that we need?
- if (outIdx >= nValues) {
- break;
- }
-
- const IntegerEncodedValue& val = *itr;
- u32 bitlen = val.num_bits;
- u32 bitval = val.bit_value;
-
- assert(bitlen >= 1);
-
- u32 A = 0, B = 0, C = 0, D = 0;
- // A is just the lsb replicated 9 times.
- A = ReplicateBitTo9(bitval & 1);
-
- switch (val.encoding) {
- // Replicate bits
- case IntegerEncoding::JustBits:
- out[outIdx++] = FastReplicateTo8(bitval, bitlen);
- break;
-
- // Use algorithm in C.2.13
- case IntegerEncoding::Trit: {
-
- D = val.trit_value;
-
- switch (bitlen) {
- case 1: {
- C = 204;
- } break;
-
- case 2: {
- C = 93;
- // B = b000b0bb0
- u32 b = (bitval >> 1) & 1;
- B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
- } break;
-
- case 3: {
- C = 44;
- // B = cb000cbcb
- u32 cb = (bitval >> 1) & 3;
- B = (cb << 7) | (cb << 2) | cb;
- } break;
-
- case 4: {
- C = 22;
- // B = dcb000dcb
- u32 dcb = (bitval >> 1) & 7;
- B = (dcb << 6) | dcb;
- } break;
-
- case 5: {
- C = 11;
- // B = edcb000ed
- u32 edcb = (bitval >> 1) & 0xF;
- B = (edcb << 5) | (edcb >> 2);
- } break;
-
- case 6: {
- C = 5;
- // B = fedcb000f
- u32 fedcb = (bitval >> 1) & 0x1F;
- B = (fedcb << 4) | (fedcb >> 4);
- } break;
-
- default:
- assert(false && "Unsupported trit encoding for color values!");
- break;
- } // switch(bitlen)
- } // case IntegerEncoding::Trit
- break;
-
- case IntegerEncoding::Qus32: {
-
- D = val.qus32_value;
-
- switch (bitlen) {
- case 1: {
- C = 113;
- } break;
-
- case 2: {
- C = 54;
- // B = b0000bb00
- u32 b = (bitval >> 1) & 1;
- B = (b << 8) | (b << 3) | (b << 2);
- } break;
-
- case 3: {
- C = 26;
- // B = cb0000cbc
- u32 cb = (bitval >> 1) & 3;
- B = (cb << 7) | (cb << 1) | (cb >> 1);
- } break;
-
- case 4: {
- C = 13;
- // B = dcb0000dc
- u32 dcb = (bitval >> 1) & 7;
- B = (dcb << 6) | (dcb >> 1);
- } break;
-
- case 5: {
- C = 6;
- // B = edcb0000e
- u32 edcb = (bitval >> 1) & 0xF;
- B = (edcb << 5) | (edcb >> 3);
- } break;
-
- default:
- assert(false && "Unsupported quint encoding for color values!");
- break;
- } // switch(bitlen)
- } // case IntegerEncoding::Qus32
- break;
- } // switch(val.encoding)
-
- if (val.encoding != IntegerEncoding::JustBits) {
- u32 T = D * C + B;
- T ^= A;
- T = (A & 0x80) | (T >> 2);
- out[outIdx++] = T;
- }
- }
-
- // Make sure that each of our values is in the proper range...
- for (u32 i = 0; i < nValues; i++) {
- assert(out[i] <= 255);
- }
-}
-
-static u32 UnquantizeTexelWeight(const IntegerEncodedValue& val) {
- u32 bitval = val.bit_value;
- u32 bitlen = val.num_bits;
-
- u32 A = ReplicateBitTo7(bitval & 1);
- u32 B = 0, C = 0, D = 0;
-
- u32 result = 0;
- switch (val.encoding) {
- case IntegerEncoding::JustBits:
- result = FastReplicateTo6(bitval, bitlen);
- break;
-
- case IntegerEncoding::Trit: {
- D = val.trit_value;
- assert(D < 3);
-
- switch (bitlen) {
- case 0: {
- u32 results[3] = {0, 32, 63};
- result = results[D];
- } break;
-
- case 1: {
- C = 50;
- } break;
-
- case 2: {
- C = 23;
- u32 b = (bitval >> 1) & 1;
- B = (b << 6) | (b << 2) | b;
- } break;
-
- case 3: {
- C = 11;
- u32 cb = (bitval >> 1) & 3;
- B = (cb << 5) | cb;
- } break;
-
- default:
- assert(false && "Invalid trit encoding for texel weight");
- break;
- }
- } break;
-
- case IntegerEncoding::Qus32: {
- D = val.qus32_value;
- assert(D < 5);
-
- switch (bitlen) {
- case 0: {
- u32 results[5] = {0, 16, 32, 47, 63};
- result = results[D];
- } break;
-
- case 1: {
- C = 28;
- } break;
-
- case 2: {
- C = 13;
- u32 b = (bitval >> 1) & 1;
- B = (b << 6) | (b << 1);
- } break;
-
- default:
- assert(false && "Invalid quint encoding for texel weight");
- break;
- }
- } break;
- }
-
- if (val.encoding != IntegerEncoding::JustBits && bitlen > 0) {
- // Decode the value...
