summaryrefslogblamecommitdiffstats
path: root/src/video_core/renderer_opengl/gl_rasterizer_cache.cpp
blob: 78fa7c051c6c667e270d180a129aecc8c3c87959 (plain) (tree)
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095























                                            
                                       



                                                           
















































































                                                                                                   
                                                                                                   






                                                                                 


                                                                                       

















                                                                                
                                                
























                                                                             
                                                                                                  



















                                                  
                                                                                                  









































































































                                                                                                    
                                       






                                                                           
                         
                                                                                         
                       

































































































































































































































                                                                                                    
                                                                    

                                      
                                                    







                                                                           


                                                  
                                               


                                           

                                                                         

                                                                                                 
            
                                           



                                                                                          

                                                                       





















































































































































































































































































































































































































































































































































                                                                                                     
                                       









                                                                                              
                                       




















































                                                                                             
                                                                                           


























































                                                                                                   
                                                                                      































                                                                                                   
                                                   

 
                                                                                                 



























































































                                                                                                
                                                                                     
                                          
 
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <atomic>
#include <cstring>
#include <iterator>
#include <memory>
#include <unordered_set>
#include <utility>
#include <vector>
#include <boost/optional.hpp>
#include <boost/range/iterator_range.hpp>
#include <glad/glad.h>
#include "common/alignment.h"
#include "common/bit_field.h"
#include "common/color.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/vector_math.h"
#include "core/frontend/emu_window.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
#include "core/settings.h"
#include "video_core/renderer_opengl/gl_rasterizer_cache.h"
#include "video_core/renderer_opengl/gl_state.h"
#include "video_core/utils.h"
#include "video_core/video_core.h"

using SurfaceType = SurfaceParams::SurfaceType;
using PixelFormat = SurfaceParams::PixelFormat;

struct FormatTuple {
    GLint internal_format;
    GLenum format;
    GLenum type;
};

static constexpr std::array<FormatTuple, 5> fb_format_tuples = {{
    {GL_RGBA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8},     // RGBA8
    {GL_RGB8, GL_BGR, GL_UNSIGNED_BYTE},              // RGB8
    {GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1}, // RGB5A1
    {GL_RGB565, GL_RGB, GL_UNSIGNED_SHORT_5_6_5},     // RGB565
    {GL_RGBA4, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4},   // RGBA4
}};

static constexpr std::array<FormatTuple, 4> depth_format_tuples = {{
    {GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT}, // D16
    {},
    {GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT},   // D24
    {GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8}, // D24S8
}};

static constexpr FormatTuple tex_tuple = {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE};

static const FormatTuple& GetFormatTuple(PixelFormat pixel_format) {
    const SurfaceType type = SurfaceParams::GetFormatType(pixel_format);
    if (type == SurfaceType::Color) {
        ASSERT(static_cast<size_t>(pixel_format) < fb_format_tuples.size());
        return fb_format_tuples[static_cast<unsigned int>(pixel_format)];
    } else if (type == SurfaceType::Depth || type == SurfaceType::DepthStencil) {
        size_t tuple_idx = static_cast<size_t>(pixel_format) - 14;
        ASSERT(tuple_idx < depth_format_tuples.size());
        return depth_format_tuples[tuple_idx];
    }
    return tex_tuple;
}

template <typename Map, typename Interval>
constexpr auto RangeFromInterval(Map& map, const Interval& interval) {
    return boost::make_iterator_range(map.equal_range(interval));
}

static u16 GetResolutionScaleFactor() {
    return static_cast<u16>(!Settings::values.resolution_factor
                                ? VideoCore::g_emu_window->GetFramebufferLayout().GetScalingRatio()
                                : Settings::values.resolution_factor);
}

template <bool morton_to_gl, PixelFormat format>
static void MortonCopyTile(u32 stride, u8* tile_buffer, u8* gl_buffer) {
    constexpr u32 bytes_per_pixel = SurfaceParams::GetFormatBpp(format) / 8;
    constexpr u32 gl_bytes_per_pixel = CachedSurface::GetGLBytesPerPixel(format);
    for (u32 y = 0; y < 8; ++y) {
        for (u32 x = 0; x < 8; ++x) {
            u8* tile_ptr = tile_buffer + VideoCore::MortonInterleave(x, y) * bytes_per_pixel;
            u8* gl_ptr = gl_buffer + ((7 - y) * stride + x) * gl_bytes_per_pixel;
            if (morton_to_gl) {
                if (format == PixelFormat::D24S8) {
                    gl_ptr[0] = tile_ptr[3];
                    std::memcpy(gl_ptr + 1, tile_ptr, 3);
                } else {
                    std::memcpy(gl_ptr, tile_ptr, bytes_per_pixel);
                }
            } else {
                if (format == PixelFormat::D24S8) {
                    std::memcpy(tile_ptr, gl_ptr + 1, 3);
                    tile_ptr[3] = gl_ptr[0];
                } else {
                    std::memcpy(tile_ptr, gl_ptr, bytes_per_pixel);
                }
            }
        }
    }
}

template <bool morton_to_gl, PixelFormat format>
static void MortonCopy(u32 stride, u32 height, u8* gl_buffer, VAddr base, VAddr start, VAddr end) {
    constexpr u32 bytes_per_pixel = SurfaceParams::GetFormatBpp(format) / 8;
    constexpr u32 tile_size = bytes_per_pixel * 64;

    constexpr u32 gl_bytes_per_pixel = CachedSurface::GetGLBytesPerPixel(format);
    static_assert(gl_bytes_per_pixel >= bytes_per_pixel, "");
    gl_buffer += gl_bytes_per_pixel - bytes_per_pixel;

    const VAddr aligned_down_start = base + Common::AlignDown(start - base, tile_size);
    const VAddr aligned_start = base + Common::AlignUp(start - base, tile_size);
    const VAddr aligned_end = base + Common::AlignDown(end - base, tile_size);

    ASSERT(!morton_to_gl || (aligned_start == start && aligned_end == end));

    const u64 begin_pixel_index = (aligned_down_start - base) / bytes_per_pixel;
    u32 x = static_cast<u32>((begin_pixel_index % (stride * 8)) / 8);
    u32 y = static_cast<u32>((begin_pixel_index / (stride * 8)) * 8);

    gl_buffer += ((height - 8 - y) * stride + x) * gl_bytes_per_pixel;

    auto glbuf_next_tile = [&] {
        x = (x + 8) % stride;
        gl_buffer += 8 * gl_bytes_per_pixel;
        if (!x) {
            y += 8;
            gl_buffer -= stride * 9 * gl_bytes_per_pixel;
        }
    };

    u8* tile_buffer = Memory::GetPointer(start);

    if (start < aligned_start && !morton_to_gl) {
        std::array<u8, tile_size> tmp_buf;
        MortonCopyTile<morton_to_gl, format>(stride, &tmp_buf[0], gl_buffer);
        std::memcpy(tile_buffer, &tmp_buf[start - aligned_down_start],
                    std::min(aligned_start, end) - start);

