// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <algorithm>
#include <memory>
#include <vector>
#include <queue>
#include "common/settings.h"
#include "shader_recompiler/exception.h"
#include "shader_recompiler/frontend/ir/basic_block.h"
#include "shader_recompiler/frontend/ir/ir_emitter.h"
#include "shader_recompiler/frontend/ir/post_order.h"
#include "shader_recompiler/frontend/maxwell/structured_control_flow.h"
#include "shader_recompiler/frontend/maxwell/translate/translate.h"
#include "shader_recompiler/frontend/maxwell/translate_program.h"
#include "shader_recompiler/host_translate_info.h"
#include "shader_recompiler/ir_opt/passes.h"
namespace Shader::Maxwell {
namespace {
IR::BlockList GenerateBlocks(const IR::AbstractSyntaxList& syntax_list) {
size_t num_syntax_blocks{};
for (const auto& node : syntax_list) {
if (node.type == IR::AbstractSyntaxNode::Type::Block) {
++num_syntax_blocks;
}
}
IR::BlockList blocks;
blocks.reserve(num_syntax_blocks);
u32 order_index{};
for (const auto& node : syntax_list) {
if (node.type == IR::AbstractSyntaxNode::Type::Block) {
blocks.push_back(node.data.block);
blocks.back()->SetOrder(order_index++);
}
}
return blocks;
}
void RemoveUnreachableBlocks(IR::Program& program) {
// Some blocks might be unreachable if a function call exists unconditionally
// If this happens the number of blocks and post order blocks will mismatch
if (program.blocks.size() == program.post_order_blocks.size()) {
return;
}
const auto begin{program.blocks.begin() + 1};
const auto end{program.blocks.end()};
const auto pred{[](IR::Block* block) { return block->ImmPredecessors().empty(); }};
program.blocks.erase(std::remove_if(begin, end, pred), end);
}
void CollectInterpolationInfo(Environment& env, IR::Program& program) {
if (program.stage != Stage::Fragment) {
return;
}
const ProgramHeader& sph{env.SPH()};
for (size_t index = 0; index < IR::NUM_GENERICS; ++index) {
std::optional<PixelImap> imap;
for (const PixelImap value : sph.ps.GenericInputMap(static_cast<u32>(index))) {
if (value == PixelImap::Unused) {
continue;
}
if (imap && imap != value) {
throw NotImplementedException("Per component interpolation");
}
imap = value;
}
if (!imap) {
continue;
}
program.info.interpolation[index] = [&] {
switch (*imap) {
case PixelImap::Unused:
case PixelImap::Perspective:
return Interpolation::Smooth;
case PixelImap::Constant:
return Interpolation::Flat;
case PixelImap::ScreenLinear:
return Interpolation::NoPerspective;
}
throw NotImplementedException("Unknown interpolation {}", *imap);
}();
}
}
void AddNVNStorageBuffers(IR::Program& program) {
if (!program.info.uses_global_memory) {
return;
}
const u32 driver_cbuf{0};
const u32 descriptor_size{0x10};
const u32 num_buffers{16};
const u32 base{[&] {
switch (program.stage) {
case Stage::VertexA:
case Stage::VertexB:
return 0x110u;
case Stage::TessellationControl:
return 0x210u;
case Stage::TessellationEval:
return 0x310u;
case Stage::Geometry:
return 0x410u;
case Stage::Fragment:
return 0x510u;
case Stage::Compute:
return 0x310u;
}
throw InvalidArgument("Invalid stage {}", program.stage);
}()};
auto& descs{program.info.storage_buffers_descriptors};
for (u32 index = 0; index < num_buffers; ++index) {
if (!program.info.nvn_buffer_used[index]) {
continue;
}
const u32 offset{base + index * descriptor_size};
const auto it{std::ranges::find(descs, offset, &StorageBufferDescriptor::cbuf_offset)};
if (it != descs.end()) {
it->is_written |= program.info.stores_global_memory;
continue;
}
descs.push_back({
.cbuf_index = driver_cbuf,