- result = D * C + B;
- result ^= A;
- result = (A & 0x20) | (result >> 2);
- }
-
- assert(result < 64);
-
- // Change from [0,63] to [0,64]
- if (result > 32) {
- result += 1;
- }
-
- return result;
-}
-
-static void UnquantizeTexelWeights(u32 out[2][144], const IntegerEncodedVector& weights,
- const TexelWeightParams& params, const u32 blockWidth,
- const u32 blockHeight) {
- u32 weightIdx = 0;
- u32 unquantized[2][144];
-
- for (auto itr = weights.begin(); itr != weights.end(); ++itr) {
- unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
-
- if (params.m_bDualPlane) {
- ++itr;
- unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr);
- if (itr == weights.end()) {
- break;
- }
- }
-
- if (++weightIdx >= (params.m_Width * params.m_Height))
- break;
- }
-
- // Do infill if necessary (Section C.2.18) ...
- u32 Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1);
- u32 Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1);
-
- const u32 kPlaneScale = params.m_bDualPlane ? 2U : 1U;
- for (u32 plane = 0; plane < kPlaneScale; plane++)
- for (u32 t = 0; t < blockHeight; t++)
- for (u32 s = 0; s < blockWidth; s++) {
- u32 cs = Ds * s;
- u32 ct = Dt * t;
-
- u32 gs = (cs * (params.m_Width - 1) + 32) >> 6;
- u32 gt = (ct * (params.m_Height - 1) + 32) >> 6;
-
- u32 js = gs >> 4;
- u32 fs = gs & 0xF;
-
- u32 jt = gt >> 4;
- u32 ft = gt & 0x0F;
-
- u32 w11 = (fs * ft + 8) >> 4;
- u32 w10 = ft - w11;
- u32 w01 = fs - w11;
- u32 w00 = 16 - fs - ft + w11;
-
- u32 v0 = js + jt * params.m_Width;
-
-#define FIND_TEXEL(tidx, bidx) \
- u32 p##bidx = 0; \
- do { \
- if ((tidx) < (params.m_Width * params.m_Height)) { \
- p##bidx = unquantized[plane][(tidx)]; \
- } \
- } while (0)
-
- FIND_TEXEL(v0, 00);
- FIND_TEXEL(v0 + 1, 01);
- FIND_TEXEL(v0 + params.m_Width, 10);
- FIND_TEXEL(v0 + params.m_Width + 1, 11);
-
-#undef FIND_TEXEL
-
- out[plane][t * blockWidth + s] =
- (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4;
- }
-}
-
-// Transfers a bit as described in C.2.14
-static inline void BitTransferSigned(s32& a, s32& b) {
- b >>= 1;
- b |= a & 0x80;
- a >>= 1;
- a &= 0x3F;
- if (a & 0x20)
- a -= 0x40;
-}
-
-// Adds more precision to the blue channel as described
-// in C.2.14
-static inline Pixel BlueContract(s32 a, s32 r, s32 g, s32 b) {
- return Pixel(static_cast<s16>(a), static_cast<s16>((r + b) >> 1),
- static_cast<s16>((g + b) >> 1), static_cast<s16>(b));
-}
-
-// Partition selection functions as specified in
-// C.2.21
-static inline u32 hash52(u32 p) {
- p ^= p >> 15;
- p -= p << 17;
- p += p << 7;
- p += p << 4;
- p ^= p >> 5;
- p += p << 16;
- p ^= p >> 7;
- p ^= p >> 3;
- p ^= p << 6;
- p ^= p >> 17;
- return p;
-}
-
-static u32 SelectPartition(s32 seed, s32 x, s32 y, s32 z, s32 partitionCount, s32 smallBlock) {
- if (1 == partitionCount)
- return 0;
-
- if (smallBlock) {
- x <<= 1;
- y <<= 1;
- z <<= 1;
- }
-
- seed += (partitionCount - 1) * 1024;
-
- u32 rnum = hash52(static_cast<u32>(seed));
- u8 seed1 = static_cast<u8>(rnum & 0xF);
- u8 seed2 = static_cast<u8>((rnum >> 4) & 0xF);
- u8 seed3 = static_cast<u8>((rnum >> 8) & 0xF);
- u8 seed4 = static_cast<u8>((rnum >> 12) & 0xF);
- u8 seed5 = static_cast<u8>((rnum >> 16) & 0xF);
- u8 seed6 = static_cast<u8>((rnum >> 20) & 0xF);
- u8 seed7 = static_cast<u8>((rnum >> 24) & 0xF);
- u8 seed8 = static_cast<u8>((rnum >> 28) & 0xF);