        tile_buffer += aligned_start - start;
        glbuf_next_tile();
    }

    const u8* const buffer_end = tile_buffer + aligned_end - aligned_start;
    while (tile_buffer < buffer_end) {
        MortonCopyTile<morton_to_gl, format>(stride, tile_buffer, gl_buffer);
        tile_buffer += tile_size;
        glbuf_next_tile();
    }

    if (end > std::max(aligned_start, aligned_end) && !morton_to_gl) {
        std::array<u8, tile_size> tmp_buf;
        MortonCopyTile<morton_to_gl, format>(stride, &tmp_buf[0], gl_buffer);
        std::memcpy(tile_buffer, &tmp_buf[0], end - aligned_end);
    }
}

static constexpr std::array<void (*)(u32, u32, u8*, VAddr, VAddr, VAddr), 18> morton_to_gl_fns = {
    MortonCopy<true, PixelFormat::RGBA8>,  // 0
    MortonCopy<true, PixelFormat::RGB8>,   // 1
    MortonCopy<true, PixelFormat::RGB5A1>, // 2
    MortonCopy<true, PixelFormat::RGB565>, // 3
    MortonCopy<true, PixelFormat::RGBA4>,  // 4
    nullptr,
    nullptr,
    nullptr,
    nullptr,
    nullptr,
    nullptr,
    nullptr,
    nullptr,
    nullptr,                             // 5 - 13
    MortonCopy<true, PixelFormat::D16>,  // 14
    nullptr,                             // 15
    MortonCopy<true, PixelFormat::D24>,  // 16
    MortonCopy<true, PixelFormat::D24S8> // 17
};

static constexpr std::array<void (*)(u32, u32, u8*, VAddr, VAddr, VAddr), 18> gl_to_morton_fns = {
    MortonCopy<false, PixelFormat::RGBA8>,  // 0
    MortonCopy<false, PixelFormat::RGB8>,   // 1
    MortonCopy<false, PixelFormat::RGB5A1>, // 2
    MortonCopy<false, PixelFormat::RGB565>, // 3
    MortonCopy<false, PixelFormat::RGBA4>,  // 4
    nullptr,
    nullptr,
    nullptr,
    nullptr,
    nullptr,
    nullptr,
    nullptr,
    nullptr,
    nullptr,                              // 5 - 13
    MortonCopy<false, PixelFormat::D16>,  // 14
    nullptr,                              // 15
    MortonCopy<false, PixelFormat::D24>,  // 16
    MortonCopy<false, PixelFormat::D24S8> // 17
};

// Allocate an uninitialized texture of appropriate size and format for the surface
static void AllocateSurfaceTexture(GLuint texture, const FormatTuple& format_tuple, u32 width,
                                   u32 height) {
    OpenGLState cur_state = OpenGLState::GetCurState();

    // Keep track of previous texture bindings
    GLuint old_tex = cur_state.texture_units[0].texture_2d;
    cur_state.texture_units[0].texture_2d = texture;
    cur_state.Apply();
    glActiveTexture(GL_TEXTURE0);

    glTexImage2D(GL_TEXTURE_2D, 0, format_tuple.internal_format, width, height, 0,
                 format_tuple.format, format_tuple.type, nullptr);

    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

    // Restore previous texture bindings
    cur_state.texture_units[0].texture_2d = old_tex;
    cur_state.Apply();
}

static bool BlitTextures(GLuint src_tex, const MathUtil::Rectangle<u32>& src_rect, GLuint dst_tex,
                         const MathUtil::Rectangle<u32>& dst_rect, SurfaceType type,
                         GLuint read_fb_handle, GLuint draw_fb_handle) {
    OpenGLState state = OpenGLState::GetCurState();

    OpenGLState prev_state = state;
    SCOPE_EXIT({ prev_state.Apply(); });

    // Make sure textures aren't bound to texture units, since going to bind them to framebuffer
    // components
    state.ResetTexture(src_tex);
    state.ResetTexture(dst_tex);

    state.draw.read_framebuffer = read_fb_handle;
    state.draw.draw_framebuffer = draw_fb_handle;
    state.Apply();

    u32 buffers = 0;

    if (type == SurfaceType::Color || type == SurfaceType::Texture) {
        glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, src_tex,
                               0);
        glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
                               0);

        glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, dst_tex,
                               0);
        glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0,
                               0);

        buffers = GL_COLOR_BUFFER_BIT;
    } else if (type == SurfaceType::Depth) {
        glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
        glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, src_tex, 0);
        glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);

        glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
        glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, dst_tex, 0);
        glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);

        buffers = GL_DEPTH_BUFFER_BIT;
    } else if (type == SurfaceType::DepthStencil) {
        glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
        glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
                               src_tex, 0);

        glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
        glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
                               dst_tex, 0);

        buffers = GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT;
    }

    glBlitFramebuffer(src_rect.left, src_rect.bottom, src_rect.right, src_rect.top, dst_rect.left,
                      dst_rect.bottom, dst_rect.right, dst_rect.top, buffers,
                      buffers == GL_COLOR_BUFFER_BIT ? GL_LINEAR : GL_NEAREST);

    return true;
}

static bool FillSurface(const Surface& surface, const u8* fill_data,
                        const MathUtil::Rectangle<u32>& fill_rect, GLuint draw_fb_handle) {
    ASSERT_MSG(false, "Unimplemented");
    return true;
}

SurfaceParams SurfaceParams::FromInterval(SurfaceInterval interval) const {
    SurfaceParams params = *this;
    const u32 tiled_size = is_tiled ? 8 : 1;
    const u64 stride_tiled_bytes = BytesInPixels(stride * tiled_size);
    VAddr aligned_start =
        addr + Common::AlignDown(boost::icl::first(interval) - addr, stride_tiled_bytes);
    VAddr aligned_end =
        addr + Common::AlignUp(boost::icl::last_next(interval) - addr, stride_tiled_bytes);

    if (aligned_end - aligned_start > stride_tiled_bytes) {
        params.addr = aligned_start;
        params.height = static_cast<u32>((aligned_end - aligned_start) / BytesInPixels(stride));
    } else {
        // 1 row
        ASSERT(aligned_end - aligned_start == stride_tiled_bytes);
        const u64 tiled_alignment = BytesInPixels(is_tiled ? 8 * 8 : 1);
        aligned_start =
            addr + Common::AlignDown(boost::icl::first(interval) - addr, tiled_alignment);
        aligned_end =
            addr + Common::AlignUp(boost::icl::last_next(interval) - addr, tiled_alignment);
        params.addr = aligned_start;
        params.width = static_cast<u32>(PixelsInBytes(aligned_end - aligned_start) / tiled_size);
        params.stride = params.width;
        params.height = tiled_size;
    }
    params.UpdateParams();

    return params;
}

SurfaceInterval SurfaceParams::GetSubRectInterval(MathUtil::Rectangle<u32> unscaled_rect) const {
    if (unscaled_rect.GetHeight() == 0 || unscaled_rect.GetWidth() == 0) {
        return {};
    }

    if (is_tiled) {
        unscaled_rect.left = Common::AlignDown(unscaled_rect.left, 8) * 8;
        unscaled_rect.bottom = Common::AlignDown(unscaled_rect.bottom, 8) / 8;
        unscaled_rect.right = Common::AlignUp(unscaled_rect.right, 8) * 8;
        unscaled_rect.top = Common::AlignUp(unscaled_rect.top, 8) / 8;
    }

    const u32 stride_tiled = !is_tiled ? stride : stride * 8;

    const u32 pixel_offset =
        stride_tiled * (!is_tiled ? unscaled_rect.bottom : (height / 8) - unscaled_rect.top) +
        unscaled_rect.left;

    const u32 pixels = (unscaled_rect.GetHeight() - 1) * stride_tiled + unscaled_rect.GetWidth();

    return {addr + BytesInPixels(pixel_offset), addr + BytesInPixels(pixel_offset + pixels)};
}

