// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include <ranges>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <fmt/format.h>
#include <boost/intrusive/list.hpp>
#include "shader_recompiler/environment.h"
#include "shader_recompiler/frontend/ir/basic_block.h"
#include "shader_recompiler/frontend/ir/ir_emitter.h"
#include "shader_recompiler/frontend/maxwell/decode.h"
#include "shader_recompiler/frontend/maxwell/structured_control_flow.h"
#include "shader_recompiler/frontend/maxwell/translate/translate.h"
#include "shader_recompiler/object_pool.h"
namespace Shader::Maxwell {
namespace {
struct Statement;
// Use normal_link because we are not guaranteed to destroy the tree in order
using ListBaseHook =
boost::intrusive::list_base_hook<boost::intrusive::link_mode<boost::intrusive::normal_link>>;
using Tree = boost::intrusive::list<Statement,
// Allow using Statement without a definition
boost::intrusive::base_hook<ListBaseHook>,
// Avoid linear complexity on splice, size is never called
boost::intrusive::constant_time_size<false>>;
using Node = Tree::iterator;
using ConstNode = Tree::const_iterator;
enum class StatementType {
Code,
Goto,
Label,
If,
Loop,
Break,
Return,
Kill,
Unreachable,
Function,
Identity,
Not,
Or,
SetVariable,
SetIndirectBranchVariable,
Variable,
IndirectBranchCond,
};
bool HasChildren(StatementType type) {
switch (type) {
case StatementType::If:
case StatementType::Loop:
case StatementType::Function:
return true;
default:
return false;
}
}
struct Goto {};
struct Label {};
struct If {};
struct Loop {};
struct Break {};
struct Return {};
struct Kill {};
struct Unreachable {};
struct FunctionTag {};
struct Identity {};
struct Not {};
struct Or {};
struct SetVariable {};
struct SetIndirectBranchVariable {};
struct Variable {};
struct IndirectBranchCond {};
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 26495) // Always initialize a member variable, expected in Statement
#endif
struct Statement : ListBaseHook {
Statement(IR::Block* code_, Statement* up_) : code{code_}, up{up_}, type{StatementType::Code} {}
Statement(Goto, Statement* cond_, Node label_, Statement* up_)
: label{label_}, cond{cond_}, up{up_}, type{StatementType::Goto} {}
Statement(Label, u32 id_, Statement* up_) : id{id_}, up{up_}, type{StatementType::Label} {}
Statement(If, Statement* cond_, Tree&& children_, Statement* up_)
: children{std::move(children_)}, cond{cond_}, up{up_}, type{StatementType::If} {}
Statement(Loop, Statement* cond_, Tree&& children_, Statement* up_)
: children{std::move(children_)}, cond{cond_}, up{up_}, type{StatementType::Loop} {}
Statement(Break, Statement* cond_, Statement* up_)
: cond{cond_}, up{up_}, type{StatementType::Break} {}
Statement(Return) : type{StatementType::Return} {}
Statement(Kill) : type{StatementType::Kill} {}
Statement(Unreachable) : type{StatementType::Unreachable} {}
Statement(FunctionTag) : children{}, type{StatementType::Function} {}
Statement(Identity, IR::Condition cond_) : guest_cond{cond_}, type{StatementType::Identity} {}
Statement(Not, Statement* op_) : op{op_}, type{StatementType::Not} {}
Statement(Or, Statement* op_a_, Statement* op_b_)
: op_a{op_a_}, op_b{op_b_}, type{StatementType::Or} {}
Statement(SetVariable, u32 id_, Statement* op_, Statement* up_)
: op{op_}, id{id_}, up{up_}, type{StatementType::SetVariable} {}
Statement(SetIndirectBranchVariable, IR::Reg branch_reg_, s32 branch_offset_)
: branch_offset{branch_offset_},
branch_reg{branch_reg_}, type{StatementType::SetIndirectBranchVariable} {}
Statement(Variable, u32 id_) : id{id_}, type{StatementType::Variable} {}