- u8 seed9 = static_cast<u8>((rnum >> 18) & 0xF);
- u8 seed10 = static_cast<u8>((rnum >> 22) & 0xF);
- u8 seed11 = static_cast<u8>((rnum >> 26) & 0xF);
- u8 seed12 = static_cast<u8>(((rnum >> 30) | (rnum << 2)) & 0xF);
-
- seed1 = static_cast<u8>(seed1 * seed1);
- seed2 = static_cast<u8>(seed2 * seed2);
- seed3 = static_cast<u8>(seed3 * seed3);
- seed4 = static_cast<u8>(seed4 * seed4);
- seed5 = static_cast<u8>(seed5 * seed5);
- seed6 = static_cast<u8>(seed6 * seed6);
- seed7 = static_cast<u8>(seed7 * seed7);
- seed8 = static_cast<u8>(seed8 * seed8);
- seed9 = static_cast<u8>(seed9 * seed9);
- seed10 = static_cast<u8>(seed10 * seed10);
- seed11 = static_cast<u8>(seed11 * seed11);
- seed12 = static_cast<u8>(seed12 * seed12);
-
- s32 sh1, sh2, sh3;
- if (seed & 1) {
- sh1 = (seed & 2) ? 4 : 5;
- sh2 = (partitionCount == 3) ? 6 : 5;
- } else {
- sh1 = (partitionCount == 3) ? 6 : 5;
- sh2 = (seed & 2) ? 4 : 5;
- }
- sh3 = (seed & 0x10) ? sh1 : sh2;
-
- seed1 = static_cast<u8>(seed1 >> sh1);
- seed2 = static_cast<u8>(seed2 >> sh2);
- seed3 = static_cast<u8>(seed3 >> sh1);
- seed4 = static_cast<u8>(seed4 >> sh2);
- seed5 = static_cast<u8>(seed5 >> sh1);
- seed6 = static_cast<u8>(seed6 >> sh2);
- seed7 = static_cast<u8>(seed7 >> sh1);
- seed8 = static_cast<u8>(seed8 >> sh2);
- seed9 = static_cast<u8>(seed9 >> sh3);
- seed10 = static_cast<u8>(seed10 >> sh3);
- seed11 = static_cast<u8>(seed11 >> sh3);
- seed12 = static_cast<u8>(seed12 >> sh3);
-
- s32 a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
- s32 b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
- s32 c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
- s32 d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
-
- a &= 0x3F;
- b &= 0x3F;
- c &= 0x3F;
- d &= 0x3F;
-
- if (partitionCount < 4)
- d = 0;
- if (partitionCount < 3)
- c = 0;
-
- if (a >= b && a >= c && a >= d)
- return 0;
- else if (b >= c && b >= d)
- return 1;
- else if (c >= d)
- return 2;
- return 3;
-}
-
-static inline u32 Select2DPartition(s32 seed, s32 x, s32 y, s32 partitionCount, s32 smallBlock) {
- return SelectPartition(seed, x, y, 0, partitionCount, smallBlock);
-}
-
-// Section C.2.14
-static void ComputeEndpos32s(Pixel& ep1, Pixel& ep2, const u32*& colorValues,
- u32 colorEndpos32Mode) {
-#define READ_UINT_VALUES(N) \
- u32 v[N]; \
- for (u32 i = 0; i < N; i++) { \
- v[i] = *(colorValues++); \
- }
-
-#define READ_INT_VALUES(N) \
- s32 v[N]; \
- for (u32 i = 0; i < N; i++) { \
- v[i] = static_cast<s32>(*(colorValues++)); \
- }
-
- switch (colorEndpos32Mode) {
- case 0: {
- READ_UINT_VALUES(2)
- ep1 = Pixel(0xFF, v[0], v[0], v[0]);
- ep2 = Pixel(0xFF, v[1], v[1], v[1]);
- } break;
-
- case 1: {
- READ_UINT_VALUES(2)
- u32 L0 = (v[0] >> 2) | (v[1] & 0xC0);
- u32 L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
- ep1 = Pixel(0xFF, L0, L0, L0);
- ep2 = Pixel(0xFF, L1, L1, L1);
- } break;
-
- case 4: {
- READ_UINT_VALUES(4)
- ep1 = Pixel(v[2], v[0], v[0], v[0]);
- ep2 = Pixel(v[3], v[1], v[1], v[1]);
- } break;
-
- case 5: {
- READ_INT_VALUES(4)
- BitTransferSigned(v[1], v[0]);
- BitTransferSigned(v[3], v[2]);
- ep1 = Pixel(v[2], v[0], v[0], v[0]);
- ep2 = Pixel(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]);
- ep1.ClampByte();
- ep2.ClampByte();
- } break;
-
- case 6: {
- READ_UINT_VALUES(4)