MathUtil::Rectangle<u32> SurfaceParams::GetSubRect(const SurfaceParams& sub_surface) const {
    const u32 begin_pixel_index = static_cast<u32>(PixelsInBytes(sub_surface.addr - addr));

    if (is_tiled) {
        const int x0 = (begin_pixel_index % (stride * 8)) / 8;
        const int y0 = (begin_pixel_index / (stride * 8)) * 8;
        // Top to bottom
        return MathUtil::Rectangle<u32>(x0, height - y0, x0 + sub_surface.width,
                                        height - (y0 + sub_surface.height));
    }

    const int x0 = begin_pixel_index % stride;
    const int y0 = begin_pixel_index / stride;
    // Bottom to top
    return MathUtil::Rectangle<u32>(x0, y0 + sub_surface.height, x0 + sub_surface.width, y0);
}

MathUtil::Rectangle<u32> SurfaceParams::GetScaledSubRect(const SurfaceParams& sub_surface) const {
    auto rect = GetSubRect(sub_surface);
    rect.left = rect.left * res_scale;
    rect.right = rect.right * res_scale;
    rect.top = rect.top * res_scale;
    rect.bottom = rect.bottom * res_scale;
    return rect;
}

bool SurfaceParams::ExactMatch(const SurfaceParams& other_surface) const {
    return std::tie(other_surface.addr, other_surface.width, other_surface.height,
                    other_surface.stride, other_surface.pixel_format, other_surface.is_tiled) ==
               std::tie(addr, width, height, stride, pixel_format, is_tiled) &&
           pixel_format != PixelFormat::Invalid;
}

bool SurfaceParams::CanSubRect(const SurfaceParams& sub_surface) const {
    return sub_surface.addr >= addr && sub_surface.end <= end &&
           sub_surface.pixel_format == pixel_format && pixel_format != PixelFormat::Invalid &&
           sub_surface.is_tiled == is_tiled &&
           (sub_surface.addr - addr) % BytesInPixels(is_tiled ? 64 : 1) == 0 &&
           (sub_surface.stride == stride || sub_surface.height <= (is_tiled ? 8u : 1u)) &&
           GetSubRect(sub_surface).left + sub_surface.width <= stride;
}

bool SurfaceParams::CanExpand(const SurfaceParams& expanded_surface) const {
    return pixel_format != PixelFormat::Invalid && pixel_format == expanded_surface.pixel_format &&
           addr <= expanded_surface.end && expanded_surface.addr <= end &&
           is_tiled == expanded_surface.is_tiled && stride == expanded_surface.stride &&
           (std::max(expanded_surface.addr, addr) - std::min(expanded_surface.addr, addr)) %
                   BytesInPixels(stride * (is_tiled ? 8 : 1)) ==
               0;
}

bool SurfaceParams::CanTexCopy(const SurfaceParams& texcopy_params) const {
    if (pixel_format == PixelFormat::Invalid || addr > texcopy_params.addr ||
        end < texcopy_params.end) {
        return false;
    }
    if (texcopy_params.width != texcopy_params.stride) {
        const u32 tile_stride = static_cast<u32>(BytesInPixels(stride * (is_tiled ? 8 : 1)));
        return (texcopy_params.addr - addr) % BytesInPixels(is_tiled ? 64 : 1) == 0 &&
               texcopy_params.width % BytesInPixels(is_tiled ? 64 : 1) == 0 &&
               (texcopy_params.height == 1 || texcopy_params.stride == tile_stride) &&
               ((texcopy_params.addr - addr) % tile_stride) + texcopy_params.width <= tile_stride;
    }
    return FromInterval(texcopy_params.GetInterval()).GetInterval() == texcopy_params.GetInterval();
}

bool CachedSurface::CanFill(const SurfaceParams& dest_surface,
                            SurfaceInterval fill_interval) const {
    if (type == SurfaceType::Fill && IsRegionValid(fill_interval) &&
        boost::icl::first(fill_interval) >= addr &&
        boost::icl::last_next(fill_interval) <= end && // dest_surface is within our fill range
        dest_surface.FromInterval(fill_interval).GetInterval() ==
            fill_interval) { // make sure interval is a rectangle in dest surface
        if (fill_size * 8 != dest_surface.GetFormatBpp()) {
            // Check if bits repeat for our fill_size
            const u32 dest_bytes_per_pixel = std::max(dest_surface.GetFormatBpp() / 8, 1u);
            std::vector<u8> fill_test(fill_size * dest_bytes_per_pixel);

            for (u32 i = 0; i < dest_bytes_per_pixel; ++i)
                std::memcpy(&fill_test[i * fill_size], &fill_data[0], fill_size);

            for (u32 i = 0; i < fill_size; ++i)
                if (std::memcmp(&fill_test[dest_bytes_per_pixel * i], &fill_test[0],
                                dest_bytes_per_pixel) != 0)
                    return false;

            if (dest_surface.GetFormatBpp() == 4 && (fill_test[0] & 0xF) != (fill_test[0] >> 4))
                return false;
        }
        return true;
    }
    return false;
}

bool CachedSurface::CanCopy(const SurfaceParams& dest_surface,
                            SurfaceInterval copy_interval) const {
    SurfaceParams subrect_params = dest_surface.FromInterval(copy_interval);
    ASSERT(subrect_params.GetInterval() == copy_interval);
    if (CanSubRect(subrect_params))
        return true;

    if (CanFill(dest_surface, copy_interval))
        return true;

    return false;
}

SurfaceInterval SurfaceParams::GetCopyableInterval(const Surface& src_surface) const {
    SurfaceInterval result{};
    const auto valid_regions =
        SurfaceRegions(GetInterval() & src_surface->GetInterval()) - src_surface->invalid_regions;
    for (auto& valid_interval : valid_regions) {
        const SurfaceInterval aligned_interval{
            addr + Common::AlignUp(boost::icl::first(valid_interval) - addr,
                                   BytesInPixels(is_tiled ? 8 * 8 : 1)),
            addr + Common::AlignDown(boost::icl::last_next(valid_interval) - addr,
                                     BytesInPixels(is_tiled ? 8 * 8 : 1))};

        if (BytesInPixels(is_tiled ? 8 * 8 : 1) > boost::icl::length(valid_interval) ||
            boost::icl::length(aligned_interval) == 0) {
            continue;
        }