.cbuf_offset = offset,
.count = 1,
.is_written = program.info.stores_global_memory,
});
}
}
bool IsLegacyAttribute(IR::Attribute attribute) {
return (attribute >= IR::Attribute::ColorFrontDiffuseR &&
attribute <= IR::Attribute::ColorBackSpecularA) ||
attribute == IR::Attribute::FogCoordinate ||
(attribute >= IR::Attribute::FixedFncTexture0S &&
attribute <= IR::Attribute::FixedFncTexture9Q);
}
std::map<IR::Attribute, IR::Attribute> GenerateLegacyToGenericMappings(
const VaryingState& state, std::queue<IR::Attribute> unused_generics,
const std::map<IR::Attribute, IR::Attribute>& previous_stage_mapping) {
std::map<IR::Attribute, IR::Attribute> mapping;
auto update_mapping = [&mapping, &unused_generics, previous_stage_mapping](IR::Attribute attr,
size_t count) {
if (previous_stage_mapping.find(attr) != previous_stage_mapping.end()) {
for (size_t i = 0; i < count; ++i) {
mapping.insert({attr + i, previous_stage_mapping.at(attr + i)});
}
} else {
for (size_t i = 0; i < count; ++i) {
mapping.insert({attr + i, unused_generics.front() + i});
}
unused_generics.pop();
}
};
for (size_t index = 0; index < 4; ++index) {
auto attr = IR::Attribute::ColorFrontDiffuseR + index * 4;
if (state.AnyComponent(attr)) {
update_mapping(attr, 4);
}
}
if (state[IR::Attribute::FogCoordinate]) {
update_mapping(IR::Attribute::FogCoordinate, 1);
}
for (size_t index = 0; index < IR::NUM_FIXEDFNCTEXTURE; ++index) {
auto attr = IR::Attribute::FixedFncTexture0S + index * 4;
if (state.AnyComponent(attr)) {
update_mapping(attr, 4);
}
}
return mapping;
}
void EmitGeometryPassthrough(IR::IREmitter& ir, const IR::Program& program,
const Shader::VaryingState& passthrough_mask,
bool passthrough_position,
std::optional<IR::Attribute> passthrough_layer_attr) {
for (u32 i = 0; i < program.output_vertices; i++) {
// Assign generics from input
for (u32 j = 0; j < 32; j++) {
if (!passthrough_mask.Generic(j)) {
continue;
}
const IR::Attribute attr = IR::Attribute::Generic0X + (j * 4);
ir.SetAttribute(attr + 0, ir.GetAttribute(attr + 0, ir.Imm32(i)), ir.Imm32(0));
ir.SetAttribute(attr + 1, ir.GetAttribute(attr + 1, ir.Imm32(i)), ir.Imm32(0));
ir.SetAttribute(attr + 2, ir.GetAttribute(attr + 2, ir.Imm32(i)), ir.Imm32(0));
ir.SetAttribute(attr + 3, ir.GetAttribute(attr + 3, ir.Imm32(i)), ir.Imm32(0));
}
if (passthrough_position) {
// Assign position from input
const IR::Attribute attr = IR::Attribute::PositionX;
ir.SetAttribute(attr + 0, ir.GetAttribute(attr + 0, ir.Imm32(i)), ir.Imm32(0));
ir.SetAttribute(attr + 1, ir.GetAttribute(attr + 1, ir.Imm32(i)), ir.Imm32(0));
ir.SetAttribute(attr + 2, ir.GetAttribute(attr + 2, ir.Imm32(i)), ir.Imm32(0));
ir.SetAttribute(attr + 3, ir.GetAttribute(attr + 3, ir.Imm32(i)), ir.Imm32(0));
}
if (passthrough_layer_attr) {
// Assign layer
ir.SetAttribute(IR::Attribute::Layer, ir.GetAttribute(*passthrough_layer_attr),
ir.Imm32(0));
}
// Emit vertex
ir.EmitVertex(ir.Imm32(0));
}
ir.EndPrimitive(ir.Imm32(0));
}
u32 GetOutputTopologyVertices(OutputTopology output_topology) {
switch (output_topology) {
case OutputTopology::PointList:
return 1;
case OutputTopology::LineStrip:
return 2;
default:
return 3;
}
}
void LowerGeometryPassthrough(const IR::Program& program, const HostTranslateInfo& host_info) {
for (IR::Block* const block : program.blocks) {
for (IR::Inst& inst : block->Instructions()) {
if (inst.GetOpcode() == IR::Opcode::Epilogue) {
IR::IREmitter ir{*block, IR::Block::InstructionList::s_iterator_to(inst)};
EmitGeometryPassthrough(
ir, program, program.info.passthrough,