- ep1 = Pixel(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
- ep2 = Pixel(0xFF, v[0], v[1], v[2]);
- } break;
-
- case 8: {
- READ_UINT_VALUES(6)
- if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
- ep1 = Pixel(0xFF, v[0], v[2], v[4]);
- ep2 = Pixel(0xFF, v[1], v[3], v[5]);
- } else {
- ep1 = BlueContract(0xFF, v[1], v[3], v[5]);
- ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
- }
- } break;
-
- case 9: {
- READ_INT_VALUES(6)
- BitTransferSigned(v[1], v[0]);
- BitTransferSigned(v[3], v[2]);
- BitTransferSigned(v[5], v[4]);
- if (v[1] + v[3] + v[5] >= 0) {
- ep1 = Pixel(0xFF, v[0], v[2], v[4]);
- ep2 = Pixel(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- } else {
- ep1 = BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
- }
- ep1.ClampByte();
- ep2.ClampByte();
- } break;
-
- case 10: {
- READ_UINT_VALUES(6)
- ep1 = Pixel(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
- ep2 = Pixel(v[5], v[0], v[1], v[2]);
- } break;
-
- case 12: {
- READ_UINT_VALUES(8)
- if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
- ep1 = Pixel(v[6], v[0], v[2], v[4]);
- ep2 = Pixel(v[7], v[1], v[3], v[5]);
- } else {
- ep1 = BlueContract(v[7], v[1], v[3], v[5]);
- ep2 = BlueContract(v[6], v[0], v[2], v[4]);
- }
- } break;
-
- case 13: {
- READ_INT_VALUES(8)
- BitTransferSigned(v[1], v[0]);
- BitTransferSigned(v[3], v[2]);
- BitTransferSigned(v[5], v[4]);
- BitTransferSigned(v[7], v[6]);
- if (v[1] + v[3] + v[5] >= 0) {
- ep1 = Pixel(v[6], v[0], v[2], v[4]);
- ep2 = Pixel(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- } else {
- ep1 = BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- ep2 = BlueContract(v[6], v[0], v[2], v[4]);
- }
- ep1.ClampByte();
- ep2.ClampByte();
- } break;
-
- default:
- assert(false && "Unsupported color endpoint mode (is it HDR?)");
- break;
- }
-
-#undef READ_UINT_VALUES
-#undef READ_INT_VALUES
-}
-
-static void DecompressBlock(std::span<const u8, 16> inBuf, const u32 blockWidth,
- const u32 blockHeight, std::span<u32, 12 * 12> outBuf) {
- InputBitStream strm(inBuf);
- TexelWeightParams weightParams = DecodeBlockInfo(strm);
-
- // Was there an error?
- if (weightParams.m_bError) {
- assert(false && "Invalid block mode");
- FillError(outBuf, blockWidth, blockHeight);
- return;
- }
-
- if (weightParams.m_bVoidExtentLDR) {
- FillVoidExtentLDR(strm, outBuf, blockWidth, blockHeight);
- return;
- }
-
- if (weightParams.m_bVoidExtentHDR) {
- assert(false && "HDR void extent blocks are unsupported!");
- FillError(outBuf, blockWidth, blockHeight);
- return;
- }
-
- if (weightParams.m_Width > blockWidth) {
- assert(false && "Texel weight grid width should be smaller than block width");
- FillError(outBuf, blockWidth, blockHeight);
- return;
- }
-
- if (weightParams.m_Height > blockHeight) {
- assert(false && "Texel weight grid height should be smaller than block height");
- FillError(outBuf, blockWidth, blockHeight);
- return;
- }
-
- // Read num partitions
- u32 nPartitions = strm.ReadBits<2>() + 1;
- assert(nPartitions <= 4);
-
- if (nPartitions == 4 && weightParams.m_bDualPlane) {
- assert(false && "Dual plane mode is incompatible with four partition blocks");
- FillError(outBuf, blockWidth, blockHeight);
- return;
- }
-
- // Based on the number of partitions, read the color endpos32 mode for
- // each partition.