        // Get the rectangle within aligned_interval
        const u32 stride_bytes = static_cast<u32>(BytesInPixels(stride)) * (is_tiled ? 8 : 1);
        SurfaceInterval rect_interval{
            addr + Common::AlignUp(boost::icl::first(aligned_interval) - addr, stride_bytes),
            addr + Common::AlignDown(boost::icl::last_next(aligned_interval) - addr, stride_bytes),
        };
        if (boost::icl::first(rect_interval) > boost::icl::last_next(rect_interval)) {
            // 1 row
            rect_interval = aligned_interval;
        } else if (boost::icl::length(rect_interval) == 0) {
            // 2 rows that do not make a rectangle, return the larger one
            const SurfaceInterval row1{boost::icl::first(aligned_interval),
                                       boost::icl::first(rect_interval)};
            const SurfaceInterval row2{boost::icl::first(rect_interval),
                                       boost::icl::last_next(aligned_interval)};
            rect_interval = (boost::icl::length(row1) > boost::icl::length(row2)) ? row1 : row2;
        }

        if (boost::icl::length(rect_interval) > boost::icl::length(result)) {
            result = rect_interval;
        }
    }
    return result;
}

void RasterizerCacheOpenGL::CopySurface(const Surface& src_surface, const Surface& dst_surface,
                                        SurfaceInterval copy_interval) {
    SurfaceParams subrect_params = dst_surface->FromInterval(copy_interval);
    ASSERT(subrect_params.GetInterval() == copy_interval);

    ASSERT(src_surface != dst_surface);

    // This is only called when CanCopy is true, no need to run checks here
    if (src_surface->type == SurfaceType::Fill) {
        // FillSurface needs a 4 bytes buffer
        const u64 fill_offset =
            (boost::icl::first(copy_interval) - src_surface->addr) % src_surface->fill_size;
        std::array<u8, 4> fill_buffer;

        u64 fill_buff_pos = fill_offset;
        for (int i : {0, 1, 2, 3})
            fill_buffer[i] = src_surface->fill_data[fill_buff_pos++ % src_surface->fill_size];

        FillSurface(dst_surface, &fill_buffer[0], dst_surface->GetScaledSubRect(subrect_params),
                    draw_framebuffer.handle);
        return;
    }
    if (src_surface->CanSubRect(subrect_params)) {
        BlitTextures(src_surface->texture.handle, src_surface->GetScaledSubRect(subrect_params),
                     dst_surface->texture.handle, dst_surface->GetScaledSubRect(subrect_params),
                     src_surface->type, read_framebuffer.handle, draw_framebuffer.handle);
        return;
    }
    UNREACHABLE();
}

MICROPROFILE_DEFINE(OpenGL_SurfaceLoad, "OpenGL", "Surface Load", MP_RGB(128, 64, 192));
void CachedSurface::LoadGLBuffer(VAddr load_start, VAddr load_end) {
    ASSERT(type != SurfaceType::Fill);

    u8* texture_src_data = Memory::GetPointer(addr);
    if (texture_src_data == nullptr)
        return;

    if (gl_buffer == nullptr) {
        gl_buffer_size = width * height * GetGLBytesPerPixel(pixel_format);
        gl_buffer.reset(new u8[gl_buffer_size]);
    }

    MICROPROFILE_SCOPE(OpenGL_SurfaceLoad);

    ASSERT(load_start >= addr && load_end <= end);
    const u64 start_offset = load_start - addr;

    if (!is_tiled) {
        ASSERT(type == SurfaceType::Color);
        const u32 bytes_per_pixel{GetFormatBpp() >> 3};
        VideoCore::MortonCopyPixels128(width, height, bytes_per_pixel, 4,
                                       texture_src_data + start_offset, &gl_buffer[start_offset],
                                       true);
    } else {
        ASSERT_MSG(false, "Unimplemented");
    }
}

MICROPROFILE_DEFINE(OpenGL_SurfaceFlush, "OpenGL", "Surface Flush", MP_RGB(128, 192, 64));
void CachedSurface::FlushGLBuffer(VAddr flush_start, VAddr flush_end) {
    u8* const dst_buffer = Memory::GetPointer(addr);
    if (dst_buffer == nullptr)
        return;

    ASSERT(gl_buffer_size == width * height * GetGLBytesPerPixel(pixel_format));

    // TODO: Should probably be done in ::Memory:: and check for other regions too
    // same as loadglbuffer()
    if (flush_start < Memory::VRAM_VADDR_END && flush_end > Memory::VRAM_VADDR_END)
        flush_end = Memory::VRAM_VADDR_END;

    if (flush_start < Memory::VRAM_VADDR && flush_end > Memory::VRAM_VADDR)
        flush_start = Memory::VRAM_VADDR;

    MICROPROFILE_SCOPE(OpenGL_SurfaceFlush);

    ASSERT(flush_start >= addr && flush_end <= end);
    const u64 start_offset = flush_start - addr;
    const u64 end_offset = flush_end - addr;

    if (type == SurfaceType::Fill) {
        const u64 coarse_start_offset = start_offset - (start_offset % fill_size);
        const u64 backup_bytes = start_offset % fill_size;
        std::array<u8, 4> backup_data;
        if (backup_bytes)
            std::memcpy(&backup_data[0], &dst_buffer[coarse_start_offset], backup_bytes);

        for (u64 offset = coarse_start_offset; offset < end_offset; offset += fill_size) {
            std::memcpy(&dst_buffer[offset], &fill_data[0],
                        std::min(fill_size, end_offset - offset));
        }

        if (backup_bytes)
            std::memcpy(&dst_buffer[coarse_start_offset], &backup_data[0], backup_bytes);
    } else if (!is_tiled) {
        ASSERT(type == SurfaceType::Color);
        std::memcpy(dst_buffer + start_offset, &gl_buffer[start_offset], flush_end - flush_start);
    } else {
        gl_to_morton_fns[static_cast<size_t>(pixel_format)](stride, height, &gl_buffer[0], addr,
                                                            flush_start, flush_end);
    }
}

MICROPROFILE_DEFINE(OpenGL_TextureUL, "OpenGL", "Texture Upload", MP_RGB(128, 64, 192));
void CachedSurface::UploadGLTexture(const MathUtil::Rectangle<u32>& rect, GLuint read_fb_handle,
                                    GLuint draw_fb_handle) {
    if (type == SurfaceType::Fill)
        return;

    MICROPROFILE_SCOPE(OpenGL_TextureUL);

    ASSERT(gl_buffer_size == width * height * GetGLBytesPerPixel(pixel_format));

    // Load data from memory to the surface
    GLint x0 = static_cast<GLint>(rect.left);
    GLint y0 = static_cast<GLint>(rect.bottom);
    size_t buffer_offset = (y0 * stride + x0) * GetGLBytesPerPixel(pixel_format);

    const FormatTuple& tuple = GetFormatTuple(pixel_format);
    GLuint target_tex = texture.handle;

    // If not 1x scale, create 1x texture that we will blit from to replace texture subrect in
    // surface
    OGLTexture unscaled_tex;
    if (res_scale != 1) {
        x0 = 0;
        y0 = 0;

        unscaled_tex.Create();
        AllocateSurfaceTexture(unscaled_tex.handle, tuple, rect.GetWidth(), rect.GetHeight());
        target_tex = unscaled_tex.handle;
    }

    OpenGLState cur_state = OpenGLState::GetCurState();

