// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <bit>
#include <optional>
#include <boost/container/small_vector.hpp>
#include "shader_recompiler/environment.h"
#include "shader_recompiler/frontend/ir/basic_block.h"
#include "shader_recompiler/frontend/ir/breadth_first_search.h"
#include "shader_recompiler/frontend/ir/ir_emitter.h"
#include "shader_recompiler/ir_opt/passes.h"
#include "shader_recompiler/shader_info.h"
namespace Shader::Optimization {
namespace {
struct ConstBufferAddr {
u32 index;
u32 offset;
u32 secondary_index;
u32 secondary_offset;
IR::U32 dynamic_offset;
u32 count;
bool has_secondary;
};
struct TextureInst {
ConstBufferAddr cbuf;
IR::Inst* inst;
IR::Block* block;
};
using TextureInstVector = boost::container::small_vector<TextureInst, 24>;
constexpr u32 DESCRIPTOR_SIZE = 8;
constexpr u32 DESCRIPTOR_SIZE_SHIFT = static_cast<u32>(std::countr_zero(DESCRIPTOR_SIZE));
IR::Opcode IndexedInstruction(const IR::Inst& inst) {
switch (inst.GetOpcode()) {
case IR::Opcode::BindlessImageSampleImplicitLod:
case IR::Opcode::BoundImageSampleImplicitLod:
return IR::Opcode::ImageSampleImplicitLod;
case IR::Opcode::BoundImageSampleExplicitLod:
case IR::Opcode::BindlessImageSampleExplicitLod:
return IR::Opcode::ImageSampleExplicitLod;
case IR::Opcode::BoundImageSampleDrefImplicitLod:
case IR::Opcode::BindlessImageSampleDrefImplicitLod:
return IR::Opcode::ImageSampleDrefImplicitLod;
case IR::Opcode::BoundImageSampleDrefExplicitLod:
case IR::Opcode::BindlessImageSampleDrefExplicitLod:
return IR::Opcode::ImageSampleDrefExplicitLod;
case IR::Opcode::BindlessImageGather:
case IR::Opcode::BoundImageGather:
return IR::Opcode::ImageGather;
case IR::Opcode::BindlessImageGatherDref:
case IR::Opcode::BoundImageGatherDref:
return IR::Opcode::ImageGatherDref;
case IR::Opcode::BindlessImageFetch:
case IR::Opcode::BoundImageFetch:
return IR::Opcode::ImageFetch;
case IR::Opcode::BoundImageQueryDimensions:
case IR::Opcode::BindlessImageQueryDimensions:
return IR::Opcode::ImageQueryDimensions;
case IR::Opcode::BoundImageQueryLod:
case IR::Opcode::BindlessImageQueryLod:
return IR::Opcode::ImageQueryLod;
case IR::Opcode::BoundImageGradient:
case IR::Opcode::BindlessImageGradient:
return IR::Opcode::ImageGradient;
case IR::Opcode::BoundImageRead:
case IR::Opcode::BindlessImageRead:
return IR::Opcode::ImageRead;
case IR::Opcode::BoundImageWrite:
case IR::Opcode::BindlessImageWrite:
return IR::Opcode::ImageWrite;
case IR::Opcode::BoundImageAtomicIAdd32:
case IR::Opcode::BindlessImageAtomicIAdd32:
return IR::Opcode::ImageAtomicIAdd32;
case IR::Opcode::BoundImageAtomicSMin32:
case IR::Opcode::BindlessImageAtomicSMin32:
return IR::Opcode::ImageAtomicSMin32;
case IR::Opcode::BoundImageAtomicUMin32:
case IR::Opcode::BindlessImageAtomicUMin32:
return IR::Opcode::ImageAtomicUMin32;
case IR::Opcode::BoundImageAtomicSMax32:
case IR::Opcode::BindlessImageAtomicSMax32:
return IR::Opcode::ImageAtomicSMax32;
case IR::Opcode::BoundImageAtomicUMax32:
case IR::Opcode::BindlessImageAtomicUMax32:
return IR::Opcode::ImageAtomicUMax32;
case IR::Opcode::BoundImageAtomicInc32:
case IR::Opcode::BindlessImageAtomicInc32:
return IR::Opcode::ImageAtomicInc32;
case IR::Opcode::BoundImageAtomicDec32:
case IR::Opcode::BindlessImageAtomicDec32:
return IR::Opcode::ImageAtomicDec32;
case IR::Opcode::BoundImageAtomicAnd32:
case IR::Opcode::BindlessImageAtomicAnd32:
return IR::Opcode::ImageAtomicAnd32;
case IR::Opcode::BoundImageAtomicOr32:
case IR::Opcode::BindlessImageAtomicOr32:
return IR::Opcode::ImageAtomicOr32;
case IR::Opcode::BoundImageAtomicXor32:
case IR::Opcode::BindlessImageAtomicXor32:
return IR::Opcode::ImageAtomicXor32;
case IR::Opcode::BoundImageAtomicExchange32:
case IR::Opcode::BindlessImageAtomicExchange32:
return IR::Opcode::ImageAtomicExchange32;
default:
return IR::Opcode::Void;
}
}
bool IsBindless(const IR::Inst& inst) {
switch (inst.GetOpcode()) {
case IR::Opcode::BindlessImageSampleImplicitLod:
case IR::Opcode::BindlessImageSampleExplicitLod:
case IR::Opcode::BindlessImageSampleDrefImplicitLod:
case IR::Opcode::BindlessImageSampleDrefExplicitLod:
case IR::Opcode::BindlessImageGather:
case IR::Opcode::BindlessImageGatherDref:
case IR::Opcode::BindlessImageFetch:
case IR::Opcode::BindlessImageQueryDimensions:
case IR::Opcode::BindlessImageQueryLod:
case IR::Opcode::BindlessImageGradient:
case IR::Opcode::BindlessImageRead:
case IR::Opcode::BindlessImageWrite:
case IR::Opcode::BindlessImageAtomicIAdd32:
case IR::Opcode::BindlessImageAtomicSMin32:
case IR::Opcode::BindlessImageAtomicUMin32:
case IR::Opcode::BindlessImageAtomicSMax32:
case IR::Opcode::BindlessImageAtomicUMax32:
case IR::Opcode::BindlessImageAtomicInc32:
case IR::Opcode::BindlessImageAtomicDec32:
case IR::Opcode::BindlessImageAtomicAnd32:
case IR::Opcode::BindlessImageAtomicOr32:
case IR::Opcode::BindlessImageAtomicXor32:
case IR::Opcode::BindlessImageAtomicExchange32:
return true;
case IR::Opcode::BoundImageSampleImplicitLod:
case IR::Opcode::BoundImageSampleExplicitLod:
case IR::Opcode::BoundImageSampleDrefImplicitLod:
case IR::Opcode::BoundImageSampleDrefExplicitLod:
case IR::Opcode::BoundImageGather:
case IR::Opcode::BoundImageGatherDref:
case IR::Opcode::BoundImageFetch:
case IR::Opcode::BoundImageQueryDimensions:
case IR::Opcode::BoundImageQueryLod:
case IR::Opcode::BoundImageGradient:
case IR::Opcode::BoundImageRead:
case IR::Opcode::BoundImageWrite:
case IR::Opcode::BoundImageAtomicIAdd32:
case IR::Opcode::BoundImageAtomicSMin32:
case IR::Opcode::BoundImageAtomicUMin32:
case IR::Opcode::BoundImageAtomicSMax32:
case IR::Opcode::BoundImageAtomicUMax32:
case IR::Opcode::BoundImageAtomicInc32:
case IR::Opcode::BoundImageAtomicDec32:
case IR::Opcode::BoundImageAtomicAnd32:
case IR::Opcode::BoundImageAtomicOr32:
case IR::Opcode::BoundImageAtomicXor32:
case IR::Opcode::BoundImageAtomicExchange32:
return false;
default:
throw InvalidArgument("Invalid opcode {}", inst.GetOpcode());
}
}
bool IsTextureInstruction(const IR::Inst& inst) {
return IndexedInstruction(inst) != IR::Opcode::Void;
}
std::optional<ConstBufferAddr> TryGetConstBuffer(const IR::Inst* inst);
std::optional<ConstBufferAddr> Track(const IR::Value& value) {
return IR::BreadthFirstSearch(value, TryGetConstBuffer);
}
std::optional<ConstBufferAddr> TryGetConstBuffer(const IR::Inst* inst) {
switch (inst->GetOpcode()) {
default:
return std::nullopt;
case IR::Opcode::BitwiseOr32: {
std::optional lhs{Track(inst->Arg(0))};
std::optional rhs{Track(inst->Arg(1))};
if (!lhs || !rhs) {
return std::nullopt;
}
if (lhs->has_secondary || rhs->has_secondary) {
return std::nullopt;
}
if (lhs->count > 1 || rhs->count > 1) {
return std::nullopt;
}