program.info.passthrough.AnyComponent(IR::Attribute::PositionX), {});
}
}
}
}
} // Anonymous namespace
IR::Program TranslateProgram(ObjectPool<IR::Inst>& inst_pool, ObjectPool<IR::Block>& block_pool,
Environment& env, Flow::CFG& cfg, const HostTranslateInfo& host_info) {
IR::Program program;
program.syntax_list = BuildASL(inst_pool, block_pool, env, cfg, host_info);
program.blocks = GenerateBlocks(program.syntax_list);
program.post_order_blocks = PostOrder(program.syntax_list.front());
program.stage = env.ShaderStage();
program.local_memory_size = env.LocalMemorySize();
switch (program.stage) {
case Stage::TessellationControl: {
const ProgramHeader& sph{env.SPH()};
program.invocations = sph.common2.threads_per_input_primitive;
break;
}
case Stage::Geometry: {
const ProgramHeader& sph{env.SPH()};
program.output_topology = sph.common3.output_topology;
program.output_vertices = sph.common4.max_output_vertices;
program.invocations = sph.common2.threads_per_input_primitive;
program.is_geometry_passthrough = sph.common0.geometry_passthrough != 0;
if (program.is_geometry_passthrough) {
const auto& mask{env.GpPassthroughMask()};
for (size_t i = 0; i < program.info.passthrough.mask.size(); ++i) {
program.info.passthrough.mask[i] = ((mask[i / 32] >> (i % 32)) & 1) == 0;
}
if (!host_info.support_geometry_shader_passthrough) {
program.output_vertices = GetOutputTopologyVertices(program.output_topology);
LowerGeometryPassthrough(program, host_info);
}
}
break;
}
case Stage::Compute:
program.workgroup_size = env.WorkgroupSize();
program.shared_memory_size = env.SharedMemorySize();
break;
default:
break;
}
RemoveUnreachableBlocks(program);
// Replace instructions before the SSA rewrite
if (!host_info.support_float16) {
Optimization::LowerFp16ToFp32(program);
}
if (!host_info.support_int64) {
Optimization::LowerInt64ToInt32(program);
}
Optimization::SsaRewritePass(program);
Optimization::ConstantPropagationPass(env, program);
Optimization::PositionPass(env, program);
Optimization::GlobalMemoryToStorageBufferPass(program, host_info);
Optimization::TexturePass(env, program, host_info);
if (Settings::values.resolution_info.active) {
Optimization::RescalingPass(program);
}
Optimization::DeadCodeEliminationPass(program);
if (Settings::values.renderer_debug) {
Optimization::VerificationPass(program);
}
Optimization::CollectShaderInfoPass(env, program);
Optimization::LayerPass(program, host_info);
CollectInterpolationInfo(env, program);
AddNVNStorageBuffers(program);
return program;
}
IR::Program MergeDualVertexPrograms(IR::Program& vertex_a, IR::Program& vertex_b,
Environment& env_vertex_b) {
IR::Program result{};
Optimization::VertexATransformPass(vertex_a);
Optimization::VertexBTransformPass(vertex_b);
for (const auto& term : vertex_a.syntax_list) {
if (term.type != IR::AbstractSyntaxNode::Type::Return) {
result.syntax_list.push_back(term);
}
}
result.syntax_list.insert(result.syntax_list.end(), vertex_b.syntax_list.begin(),
vertex_b.syntax_list.end());
result.blocks = GenerateBlocks(result.syntax_list);
result.post_order_blocks = vertex_b.post_order_blocks;
for (const auto& block : vertex_a.post_order_blocks) {
result.post_order_blocks.push_back(block);
}
result.stage = Stage::VertexB;
result.info = vertex_a.info;
result.local_memory_size = std::max(vertex_a.local_memory_size, vertex_b.local_memory_size);
result.info.loads.mask |= vertex_b.info.loads.mask;
result.info.stores.mask |= vertex_b.info.stores.mask;
Optimization::JoinTextureInfo(result.info, vertex_b.info);
Optimization::JoinStorageInfo(result.info, vertex_b.info);