    GLuint old_tex = cur_state.texture_units[0].texture_2d;
    cur_state.texture_units[0].texture_2d = target_tex;
    cur_state.Apply();

    // Ensure no bad interactions with GL_UNPACK_ALIGNMENT
    ASSERT(stride * GetGLBytesPerPixel(pixel_format) % 4 == 0);
    glPixelStorei(GL_UNPACK_ROW_LENGTH, static_cast<GLint>(stride));

    glActiveTexture(GL_TEXTURE0);
    glTexSubImage2D(GL_TEXTURE_2D, 0, x0, y0, static_cast<GLsizei>(rect.GetWidth()),
                    static_cast<GLsizei>(rect.GetHeight()), tuple.format, tuple.type,
                    &gl_buffer[buffer_offset]);

    glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);

    cur_state.texture_units[0].texture_2d = old_tex;
    cur_state.Apply();

    if (res_scale != 1) {
        auto scaled_rect = rect;
        scaled_rect.left *= res_scale;
        scaled_rect.top *= res_scale;
        scaled_rect.right *= res_scale;
        scaled_rect.bottom *= res_scale;

        BlitTextures(unscaled_tex.handle, {0, rect.GetHeight(), rect.GetWidth(), 0}, texture.handle,
                     scaled_rect, type, read_fb_handle, draw_fb_handle);
    }
}

MICROPROFILE_DEFINE(OpenGL_TextureDL, "OpenGL", "Texture Download", MP_RGB(128, 192, 64));
void CachedSurface::DownloadGLTexture(const MathUtil::Rectangle<u32>& rect, GLuint read_fb_handle,
                                      GLuint draw_fb_handle) {
    if (type == SurfaceType::Fill)
        return;

    MICROPROFILE_SCOPE(OpenGL_TextureDL);

    if (gl_buffer == nullptr) {
        gl_buffer_size = width * height * GetGLBytesPerPixel(pixel_format);
        gl_buffer.reset(new u8[gl_buffer_size]);
    }

    OpenGLState state = OpenGLState::GetCurState();
    OpenGLState prev_state = state;
    SCOPE_EXIT({ prev_state.Apply(); });

    const FormatTuple& tuple = GetFormatTuple(pixel_format);

    // Ensure no bad interactions with GL_PACK_ALIGNMENT
    ASSERT(stride * GetGLBytesPerPixel(pixel_format) % 4 == 0);
    glPixelStorei(GL_PACK_ROW_LENGTH, static_cast<GLint>(stride));
    size_t buffer_offset = (rect.bottom * stride + rect.left) * GetGLBytesPerPixel(pixel_format);

    // If not 1x scale, blit scaled texture to a new 1x texture and use that to flush
    if (res_scale != 1) {
        auto scaled_rect = rect;
        scaled_rect.left *= res_scale;
        scaled_rect.top *= res_scale;
        scaled_rect.right *= res_scale;
        scaled_rect.bottom *= res_scale;

        OGLTexture unscaled_tex;
        unscaled_tex.Create();

        MathUtil::Rectangle<u32> unscaled_tex_rect{0, rect.GetHeight(), rect.GetWidth(), 0};
        AllocateSurfaceTexture(unscaled_tex.handle, tuple, rect.GetWidth(), rect.GetHeight());
        BlitTextures(texture.handle, scaled_rect, unscaled_tex.handle, unscaled_tex_rect, type,
                     read_fb_handle, draw_fb_handle);

        state.texture_units[0].texture_2d = unscaled_tex.handle;
        state.Apply();

        glActiveTexture(GL_TEXTURE0);
        glGetTexImage(GL_TEXTURE_2D, 0, tuple.format, tuple.type, &gl_buffer[buffer_offset]);
    } else {
        state.ResetTexture(texture.handle);
        state.draw.read_framebuffer = read_fb_handle;
        state.Apply();

        if (type == SurfaceType::Color || type == SurfaceType::Texture) {
            glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
                                   texture.handle, 0);
            glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
                                   0, 0);
        } else if (type == SurfaceType::Depth) {
            glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
            glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D,
                                   texture.handle, 0);
            glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
        } else {
            glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
            glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D,
                                   texture.handle, 0);
        }
        glReadPixels(static_cast<GLint>(rect.left), static_cast<GLint>(rect.bottom),
                     static_cast<GLsizei>(rect.GetWidth()), static_cast<GLsizei>(rect.GetHeight()),
                     tuple.format, tuple.type, &gl_buffer[buffer_offset]);
    }

    glPixelStorei(GL_PACK_ROW_LENGTH, 0);
}

enum MatchFlags {
    Invalid = 1,      // Flag that can be applied to other match types, invalid matches require
                      // validation before they can be used
    Exact = 1 << 1,   // Surfaces perfectly match
    SubRect = 1 << 2, // Surface encompasses params
    Copy = 1 << 3,    // Surface we can copy from
    Expand = 1 << 4,  // Surface that can expand params
    TexCopy = 1 << 5  // Surface that will match a display transfer "texture copy" parameters
};

constexpr MatchFlags operator|(MatchFlags lhs, MatchFlags rhs) {
    return static_cast<MatchFlags>(static_cast<int>(lhs) | static_cast<int>(rhs));
}

/// Get the best surface match (and its match type) for the given flags
template <MatchFlags find_flags>
Surface FindMatch(const SurfaceCache& surface_cache, const SurfaceParams& params,
                  ScaleMatch match_scale_type,
                  boost::optional<SurfaceInterval> validate_interval = boost::none) {
    Surface match_surface = nullptr;
    bool match_valid = false;
    u32 match_scale = 0;
    SurfaceInterval match_interval{};

    for (auto& pair : RangeFromInterval(surface_cache, params.GetInterval())) {
        for (auto& surface : pair.second) {
            bool res_scale_matched = match_scale_type == ScaleMatch::Exact
                                         ? (params.res_scale == surface->res_scale)
                                         : (params.res_scale <= surface->res_scale);
            // validity will be checked in GetCopyableInterval
            bool is_valid =
                find_flags & MatchFlags::Copy
                    ? true
                    : surface->IsRegionValid(validate_interval.value_or(params.GetInterval()));

            if (!(find_flags & MatchFlags::Invalid) && !is_valid)
                continue;

            auto IsMatch_Helper = [&](auto check_type, auto match_fn) {
                if (!(find_flags & check_type))
                    return;

                bool matched;
                SurfaceInterval surface_interval;
                std::tie(matched, surface_interval) = match_fn();
                if (!matched)
                    return;

                if (!res_scale_matched && match_scale_type != ScaleMatch::Ignore &&
                    surface->type != SurfaceType::Fill)
                    return;