-
- // Determine partitions, partition index, and color endpos32 modes
- s32 planeIdx = -1;
- u32 partitionIndex;
- u32 colorEndpos32Mode[4] = {0, 0, 0, 0};
-
- // Define color data.
- u8 colorEndpos32Data[16];
- memset(colorEndpos32Data, 0, sizeof(colorEndpos32Data));
- OutputBitStream colorEndpos32Stream(colorEndpos32Data, 16 * 8, 0);
-
- // Read extra config data...
- u32 baseCEM = 0;
- if (nPartitions == 1) {
- colorEndpos32Mode[0] = strm.ReadBits<4>();
- partitionIndex = 0;
- } else {
- partitionIndex = strm.ReadBits<10>();
- baseCEM = strm.ReadBits<6>();
- }
- u32 baseMode = (baseCEM & 3);
-
- // Remaining bits are color endpos32 data...
- u32 nWeightBits = weightParams.GetPackedBitSize();
- s32 remainingBits = 128 - nWeightBits - static_cast<s32>(strm.GetBitsRead());
-
- // Consider extra bits prior to texel data...
- u32 extraCEMbits = 0;
- if (baseMode) {
- switch (nPartitions) {
- case 2:
- extraCEMbits += 2;
- break;
- case 3:
- extraCEMbits += 5;
- break;
- case 4:
- extraCEMbits += 8;
- break;
- default:
- assert(false);
- break;
- }
- }
- remainingBits -= extraCEMbits;
-
- // Do we have a dual plane situation?
- u32 planeSelectorBits = 0;
- if (weightParams.m_bDualPlane) {
- planeSelectorBits = 2;
- }
- remainingBits -= planeSelectorBits;
-
- // Read color data...
- u32 colorDataBits = remainingBits;
- while (remainingBits > 0) {
- u32 nb = std::min(remainingBits, 8);
- u32 b = strm.ReadBits(nb);
- colorEndpos32Stream.WriteBits(b, nb);
- remainingBits -= 8;
- }
-
- // Read the plane selection bits
- planeIdx = strm.ReadBits(planeSelectorBits);
-
- // Read the rest of the CEM
- if (baseMode) {
- u32 extraCEM = strm.ReadBits(extraCEMbits);
- u32 CEM = (extraCEM << 6) | baseCEM;
- CEM >>= 2;
-
- bool C[4] = {0};
- for (u32 i = 0; i < nPartitions; i++) {
- C[i] = CEM & 1;
- CEM >>= 1;
- }
-
- u8 M[4] = {0};
- for (u32 i = 0; i < nPartitions; i++) {
- M[i] = CEM & 3;
- CEM >>= 2;
- assert(M[i] <= 3);
- }
-
- for (u32 i = 0; i < nPartitions; i++) {
- colorEndpos32Mode[i] = baseMode;
- if (!(C[i]))
- colorEndpos32Mode[i] -= 1;
- colorEndpos32Mode[i] <<= 2;
- colorEndpos32Mode[i] |= M[i];
- }
- } else if (nPartitions > 1) {
- u32 CEM = baseCEM >> 2;
- for (u32 i = 0; i < nPartitions; i++) {
- colorEndpos32Mode[i] = CEM;
- }
- }
-
- // Make sure everything up till here is sane.
- for (u32 i = 0; i < nPartitions; i++) {
- assert(colorEndpos32Mode[i] < 16);
- }
- assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
-
- // Decode both color data and texel weight data
- u32 colorValues[32]; // Four values, two endpos32s, four maximum paritions
- DecodeColorValues(colorValues, colorEndpos32Data, colorEndpos32Mode, nPartitions,
- colorDataBits);
-
- Pixel endpos32s[4][2];
- const u32* colorValuesPtr = colorValues;
- for (u32 i = 0; i < nPartitions; i++) {
- ComputeEndpos32s(endpos32s[i][0], endpos32s[i][1], colorValuesPtr, colorEndpos32Mode[i]);
- }
-
- // Read the texel weight data..