Statement(IndirectBranchCond, u32 location_)
: location{location_}, type{StatementType::IndirectBranchCond} {}
~Statement() {
if (HasChildren(type)) {
std::destroy_at(&children);
}
}
union {
IR::Block* code;
Node label;
Tree children;
IR::Condition guest_cond;
Statement* op;
Statement* op_a;
u32 location;
s32 branch_offset;
};
union {
Statement* cond;
Statement* op_b;
u32 id;
IR::Reg branch_reg;
};
Statement* up{};
StatementType type;
};
#ifdef _MSC_VER
#pragma warning(pop)
#endif
std::string DumpExpr(const Statement* stmt) {
switch (stmt->type) {
case StatementType::Identity:
return fmt::format("{}", stmt->guest_cond);
case StatementType::Not:
return fmt::format("!{}", DumpExpr(stmt->op));
case StatementType::Or:
return fmt::format("{} || {}", DumpExpr(stmt->op_a), DumpExpr(stmt->op_b));
case StatementType::Variable:
return fmt::format("goto_L{}", stmt->id);
case StatementType::IndirectBranchCond:
return fmt::format("(indirect_branch == {:x})", stmt->location);
default:
return "<invalid type>";
}
}
std::string DumpTree(const Tree& tree, u32 indentation = 0) {
std::string ret;
std::string indent(indentation, ' ');
for (auto stmt = tree.begin(); stmt != tree.end(); ++stmt) {
switch (stmt->type) {
case StatementType::Code:
ret += fmt::format("{} Block {:04x} -> {:04x} (0x{:016x});\n", indent,
stmt->code->LocationBegin(), stmt->code->LocationEnd(),
reinterpret_cast<uintptr_t>(stmt->code));
break;
case StatementType::Goto:
ret += fmt::format("{} if ({}) goto L{};\n", indent, DumpExpr(stmt->cond),
stmt->label->id);
break;
case StatementType::Label:
ret += fmt::format("{}L{}:\n", indent, stmt->id);
break;
case StatementType::If:
ret += fmt::format("{} if ({}) {{\n", indent, DumpExpr(stmt->cond));
ret += DumpTree(stmt->children, indentation + 4);
ret += fmt::format("{} }}\n", indent);
break;
case StatementType::Loop:
ret += fmt::format("{} do {{\n", indent);
ret += DumpTree(stmt->children, indentation + 4);
ret += fmt::format("{} }} while ({});\n", indent, DumpExpr(stmt->cond));
break;
case StatementType::Break:
ret += fmt::format("{} if ({}) break;\n", indent, DumpExpr(stmt->cond));
break;
case StatementType::Return:
ret += fmt::format("{} return;\n", indent);
break;
case StatementType::Kill:
ret += fmt::format("{} kill;\n", indent);
break;
case StatementType::Unreachable:
ret += fmt::format("{} unreachable;\n", indent);
break;
case StatementType::SetVariable:
ret += fmt::format("{} goto_L{} = {};\n", indent, stmt->id, DumpExpr(stmt->op));
break;
case StatementType::SetIndirectBranchVariable:
ret += fmt::format("{} indirect_branch = {} + {};\n", indent, stmt->branch_reg,
stmt->branch_offset);
break;
case StatementType::Function:
case StatementType::Identity:
case StatementType::Not:
case StatementType::Or:
case StatementType::Variable:
case StatementType::IndirectBranchCond:
throw LogicError("Statement can't be printed");
}
}
return ret;
}
void SanitizeNoBreaks(const Tree& tree) {
if (std::ranges::find(tree, StatementType::Break, &Statement::type) != tree.end()) {
throw NotImplementedException("Capturing statement with break nodes");
}
}
size_t Level(Node stmt) {
size_t level{0};
Statement* node{stmt->up};
while (node) {
++level;
node = node->up;
}
return level;
}
bool IsDirectlyRelated(Node goto_stmt, Node label_stmt) {
const size_t goto_level{Level(goto_stmt)};
const size_t label_level{Level(label_stmt)};
size_t min_level;
size_t max_level;
Node min;
Node max;
if (label_level < goto_level) {
min_level = label_level;
max_level = goto_level;
min = label_stmt;
max = goto_stmt;
} else { // goto_level < label_level