                // Found a match, update only if this is better than the previous one
                auto UpdateMatch = [&] {
                    match_surface = surface;
                    match_valid = is_valid;
                    match_scale = surface->res_scale;
                    match_interval = surface_interval;
                };

                if (surface->res_scale > match_scale) {
                    UpdateMatch();
                    return;
                } else if (surface->res_scale < match_scale) {
                    return;
                }

                if (is_valid && !match_valid) {
                    UpdateMatch();
                    return;
                } else if (is_valid != match_valid) {
                    return;
                }

                if (boost::icl::length(surface_interval) > boost::icl::length(match_interval)) {
                    UpdateMatch();
                }
            };
            IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::Exact>{}, [&] {
                return std::make_pair(surface->ExactMatch(params), surface->GetInterval());
            });
            IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::SubRect>{}, [&] {
                return std::make_pair(surface->CanSubRect(params), surface->GetInterval());
            });
            IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::Copy>{}, [&] {
                auto copy_interval =
                    params.FromInterval(*validate_interval).GetCopyableInterval(surface);
                bool matched = boost::icl::length(copy_interval & *validate_interval) != 0 &&
                               surface->CanCopy(params, copy_interval);
                return std::make_pair(matched, copy_interval);
            });
            IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::Expand>{}, [&] {
                return std::make_pair(surface->CanExpand(params), surface->GetInterval());
            });
            IsMatch_Helper(std::integral_constant<MatchFlags, MatchFlags::TexCopy>{}, [&] {
                return std::make_pair(surface->CanTexCopy(params), surface->GetInterval());
            });
        }
    }
    return match_surface;
}

RasterizerCacheOpenGL::RasterizerCacheOpenGL() {
    read_framebuffer.Create();
    draw_framebuffer.Create();

    attributeless_vao.Create();

    d24s8_abgr_buffer.Create();
    d24s8_abgr_buffer_size = 0;

    const char* vs_source = R"(
#version 330 core
const vec2 vertices[4] = vec2[4](vec2(-1.0, -1.0), vec2(1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0));
void main() {
    gl_Position = vec4(vertices[gl_VertexID], 0.0, 1.0);
}
)";
    const char* fs_source = R"(
#version 330 core

uniform samplerBuffer tbo;
uniform vec2 tbo_size;
uniform vec4 viewport;

out vec4 color;

void main() {
    vec2 tbo_coord = (gl_FragCoord.xy - viewport.xy) * tbo_size / viewport.zw;
    int tbo_offset = int(tbo_coord.y) * int(tbo_size.x) + int(tbo_coord.x);
    color = texelFetch(tbo, tbo_offset).rabg;
}
)";
    d24s8_abgr_shader.Create(vs_source, nullptr, fs_source);

    OpenGLState state = OpenGLState::GetCurState();
    GLuint old_program = state.draw.shader_program;
    state.draw.shader_program = d24s8_abgr_shader.handle;
    state.Apply();

    GLint tbo_u_id = glGetUniformLocation(d24s8_abgr_shader.handle, "tbo");
    ASSERT(tbo_u_id != -1);
    glUniform1i(tbo_u_id, 0);

    state.draw.shader_program = old_program;
    state.Apply();

    d24s8_abgr_tbo_size_u_id = glGetUniformLocation(d24s8_abgr_shader.handle, "tbo_size");
    ASSERT(d24s8_abgr_tbo_size_u_id != -1);
    d24s8_abgr_viewport_u_id = glGetUniformLocation(d24s8_abgr_shader.handle, "viewport");
    ASSERT(d24s8_abgr_viewport_u_id != -1);
}

RasterizerCacheOpenGL::~RasterizerCacheOpenGL() {
    FlushAll();
    while (!surface_cache.empty())
        UnregisterSurface(*surface_cache.begin()->second.begin());
}

bool RasterizerCacheOpenGL::BlitSurfaces(const Surface& src_surface,
                                         const MathUtil::Rectangle<u32>& src_rect,
                                         const Surface& dst_surface,
                                         const MathUtil::Rectangle<u32>& dst_rect) {
    if (!SurfaceParams::CheckFormatsBlittable(src_surface->pixel_format, dst_surface->pixel_format))
        return false;

    return BlitTextures(src_surface->texture.handle, src_rect, dst_surface->texture.handle,
                        dst_rect, src_surface->type, read_framebuffer.handle,
                        draw_framebuffer.handle);
}

void RasterizerCacheOpenGL::ConvertD24S8toABGR(GLuint src_tex,
                                               const MathUtil::Rectangle<u32>& src_rect,
                                               GLuint dst_tex,
                                               const MathUtil::Rectangle<u32>& dst_rect) {
    OpenGLState prev_state = OpenGLState::GetCurState();
    SCOPE_EXIT({ prev_state.Apply(); });

    OpenGLState state;
    state.draw.read_framebuffer = read_framebuffer.handle;
    state.draw.draw_framebuffer = draw_framebuffer.handle;
    state.Apply();

    glBindBuffer(GL_PIXEL_PACK_BUFFER, d24s8_abgr_buffer.handle);

    GLsizeiptr target_pbo_size = src_rect.GetWidth() * src_rect.GetHeight() * 4;
    if (target_pbo_size > d24s8_abgr_buffer_size) {
        d24s8_abgr_buffer_size = target_pbo_size * 2;
        glBufferData(GL_PIXEL_PACK_BUFFER, d24s8_abgr_buffer_size, nullptr, GL_STREAM_COPY);
    }

    glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
    glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, src_tex,
                           0);
    glReadPixels(static_cast<GLint>(src_rect.left), static_cast<GLint>(src_rect.bottom),
                 static_cast<GLsizei>(src_rect.GetWidth()),
                 static_cast<GLsizei>(src_rect.GetHeight()), GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8,
                 0);

    glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);

    // PBO now contains src_tex in RABG format
    state.draw.shader_program = d24s8_abgr_shader.handle;
    state.draw.vertex_array = attributeless_vao.handle;
    state.viewport.x = static_cast<GLint>(dst_rect.left);
    state.viewport.y = static_cast<GLint>(dst_rect.bottom);
    state.viewport.width = static_cast<GLsizei>(dst_rect.GetWidth());
    state.viewport.height = static_cast<GLsizei>(dst_rect.GetHeight());
    state.Apply();

    OGLTexture tbo;
    tbo.Create();
    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_BUFFER, tbo.handle);
    glTexBuffer(GL_TEXTURE_BUFFER, GL_RGBA8, d24s8_abgr_buffer.handle);

    glUniform2f(d24s8_abgr_tbo_size_u_id, static_cast<GLfloat>(src_rect.GetWidth()),
                static_cast<GLfloat>(src_rect.GetHeight()));
    glUniform4f(d24s8_abgr_viewport_u_id, static_cast<GLfloat>(state.viewport.x),
                static_cast<GLfloat>(state.viewport.y), static_cast<GLfloat>(state.viewport.width),
                static_cast<GLfloat>(state.viewport.height));

    glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, dst_tex, 0);
    glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
    glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

    glBindTexture(GL_TEXTURE_BUFFER, 0);
}

Surface RasterizerCacheOpenGL::GetSurface(const SurfaceParams& params, ScaleMatch match_res_scale,
                                          bool load_if_create) {
    if (params.addr == 0 || params.height * params.width == 0) {
        return nullptr;
    }
    // Use GetSurfaceSubRect instead
    ASSERT(params.width == params.stride);

    ASSERT(!params.is_tiled || (params.width % 8 == 0 && params.height % 8 == 0));