- std::array<u8, 16> texelWeightData;
- std::ranges::copy(inBuf, texelWeightData.begin());
-
- // Reverse everything
- for (u32 i = 0; i < 8; i++) {
-// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
-#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
- u8 a = static_cast<u8>(REVERSE_BYTE(texelWeightData[i]));
- u8 b = static_cast<u8>(REVERSE_BYTE(texelWeightData[15 - i]));
-#undef REVERSE_BYTE
-
- texelWeightData[i] = b;
- texelWeightData[15 - i] = a;
- }
-
- // Make sure that higher non-texel bits are set to zero
- const u32 clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1;
- if (clearByteStart > 0 && clearByteStart <= texelWeightData.size()) {
- texelWeightData[clearByteStart - 1] &=
- static_cast<u8>((1 << (weightParams.GetPackedBitSize() % 8)) - 1);
- std::memset(texelWeightData.data() + clearByteStart, 0,
- std::min(16U - clearByteStart, 16U));
- }
-
- IntegerEncodedVector texelWeightValues;
-
- InputBitStream weightStream(texelWeightData);
-
- DecodeIntegerSequence(texelWeightValues, weightStream, weightParams.m_MaxWeight,
- weightParams.GetNumWeightValues());
-
- // Blocks can be at most 12x12, so we can have as many as 144 weights
- u32 weights[2][144];
- UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);
-
- // Now that we have endpos32s and weights, we can s32erpolate and generate
- // the proper decoding...
- for (u32 j = 0; j < blockHeight; j++)
- for (u32 i = 0; i < blockWidth; i++) {
- u32 partition = Select2DPartition(partitionIndex, i, j, nPartitions,
- (blockHeight * blockWidth) < 32);
- assert(partition < nPartitions);
-
- Pixel p;
- for (u32 c = 0; c < 4; c++) {
- u32 C0 = endpos32s[partition][0].Component(c);
- C0 = ReplicateByteTo16(C0);
- u32 C1 = endpos32s[partition][1].Component(c);
- C1 = ReplicateByteTo16(C1);
-
- u32 plane = 0;
- if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
- plane = 1;
- }
-
- u32 weight = weights[plane][j * blockWidth + i];
- u32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
- if (C == 65535) {
- p.Component(c) = 255;
- } else {
- double Cf = static_cast<double>(C);
- p.Component(c) = static_cast<u16>(255.0 * (Cf / 65536.0) + 0.5);
- }
- }
-
- outBuf[j * blockWidth + i] = p.Pack();
- }
-}
-
-} // namespace ASTCC
-
-namespace Tegra::Texture::ASTC {
-
-void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth,
- uint32_t block_width, uint32_t block_height, std::span<uint8_t> output) {
- u32 block_index = 0;
- std::size_t depth_offset = 0;
- for (u32 z = 0; z < depth; z++) {
- for (u32 y = 0; y < height; y += block_height) {
- for (u32 x = 0; x < width; x += block_width) {
- const std::span<const u8, 16> blockPtr{data.subspan(block_index * 16, 16)};
-
- // Blocks can be at most 12x12
- std::array<u32, 12 * 12> uncompData;
- ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData);
-
- u32 decompWidth = std::min(block_width, width - x);
- u32 decompHeight = std::min(block_height, height - y);
-
- const std::span<u8> outRow = output.subspan(depth_offset + (y * width + x) * 4);
- for (u32 jj = 0; jj < decompHeight; jj++) {
- std::memcpy(outRow.data() + jj * width * 4,
- uncompData.data() + jj * block_width, decompWidth * 4);
- }
- ++block_index;
- }
- }
- depth_offset += height * width * 4;
- }
-}
-
-} // namespace Tegra::Texture::ASTC
diff --git a/src/video_core/textures/astc.h b/src/video_core/textures/astc.h
index bc8bddaec..c1c73fda5 100644
--- a/src/video_core/textures/astc.h
+++ b/src/video_core/textures/astc.h
@@ -4,20 +4,12 @@
#pragma once
-#include <cstdint>
+#include <bit>
+#include "common/common_types.h"
namespace Tegra::Texture::ASTC {
-/// Count the number of bits set in a number.
-constexpr u32 Popcnt(u32 n) {
- u32 c = 0;
- for (; n; c++) {
- n &= n - 1;
- }
- return c;
-}
-
-enum class IntegerEncoding { JustBits, Qus32, Trit };
+enum class IntegerEncoding { JustBits, Quint, Trit };
struct IntegerEncodedValue {
constexpr IntegerEncodedValue() = default;
@@ -29,55 +21,55 @@ struct IntegerEncodedValue {
return encoding == other.encoding && num_bits == other.num_bits;
}
- // Returns the number of bits required to encode nVals values.
- u32 GetBitLength(u32 nVals) const {
- u32 totalBits = num_bits * nVals;
+ // Returns the number of bits required to encode num_vals values.