if (lhs->index > rhs->index || lhs->offset > rhs->offset) {
std::swap(lhs, rhs);
}
return ConstBufferAddr{
.index = lhs->index,
.offset = lhs->offset,
.secondary_index = rhs->index,
.secondary_offset = rhs->offset,
.dynamic_offset = {},
.count = 1,
.has_secondary = true,
};
}
case IR::Opcode::GetCbufU32x2:
case IR::Opcode::GetCbufU32:
break;
}
const IR::Value index{inst->Arg(0)};
const IR::Value offset{inst->Arg(1)};
if (!index.IsImmediate()) {
// Reading a bindless texture from variable indices is valid
// but not supported here at the moment
return std::nullopt;
}
if (offset.IsImmediate()) {
return ConstBufferAddr{
.index = index.U32(),
.offset = offset.U32(),
.secondary_index = 0,
.secondary_offset = 0,
.dynamic_offset = {},
.count = 1,
.has_secondary = false,
};
}
IR::Inst* const offset_inst{offset.InstRecursive()};
if (offset_inst->GetOpcode() != IR::Opcode::IAdd32) {
return std::nullopt;
}
u32 base_offset{};
IR::U32 dynamic_offset;
if (offset_inst->Arg(0).IsImmediate()) {
base_offset = offset_inst->Arg(0).U32();
dynamic_offset = IR::U32{offset_inst->Arg(1)};
} else if (offset_inst->Arg(1).IsImmediate()) {
base_offset = offset_inst->Arg(1).U32();
dynamic_offset = IR::U32{offset_inst->Arg(0)};
} else {
return std::nullopt;
}
return ConstBufferAddr{
.index = index.U32(),
.offset = base_offset,
.secondary_index = 0,
.secondary_offset = 0,
.dynamic_offset = dynamic_offset,
.count = 8,
.has_secondary = false,
};
}
TextureInst MakeInst(Environment& env, IR::Block* block, IR::Inst& inst) {
ConstBufferAddr addr;
if (IsBindless(inst)) {
const std::optional<ConstBufferAddr> track_addr{Track(inst.Arg(0))};
if (!track_addr) {
throw NotImplementedException("Failed to track bindless texture constant buffer");
}
addr = *track_addr;
} else {
addr = ConstBufferAddr{
.index = env.TextureBoundBuffer(),
.offset = inst.Arg(0).U32(),
.secondary_index = 0,
.secondary_offset = 0,
.dynamic_offset = {},
.count = 1,
.has_secondary = false,
};
}
return TextureInst{
.cbuf = addr,
.inst = &inst,
.block = block,
};
}
TextureType ReadTextureType(Environment& env, const ConstBufferAddr& cbuf) {
const u32 secondary_index{cbuf.has_secondary ? cbuf.secondary_index : cbuf.index};
const u32 secondary_offset{cbuf.has_secondary ? cbuf.secondary_offset : cbuf.offset};
const u32 lhs_raw{env.ReadCbufValue(cbuf.index, cbuf.offset)};
const u32 rhs_raw{env.ReadCbufValue(secondary_index, secondary_offset)};
return env.ReadTextureType(lhs_raw | rhs_raw);
}
class Descriptors {
public:
explicit Descriptors(TextureBufferDescriptors& texture_buffer_descriptors_,
ImageBufferDescriptors& image_buffer_descriptors_,
TextureDescriptors& texture_descriptors_,
ImageDescriptors& image_descriptors_)
: texture_buffer_descriptors{texture_buffer_descriptors_},
image_buffer_descriptors{image_buffer_descriptors_},
texture_descriptors{texture_descriptors_}, image_descriptors{image_descriptors_} {}
u32 Add(const TextureBufferDescriptor& desc) {
return Add(texture_buffer_descriptors, desc, [&desc](const auto& existing) {
return desc.cbuf_index == existing.cbuf_index &&
desc.cbuf_offset == existing.cbuf_offset &&
desc.secondary_cbuf_index == existing.secondary_cbuf_index &&
desc.secondary_cbuf_offset == existing.secondary_cbuf_offset &&
desc.count == existing.count && desc.size_shift == existing.size_shift &&
desc.has_secondary == existing.has_secondary;