    // Check for an exact match in existing surfaces
    Surface surface =
        FindMatch<MatchFlags::Exact | MatchFlags::Invalid>(surface_cache, params, match_res_scale);

    if (surface == nullptr) {
        u16 target_res_scale = params.res_scale;
        if (match_res_scale != ScaleMatch::Exact) {
            // This surface may have a subrect of another surface with a higher res_scale, find it
            // to adjust our params
            SurfaceParams find_params = params;
            Surface expandable = FindMatch<MatchFlags::Expand | MatchFlags::Invalid>(
                surface_cache, find_params, match_res_scale);
            if (expandable != nullptr && expandable->res_scale > target_res_scale) {
                target_res_scale = expandable->res_scale;
            }
            // Keep res_scale when reinterpreting d24s8 -> rgba8
            if (params.pixel_format == PixelFormat::RGBA8) {
                find_params.pixel_format = PixelFormat::D24S8;
                expandable = FindMatch<MatchFlags::Expand | MatchFlags::Invalid>(
                    surface_cache, find_params, match_res_scale);
                if (expandable != nullptr && expandable->res_scale > target_res_scale) {
                    target_res_scale = expandable->res_scale;
                }
            }
        }
        SurfaceParams new_params = params;
        new_params.res_scale = target_res_scale;
        surface = CreateSurface(new_params);
        RegisterSurface(surface);
    }

    if (load_if_create) {
        ValidateSurface(surface, params.addr, params.size);
    }

    return surface;
}

SurfaceRect_Tuple RasterizerCacheOpenGL::GetSurfaceSubRect(const SurfaceParams& params,
                                                           ScaleMatch match_res_scale,
                                                           bool load_if_create) {
    if (params.addr == 0 || params.height * params.width == 0) {
        return std::make_tuple(nullptr, MathUtil::Rectangle<u32>{});
    }

    // Attempt to find encompassing surface
    Surface surface = FindMatch<MatchFlags::SubRect | MatchFlags::Invalid>(surface_cache, params,
                                                                           match_res_scale);

    // Check if FindMatch failed because of res scaling
    // If that's the case create a new surface with
    // the dimensions of the lower res_scale surface
    // to suggest it should not be used again
    if (surface == nullptr && match_res_scale != ScaleMatch::Ignore) {
        surface = FindMatch<MatchFlags::SubRect | MatchFlags::Invalid>(surface_cache, params,
                                                                       ScaleMatch::Ignore);
        if (surface != nullptr) {
            ASSERT(surface->res_scale < params.res_scale);
            SurfaceParams new_params = *surface;
            new_params.res_scale = params.res_scale;

            surface = CreateSurface(new_params);
            RegisterSurface(surface);
        }
    }

    SurfaceParams aligned_params = params;
    if (params.is_tiled) {
        aligned_params.height = Common::AlignUp(params.height, 8);
        aligned_params.width = Common::AlignUp(params.width, 8);
        aligned_params.stride = Common::AlignUp(params.stride, 8);
        aligned_params.UpdateParams();
    }

    // Check for a surface we can expand before creating a new one
    if (surface == nullptr) {
        surface = FindMatch<MatchFlags::Expand | MatchFlags::Invalid>(surface_cache, aligned_params,
                                                                      match_res_scale);
        if (surface != nullptr) {
            aligned_params.width = aligned_params.stride;
            aligned_params.UpdateParams();

            SurfaceParams new_params = *surface;
            new_params.addr = std::min(aligned_params.addr, surface->addr);
            new_params.end = std::max(aligned_params.end, surface->end);
            new_params.size = new_params.end - new_params.addr;
            new_params.height = static_cast<u32>(
                new_params.size / aligned_params.BytesInPixels(aligned_params.stride));
            ASSERT(new_params.size % aligned_params.BytesInPixels(aligned_params.stride) == 0);

            Surface new_surface = CreateSurface(new_params);
            DuplicateSurface(surface, new_surface);

            // Delete the expanded surface, this can't be done safely yet
            // because it may still be in use
            remove_surfaces.emplace(surface);

            surface = new_surface;
            RegisterSurface(new_surface);
        }
    }

    // No subrect found - create and return a new surface
    if (surface == nullptr) {
        SurfaceParams new_params = aligned_params;
        // Can't have gaps in a surface
        new_params.width = aligned_params.stride;
        new_params.UpdateParams();
        // GetSurface will create the new surface and possibly adjust res_scale if necessary
        surface = GetSurface(new_params, match_res_scale, load_if_create);
    } else if (load_if_create) {
        ValidateSurface(surface, aligned_params.addr, aligned_params.size);
    }

    return std::make_tuple(surface, surface->GetScaledSubRect(params));
}

Surface RasterizerCacheOpenGL::GetTextureSurface(const void* config) {
    ASSERT_MSG(false, "Unimplemented");
    return {};
}

SurfaceSurfaceRect_Tuple RasterizerCacheOpenGL::GetFramebufferSurfaces(
    bool using_color_fb, bool using_depth_fb, const MathUtil::Rectangle<s32>& viewport_rect) {
    UNIMPLEMENTED();
    return {};
}

Surface RasterizerCacheOpenGL::GetFillSurface(const void* config) {
    ASSERT_MSG(false, "Unimplemented");
    return {};
}

SurfaceRect_Tuple RasterizerCacheOpenGL::GetTexCopySurface(const SurfaceParams& params) {
    MathUtil::Rectangle<u32> rect{};

    Surface match_surface = FindMatch<MatchFlags::TexCopy | MatchFlags::Invalid>(
        surface_cache, params, ScaleMatch::Ignore);

    if (match_surface != nullptr) {
        ValidateSurface(match_surface, params.addr, params.size);

        SurfaceParams match_subrect;
        if (params.width != params.stride) {
            const u32 tiled_size = match_surface->is_tiled ? 8 : 1;
            match_subrect = params;
            match_subrect.width =
                static_cast<u32>(match_surface->PixelsInBytes(params.width) / tiled_size);
            match_subrect.stride =
                static_cast<u32>(match_surface->PixelsInBytes(params.stride) / tiled_size);
            match_subrect.height *= tiled_size;
        } else {
            match_subrect = match_surface->FromInterval(params.GetInterval());
            ASSERT(match_subrect.GetInterval() == params.GetInterval());
        }

        rect = match_surface->GetScaledSubRect(match_subrect);
    }

    return std::make_tuple(match_surface, rect);
}

void RasterizerCacheOpenGL::DuplicateSurface(const Surface& src_surface,
                                             const Surface& dest_surface) {
    ASSERT(dest_surface->addr <= src_surface->addr && dest_surface->end >= src_surface->end);

    BlitSurfaces(src_surface, src_surface->GetScaledRect(), dest_surface,
                 dest_surface->GetScaledSubRect(*src_surface));

    dest_surface->invalid_regions -= src_surface->GetInterval();
    dest_surface->invalid_regions += src_surface->invalid_regions;