+ u32 GetBitLength(u32 num_vals) const {
+ u32 total_bits = num_bits * num_vals;
if (encoding == IntegerEncoding::Trit) {
- totalBits += (nVals * 8 + 4) / 5;
- } else if (encoding == IntegerEncoding::Qus32) {
- totalBits += (nVals * 7 + 2) / 3;
+ total_bits += (num_vals * 8 + 4) / 5;
+ } else if (encoding == IntegerEncoding::Quint) {
+ total_bits += (num_vals * 7 + 2) / 3;
}
- return totalBits;
+ return total_bits;
}
IntegerEncoding encoding{};
u32 num_bits = 0;
u32 bit_value = 0;
union {
- u32 qus32_value = 0;
+ u32 quint_value = 0;
u32 trit_value;
};
};
// Returns a new instance of this struct that corresponds to the
-// can take no more than maxval values
-static constexpr IntegerEncodedValue CreateEncoding(u32 maxVal) {
- while (maxVal > 0) {
- u32 check = maxVal + 1;
+// can take no more than mav_value values
+constexpr IntegerEncodedValue CreateEncoding(u32 mav_value) {
+ while (mav_value > 0) {
+ u32 check = mav_value + 1;
- // Is maxVal a power of two?
+ // Is mav_value a power of two?
if (!(check & (check - 1))) {
- return IntegerEncodedValue(IntegerEncoding::JustBits, Popcnt(maxVal));
+ return IntegerEncodedValue(IntegerEncoding::JustBits, std::popcount(mav_value));
}
- // Is maxVal of the type 3*2^n - 1?
+ // Is mav_value of the type 3*2^n - 1?
if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
- return IntegerEncodedValue(IntegerEncoding::Trit, Popcnt(check / 3 - 1));
+ return IntegerEncodedValue(IntegerEncoding::Trit, std::popcount(check / 3 - 1));
}
- // Is maxVal of the type 5*2^n - 1?
+ // Is mav_value of the type 5*2^n - 1?
if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
- return IntegerEncodedValue(IntegerEncoding::Qus32, Popcnt(check / 5 - 1));
+ return IntegerEncodedValue(IntegerEncoding::Quint, std::popcount(check / 5 - 1));
}
// Apparently it can't be represented with a bounded integer sequence...
// just iterate.
- maxVal--;
+ mav_value--;
}
return IntegerEncodedValue(IntegerEncoding::JustBits, 0);
}
-static constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
+constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
std::array<IntegerEncodedValue, 256> encodings{};
for (std::size_t i = 0; i < encodings.size(); ++i) {
encodings[i] = CreateEncoding(static_cast<u32>(i));
@@ -85,41 +77,38 @@ static constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
return encodings;
}
-static constexpr std::array<IntegerEncodedValue, 256> EncodingsValues = MakeEncodedValues();
+constexpr std::array<IntegerEncodedValue, 256> EncodingsValues = MakeEncodedValues();
-// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)]
-// is the same as [(numBits - 1):0] and repeats all the way down.
+// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
+// is the same as [(num_bits - 1):0] and repeats all the way down.
template <typename IntType>
-static constexpr IntType Replicate(IntType val, u32 numBits, u32 toBit) {
- if (numBits == 0) {
- return 0;
- }
- if (toBit == 0) {
+constexpr IntType Replicate(IntType val, u32 num_bits, u32 to_bit) {
+ if (num_bits == 0 || to_bit == 0) {
return 0;
}
- const IntType v = val & static_cast<IntType>((1 << numBits) - 1);
+ const IntType v = val & static_cast<IntType>((1 << num_bits) - 1);
IntType res = v;
- u32 reslen = numBits;
- while (reslen < toBit) {
+ u32 reslen = num_bits;
+ while (reslen < to_bit) {
u32 comp = 0;
- if (numBits > toBit - reslen) {
- u32 newshift = toBit - reslen;
- comp = numBits - newshift;
- numBits = newshift;
+ if (num_bits > to_bit - reslen) {
+ u32 newshift = to_bit - reslen;
+ comp = num_bits - newshift;
+ num_bits = newshift;
}
- res = static_cast<IntType>(res << numBits);
+ res = static_cast<IntType>(res << num_bits);
res = static_cast<IntType>(res | (v >> comp));
- reslen += numBits;
+ reslen += num_bits;
}
return res;
}
-static constexpr std::size_t NumReplicateEntries(u32 num_bits) {
+constexpr std::size_t NumReplicateEntries(u32 num_bits) {
return std::size_t(1) << num_bits;
}
template <typename IntType, u32 num_bits, u32 to_bit>