Optimization::DeadCodeEliminationPass(result);
if (Settings::values.renderer_debug) {
Optimization::VerificationPass(result);
}
Optimization::CollectShaderInfoPass(env_vertex_b, result);
return result;
}
void ConvertLegacyToGeneric(IR::Program& program, const Shader::RuntimeInfo& runtime_info) {
auto& stores = program.info.stores;
if (stores.Legacy()) {
std::queue<IR::Attribute> unused_output_generics{};
for (size_t index = 0; index < IR::NUM_GENERICS; ++index) {
if (!stores.Generic(index)) {
unused_output_generics.push(IR::Attribute::Generic0X + index * 4);
}
}
program.info.legacy_stores_mapping =
GenerateLegacyToGenericMappings(stores, unused_output_generics, {});
for (IR::Block* const block : program.post_order_blocks) {
for (IR::Inst& inst : block->Instructions()) {
switch (inst.GetOpcode()) {
case IR::Opcode::SetAttribute: {
const auto attr = inst.Arg(0).Attribute();
if (IsLegacyAttribute(attr)) {
stores.Set(program.info.legacy_stores_mapping[attr], true);
inst.SetArg(0, Shader::IR::Value(program.info.legacy_stores_mapping[attr]));
}
break;
}
default:
break;
}
}
}
}
auto& loads = program.info.loads;
if (loads.Legacy()) {
std::queue<IR::Attribute> unused_input_generics{};
for (size_t index = 0; index < IR::NUM_GENERICS; ++index) {
const AttributeType input_type{runtime_info.generic_input_types[index]};
if (!runtime_info.previous_stage_stores.Generic(index) || !loads.Generic(index) ||
input_type == AttributeType::Disabled) {
unused_input_generics.push(IR::Attribute::Generic0X + index * 4);
}
}
auto mappings = GenerateLegacyToGenericMappings(
loads, unused_input_generics, runtime_info.previous_stage_legacy_stores_mapping);
for (IR::Block* const block : program.post_order_blocks) {
for (IR::Inst& inst : block->Instructions()) {
switch (inst.GetOpcode()) {
case IR::Opcode::GetAttribute: {
const auto attr = inst.Arg(0).Attribute();
if (IsLegacyAttribute(attr)) {
loads.Set(mappings[attr], true);
inst.SetArg(0, Shader::IR::Value(mappings[attr]));
}
break;
}
default:
break;
}
}
}
}
}
IR::Program GenerateGeometryPassthrough(ObjectPool<IR::Inst>& inst_pool,
ObjectPool<IR::Block>& block_pool,
const HostTranslateInfo& host_info,
IR::Program& source_program,
Shader::OutputTopology output_topology) {
IR::Program program;
program.stage = Stage::Geometry;
program.output_topology = output_topology;
program.output_vertices = GetOutputTopologyVertices(output_topology);
program.is_geometry_passthrough = false;
program.info.loads.mask = source_program.info.stores.mask;
program.info.stores.mask = source_program.info.stores.mask;
program.info.stores.Set(IR::Attribute::Layer, true);
program.info.stores.Set(source_program.info.emulated_layer, false);
IR::Block* current_block = block_pool.Create(inst_pool);
auto& node{program.syntax_list.emplace_back()};
node.type = IR::AbstractSyntaxNode::Type::Block;
node.data.block = current_block;
IR::IREmitter ir{*current_block};
EmitGeometryPassthrough(ir, program, program.info.stores, true,
source_program.info.emulated_layer);
IR::Block* return_block{block_pool.Create(inst_pool)};
IR::IREmitter{*return_block}.Epilogue();
current_block->AddBranch(return_block);
auto& merge{program.syntax_list.emplace_back()};
merge.type = IR::AbstractSyntaxNode::Type::Block;
merge.data.block = return_block;
program.syntax_list.emplace_back().type = IR::AbstractSyntaxNode::Type::Return;
program.blocks = GenerateBlocks(program.syntax_list);
program.post_order_blocks = PostOrder(program.syntax_list.front());
Optimization::SsaRewritePass(program);
return program;
}
} // namespace Shader::Maxwell