    SurfaceRegions regions;
    for (auto& pair : RangeFromInterval(dirty_regions, src_surface->GetInterval())) {
        if (pair.second == src_surface) {
            regions += pair.first;
        }
    }
    for (auto& interval : regions) {
        dirty_regions.set({interval, dest_surface});
    }
}

void RasterizerCacheOpenGL::ValidateSurface(const Surface& surface, VAddr addr, u64 size) {
    if (size == 0)
        return;

    const SurfaceInterval validate_interval(addr, addr + size);

    if (surface->type == SurfaceType::Fill) {
        // Sanity check, fill surfaces will always be valid when used
        ASSERT(surface->IsRegionValid(validate_interval));
        return;
    }

    while (true) {
        const auto it = surface->invalid_regions.find(validate_interval);
        if (it == surface->invalid_regions.end())
            break;

        const auto interval = *it & validate_interval;
        // Look for a valid surface to copy from
        SurfaceParams params = surface->FromInterval(interval);

        Surface copy_surface =
            FindMatch<MatchFlags::Copy>(surface_cache, params, ScaleMatch::Ignore, interval);
        if (copy_surface != nullptr) {
            SurfaceInterval copy_interval = params.GetCopyableInterval(copy_surface);
            CopySurface(copy_surface, surface, copy_interval);
            surface->invalid_regions.erase(copy_interval);
            continue;
        }

        // D24S8 to RGBA8
        if (surface->pixel_format == PixelFormat::RGBA8) {
            params.pixel_format = PixelFormat::D24S8;
            Surface reinterpret_surface =
                FindMatch<MatchFlags::Copy>(surface_cache, params, ScaleMatch::Ignore, interval);
            if (reinterpret_surface != nullptr) {
                ASSERT(reinterpret_surface->pixel_format == PixelFormat::D24S8);

                SurfaceInterval convert_interval = params.GetCopyableInterval(reinterpret_surface);
                SurfaceParams convert_params = surface->FromInterval(convert_interval);
                auto src_rect = reinterpret_surface->GetScaledSubRect(convert_params);
                auto dest_rect = surface->GetScaledSubRect(convert_params);

                ConvertD24S8toABGR(reinterpret_surface->texture.handle, src_rect,
                                   surface->texture.handle, dest_rect);

                surface->invalid_regions.erase(convert_interval);
                continue;
            }
        }

        // Load data from 3DS memory
        FlushRegion(params.addr, params.size);
        surface->LoadGLBuffer(params.addr, params.end);
        surface->UploadGLTexture(surface->GetSubRect(params), read_framebuffer.handle,
                                 draw_framebuffer.handle);
        surface->invalid_regions.erase(params.GetInterval());
    }
}

void RasterizerCacheOpenGL::FlushRegion(VAddr addr, u64 size, Surface flush_surface) {
    if (size == 0)
        return;

    const SurfaceInterval flush_interval(addr, addr + size);
    SurfaceRegions flushed_intervals;

    for (auto& pair : RangeFromInterval(dirty_regions, flush_interval)) {
        // small sizes imply that this most likely comes from the cpu, flush the entire region
        // the point is to avoid thousands of small writes every frame if the cpu decides to access
        // that region, anything higher than 8 you're guaranteed it comes from a service
        const auto interval = size <= 8 ? pair.first : pair.first & flush_interval;
        auto& surface = pair.second;

        if (flush_surface != nullptr && surface != flush_surface)
            continue;

        // Sanity check, this surface is the last one that marked this region dirty
        ASSERT(surface->IsRegionValid(interval));

        if (surface->type != SurfaceType::Fill) {
            SurfaceParams params = surface->FromInterval(interval);
            surface->DownloadGLTexture(surface->GetSubRect(params), read_framebuffer.handle,
                                       draw_framebuffer.handle);
        }
        surface->FlushGLBuffer(boost::icl::first(interval), boost::icl::last_next(interval));
        flushed_intervals += interval;
    }
    // Reset dirty regions
    dirty_regions -= flushed_intervals;
}

void RasterizerCacheOpenGL::FlushAll() {
    FlushRegion(0, Kernel::VMManager::MAX_ADDRESS);
}

void RasterizerCacheOpenGL::InvalidateRegion(VAddr addr, u64 size, const Surface& region_owner) {
    if (size == 0)
        return;

    const SurfaceInterval invalid_interval(addr, addr + size);

    if (region_owner != nullptr) {
        ASSERT(region_owner->type != SurfaceType::Texture);
        ASSERT(addr >= region_owner->addr && addr + size <= region_owner->end);
        // Surfaces can't have a gap
        ASSERT(region_owner->width == region_owner->stride);
        region_owner->invalid_regions.erase(invalid_interval);
    }

    for (auto& pair : RangeFromInterval(surface_cache, invalid_interval)) {
        for (auto& cached_surface : pair.second) {
            if (cached_surface == region_owner)
                continue;

            // If cpu is invalidating this region we want to remove it
            // to (likely) mark the memory pages as uncached
            if (region_owner == nullptr && size <= 8) {
                FlushRegion(cached_surface->addr, cached_surface->size, cached_surface);
                remove_surfaces.emplace(cached_surface);
                continue;
            }

            const auto interval = cached_surface->GetInterval() & invalid_interval;
            cached_surface->invalid_regions.insert(interval);

            // Remove only "empty" fill surfaces to avoid destroying and recreating OGL textures
            if (cached_surface->type == SurfaceType::Fill &&
                cached_surface->IsSurfaceFullyInvalid()) {
                remove_surfaces.emplace(cached_surface);
            }
        }
    }

    if (region_owner != nullptr)
        dirty_regions.set({invalid_interval, region_owner});
    else
        dirty_regions.erase(invalid_interval);

    for (auto& remove_surface : remove_surfaces) {
        if (remove_surface == region_owner) {
            Surface expanded_surface = FindMatch<MatchFlags::SubRect | MatchFlags::Invalid>(
                surface_cache, *region_owner, ScaleMatch::Ignore);
            ASSERT(expanded_surface);

            if ((region_owner->invalid_regions - expanded_surface->invalid_regions).empty()) {
                DuplicateSurface(region_owner, expanded_surface);
            } else {
                continue;
            }
        }
        UnregisterSurface(remove_surface);
    }

    remove_surfaces.clear();
}

Surface RasterizerCacheOpenGL::CreateSurface(const SurfaceParams& params) {
    Surface surface = std::make_shared<CachedSurface>();
    static_cast<SurfaceParams&>(*surface) = params;

    surface->texture.Create();

    surface->gl_buffer_size = 0;
    surface->invalid_regions.insert(surface->GetInterval());
    AllocateSurfaceTexture(surface->texture.handle, GetFormatTuple(surface->pixel_format),
                           surface->GetScaledWidth(), surface->GetScaledHeight());

    return surface;
}

void RasterizerCacheOpenGL::RegisterSurface(const Surface& surface) {
    if (surface->registered) {
        return;
    }
    surface->registered = true;
    surface_cache.add({surface->GetInterval(), SurfaceSet{surface}});
    UpdatePagesCachedCount(surface->addr, surface->size, 1);
}

void RasterizerCacheOpenGL::UnregisterSurface(const Surface& surface) {
    if (!surface->registered) {
        return;
    }
    surface->registered = false;
    UpdatePagesCachedCount(surface->addr, surface->size, -1);
    surface_cache.subtract({surface->GetInterval(), SurfaceSet{surface}});
}

void RasterizerCacheOpenGL::UpdatePagesCachedCount(VAddr addr, u64 size, int delta) {
    // ASSERT_MSG(false, "Unimplemented");
}