-static constexpr auto MakeReplicateTable() {
+constexpr auto MakeReplicateTable() {
std::array<IntType, NumReplicateEntries(num_bits)> table{};
for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) {
table[value] = Replicate(value, num_bits, to_bit);
@@ -127,78 +116,17 @@ static constexpr auto MakeReplicateTable() {
return table;
}
-static constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>();
-static constexpr u32 ReplicateByteTo16(std::size_t value) {
- return REPLICATE_BYTE_TO_16_TABLE[value];
-}
-
-static constexpr auto REPLICATE_BIT_TO_7_TABLE = MakeReplicateTable<u32, 1, 7>();
-static constexpr u32 ReplicateBitTo7(std::size_t value) {
- return REPLICATE_BIT_TO_7_TABLE[value];
-}
-
-static constexpr auto REPLICATE_BIT_TO_9_TABLE = MakeReplicateTable<u32, 1, 9>();
-static constexpr u32 ReplicateBitTo9(std::size_t value) {
- return REPLICATE_BIT_TO_9_TABLE[value];
-}
-
-static constexpr auto REPLICATE_1_BIT_TO_8_TABLE = MakeReplicateTable<u32, 1, 8>();
-static constexpr auto REPLICATE_2_BIT_TO_8_TABLE = MakeReplicateTable<u32, 2, 8>();
-static constexpr auto REPLICATE_3_BIT_TO_8_TABLE = MakeReplicateTable<u32, 3, 8>();
-static constexpr auto REPLICATE_4_BIT_TO_8_TABLE = MakeReplicateTable<u32, 4, 8>();
-static constexpr auto REPLICATE_5_BIT_TO_8_TABLE = MakeReplicateTable<u32, 5, 8>();
-static constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>();
-static constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>();
-static constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>();
-/// Use a precompiled table with the most common usages, if it's not in the expected range, fallback
-/// to the runtime implementation
-static constexpr u32 FastReplicateTo8(u32 value, u32 num_bits) {
- switch (num_bits) {
- case 1:
- return REPLICATE_1_BIT_TO_8_TABLE[value];
- case 2:
- return REPLICATE_2_BIT_TO_8_TABLE[value];
- case 3:
- return REPLICATE_3_BIT_TO_8_TABLE[value];
- case 4:
- return REPLICATE_4_BIT_TO_8_TABLE[value];
- case 5:
- return REPLICATE_5_BIT_TO_8_TABLE[value];
- case 6:
- return REPLICATE_6_BIT_TO_8_TABLE[value];
- case 7:
- return REPLICATE_7_BIT_TO_8_TABLE[value];
- case 8:
- return REPLICATE_8_BIT_TO_8_TABLE[value];
- default:
- return Replicate(value, num_bits, 8);
- }
-}
-
-static constexpr auto REPLICATE_1_BIT_TO_6_TABLE = MakeReplicateTable<u32, 1, 6>();
-static constexpr auto REPLICATE_2_BIT_TO_6_TABLE = MakeReplicateTable<u32, 2, 6>();
-static constexpr auto REPLICATE_3_BIT_TO_6_TABLE = MakeReplicateTable<u32, 3, 6>();
-static constexpr auto REPLICATE_4_BIT_TO_6_TABLE = MakeReplicateTable<u32, 4, 6>();
-static constexpr auto REPLICATE_5_BIT_TO_6_TABLE = MakeReplicateTable<u32, 5, 6>();
-
-static constexpr u32 FastReplicateTo6(u32 value, u32 num_bits) {
- switch (num_bits) {
- case 1:
- return REPLICATE_1_BIT_TO_6_TABLE[value];
- case 2:
- return REPLICATE_2_BIT_TO_6_TABLE[value];
- case 3:
- return REPLICATE_3_BIT_TO_6_TABLE[value];
- case 4:
- return REPLICATE_4_BIT_TO_6_TABLE[value];
- case 5:
- return REPLICATE_5_BIT_TO_6_TABLE[value];
- default:
- return Replicate(value, num_bits, 6);
- }
-}
-
-void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth,
- uint32_t block_width, uint32_t block_height, std::span<uint8_t> output);
+constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>();
+constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>();
+constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>();
+constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>();
+
+struct AstcBufferData {
+ decltype(EncodingsValues) encoding_values = EncodingsValues;
+ decltype(REPLICATE_6_BIT_TO_8_TABLE) replicate_6_to_8 = REPLICATE_6_BIT_TO_8_TABLE;
+ decltype(REPLICATE_7_BIT_TO_8_TABLE) replicate_7_to_8 = REPLICATE_7_BIT_TO_8_TABLE;
+ decltype(REPLICATE_8_BIT_TO_8_TABLE) replicate_8_to_8 = REPLICATE_8_BIT_TO_8_TABLE;
+ decltype(REPLICATE_BYTE_TO_16_TABLE) replicate_byte_to_16 = REPLICATE_BYTE_TO_16_TABLE;
+} constexpr ASTC_BUFFER_DATA;
} // namespace Tegra::Texture::ASTC