});
}
u32 Add(const ImageBufferDescriptor& desc) {
const u32 index{Add(image_buffer_descriptors, desc, [&desc](const auto& existing) {
return desc.format == existing.format && desc.cbuf_index == existing.cbuf_index &&
desc.cbuf_offset == existing.cbuf_offset && desc.count == existing.count &&
desc.size_shift == existing.size_shift;
})};
image_buffer_descriptors[index].is_written |= desc.is_written;
image_buffer_descriptors[index].is_read |= desc.is_read;
return index;
}
u32 Add(const TextureDescriptor& desc) {
return Add(texture_descriptors, desc, [&desc](const auto& existing) {
return desc.type == existing.type && desc.is_depth == existing.is_depth &&
desc.has_secondary == existing.has_secondary &&
desc.cbuf_index == existing.cbuf_index &&
desc.cbuf_offset == existing.cbuf_offset &&
desc.secondary_cbuf_index == existing.secondary_cbuf_index &&
desc.secondary_cbuf_offset == existing.secondary_cbuf_offset &&
desc.count == existing.count && desc.size_shift == existing.size_shift;
});
}
u32 Add(const ImageDescriptor& desc) {
const u32 index{Add(image_descriptors, desc, [&desc](const auto& existing) {
return desc.type == existing.type && desc.format == existing.format &&
desc.cbuf_index == existing.cbuf_index &&
desc.cbuf_offset == existing.cbuf_offset && desc.count == existing.count &&
desc.size_shift == existing.size_shift;
})};
image_descriptors[index].is_written |= desc.is_written;
image_descriptors[index].is_read |= desc.is_read;
return index;
}
private:
template <typename Descriptors, typename Descriptor, typename Func>
static u32 Add(Descriptors& descriptors, const Descriptor& desc, Func&& pred) {
// TODO: Handle arrays
const auto it{std::ranges::find_if(descriptors, pred)};
if (it != descriptors.end()) {
return static_cast<u32>(std::distance(descriptors.begin(), it));
}
descriptors.push_back(desc);
return static_cast<u32>(descriptors.size()) - 1;
}
TextureBufferDescriptors& texture_buffer_descriptors;
ImageBufferDescriptors& image_buffer_descriptors;
TextureDescriptors& texture_descriptors;
ImageDescriptors& image_descriptors;
};
} // Anonymous namespace
void TexturePass(Environment& env, IR::Program& program) {
TextureInstVector to_replace;
for (IR::Block* const block : program.post_order_blocks) {
for (IR::Inst& inst : block->Instructions()) {
if (!IsTextureInstruction(inst)) {
continue;
}
to_replace.push_back(MakeInst(env, block, inst));
}
}
// Sort instructions to visit textures by constant buffer index, then by offset
std::ranges::sort(to_replace, [](const auto& lhs, const auto& rhs) {
return lhs.cbuf.offset < rhs.cbuf.offset;
});
std::stable_sort(to_replace.begin(), to_replace.end(), [](const auto& lhs, const auto& rhs) {
return lhs.cbuf.index < rhs.cbuf.index;
});
Descriptors descriptors{
program.info.texture_buffer_descriptors,
program.info.image_buffer_descriptors,
program.info.texture_descriptors,
program.info.image_descriptors,
};
for (TextureInst& texture_inst : to_replace) {
// TODO: Handle arrays
IR::Inst* const inst{texture_inst.inst};
inst->ReplaceOpcode(IndexedInstruction(*inst));
const auto& cbuf{texture_inst.cbuf};
auto flags{inst->Flags<IR::TextureInstInfo>()};
switch (inst->GetOpcode()) {
case IR::Opcode::ImageQueryDimensions:
flags.type.Assign(ReadTextureType(env, cbuf));
inst->SetFlags(flags);
break;
case IR::Opcode::ImageFetch:
if (flags.type != TextureType::Color1D) {
break;
}
if (ReadTextureType(env, cbuf) == TextureType::Buffer) {
// Replace with the bound texture type only when it's a texture buffer
// If the instruction is 1D and the bound type is 2D, don't change the code and let
// the rasterizer robustness handle it
// This happens on Fire Emblem: Three Houses
flags.type.Assign(TextureType::Buffer);
}
break;
default:
break;
}
u32 index;
switch (inst->GetOpcode()) {
case IR::Opcode::ImageRead:
case IR::Opcode::ImageAtomicIAdd32:
case IR::Opcode::ImageAtomicSMin32:
case IR::Opcode::ImageAtomicUMin32:
case IR::Opcode::ImageAtomicSMax32:
case IR::Opcode::ImageAtomicUMax32:
case IR::Opcode::ImageAtomicInc32:
case IR::Opcode::ImageAtomicDec32:
case IR::Opcode::ImageAtomicAnd32:
case IR::Opcode::ImageAtomicOr32:
case IR::Opcode::ImageAtomicXor32:
case IR::Opcode::ImageAtomicExchange32:
case IR::Opcode::ImageWrite: {
if (cbuf.has_secondary) {
throw NotImplementedException("Unexpected separate sampler");
}
const bool is_written{inst->GetOpcode() != IR::Opcode::ImageRead};
const bool is_read{inst->GetOpcode() != IR::Opcode::ImageWrite};
if (flags.type == TextureType::Buffer) {
index = descriptors.Add(ImageBufferDescriptor{
.format = flags.image_format,
.is_written = is_written,
.is_read = is_read,
.cbuf_index = cbuf.index,
.cbuf_offset = cbuf.offset,
.count = cbuf.count,
.size_shift = DESCRIPTOR_SIZE_SHIFT,
});
} else {
index = descriptors.Add(ImageDescriptor{
.type = flags.type,
.format = flags.image_format,
.is_written = is_written,
.is_read = is_read,
.cbuf_index = cbuf.index,
.cbuf_offset = cbuf.offset,
.count = cbuf.count,
.size_shift = DESCRIPTOR_SIZE_SHIFT,
});
}
break;
}
default:
if (flags.type == TextureType::Buffer) {
index = descriptors.Add(TextureBufferDescriptor{
.has_secondary = cbuf.has_secondary,
.cbuf_index = cbuf.index,
.cbuf_offset = cbuf.offset,
.secondary_cbuf_index = cbuf.secondary_index,
.secondary_cbuf_offset = cbuf.secondary_offset,
.count = cbuf.count,
.size_shift = DESCRIPTOR_SIZE_SHIFT,
});
} else {
index = descriptors.Add(TextureDescriptor{
.type = flags.type,
.is_depth = flags.is_depth != 0,
.has_secondary = cbuf.has_secondary,
.cbuf_index = cbuf.index,
.cbuf_offset = cbuf.offset,
.secondary_cbuf_index = cbuf.secondary_index,
.secondary_cbuf_offset = cbuf.secondary_offset,
.count = cbuf.count,
.size_shift = DESCRIPTOR_SIZE_SHIFT,
});
}
break;
}
flags.descriptor_index.Assign(index);
inst->SetFlags(flags);
if (cbuf.count > 1) {
const auto insert_point{IR::Block::InstructionList::s_iterator_to(*inst)};
IR::IREmitter ir{*texture_inst.block, insert_point};
const IR::U32 shift{ir.Imm32(std::countr_zero(DESCRIPTOR_SIZE))};
inst->SetArg(0, ir.SMin(ir.ShiftRightArithmetic(cbuf.dynamic_offset, shift),
ir.Imm32(DESCRIPTOR_SIZE - 1)));
} else {
inst->SetArg(0, IR::Value{});
}
}
}
void JoinTextureInfo(Info& base, Info& source) {
Descriptors descriptors{
base.texture_buffer_descriptors,
base.image_buffer_descriptors,
base.texture_descriptors,
base.image_descriptors,
};
for (auto& desc : source.texture_buffer_descriptors) {
descriptors.Add(desc);
}
for (auto& desc : source.image_buffer_descriptors) {
descriptors.Add(desc);
}
for (auto& desc : source.texture_descriptors) {
descriptors.Add(desc);
}
for (auto& desc : source.image_descriptors) {
descriptors.Add(desc);
}
}
} // namespace Shader::Optimization