min_level = goto_level;
max_level = label_level;
min = goto_stmt;
max = label_stmt;
}
while (max_level > min_level) {
--max_level;
max = max->up;
}
return min->up == max->up;
}
bool IsIndirectlyRelated(Node goto_stmt, Node label_stmt) {
return goto_stmt->up != label_stmt->up && !IsDirectlyRelated(goto_stmt, label_stmt);
}
bool AreSiblings(Node goto_stmt, Node label_stmt) noexcept {
Node it{goto_stmt};
do {
if (it == label_stmt) {
return true;
}
--it;
} while (it != goto_stmt->up->children.begin());
while (it != goto_stmt->up->children.end()) {
if (it == label_stmt) {
return true;
}
++it;
}
return false;
}
Node SiblingFromNephew(Node uncle, Node nephew) noexcept {
Statement* const parent{uncle->up};
Statement* it{&*nephew};
while (it->up != parent) {
it = it->up;
}
return Tree::s_iterator_to(*it);
}
bool AreOrdered(Node left_sibling, Node right_sibling) noexcept {
const Node end{right_sibling->up->children.end()};
for (auto it = right_sibling; it != end; ++it) {
if (it == left_sibling) {
return false;
}
}
return true;
}
bool NeedsLift(Node goto_stmt, Node label_stmt) noexcept {
const Node sibling{SiblingFromNephew(goto_stmt, label_stmt)};
return AreOrdered(sibling, goto_stmt);
}
class GotoPass {
public:
explicit GotoPass(Flow::CFG& cfg, ObjectPool<IR::Inst>& inst_pool_,
ObjectPool<IR::Block>& block_pool_, ObjectPool<Statement>& stmt_pool)
: inst_pool{inst_pool_}, block_pool{block_pool_}, pool{stmt_pool} {
std::vector gotos{BuildTree(cfg)};
for (const Node& goto_stmt : gotos | std::views::reverse) {
RemoveGoto(goto_stmt);
}
}
Statement& RootStatement() noexcept {
return root_stmt;
}
private:
void RemoveGoto(Node goto_stmt) {
// Force goto_stmt and label_stmt to be directly related
const Node label_stmt{goto_stmt->label};
if (IsIndirectlyRelated(goto_stmt, label_stmt)) {
// Move goto_stmt out using outward-movement transformation until it becomes
// directly related to label_stmt
while (!IsDirectlyRelated(goto_stmt, label_stmt)) {
goto_stmt = MoveOutward(goto_stmt);
}
}
// Force goto_stmt and label_stmt to be siblings
if (IsDirectlyRelated(goto_stmt, label_stmt)) {
const size_t label_level{Level(label_stmt)};
size_t goto_level{Level(goto_stmt)};
if (goto_level > label_level) {
// Move goto_stmt out of its level using outward-movement transformations
while (goto_level > label_level) {
goto_stmt = MoveOutward(goto_stmt);
--goto_level;
}
} else { // Level(goto_stmt) < Level(label_stmt)
if (NeedsLift(goto_stmt, label_stmt)) {
// Lift goto_stmt to above stmt containing label_stmt using goto-lifting
// transformations
goto_stmt = Lift(goto_stmt);
}
// Move goto_stmt into label_stmt's level using inward-movement transformation
while (goto_level < label_level) {
goto_stmt = MoveInward(goto_stmt);
++goto_level;
}
}
}
// Expensive operation:
// if (!AreSiblings(goto_stmt, label_stmt)) {
// throw LogicError("Goto is not a sibling with the label");
// }
// goto_stmt and label_stmt are guaranteed to be siblings, eliminate
if (std::next(goto_stmt) == label_stmt) {
// Simply eliminate the goto if the label is next to it
goto_stmt->up->children.erase(goto_stmt);
} else if (AreOrdered(goto_stmt, label_stmt)) {
// Eliminate goto_stmt with a conditional
EliminateAsConditional(goto_stmt, label_stmt);
} else {
// Eliminate goto_stmt with a loop
EliminateAsLoop(goto_stmt, label_stmt);
}
}
std::vector<Node> BuildTree(Flow::CFG& cfg) {
u32 label_id{0};
std::vector<Node> gotos;
Flow::Function& first_function{cfg.Functions().front()};
BuildTree(cfg, first_function, label_id, gotos, root_stmt.children.end(), std::nullopt);
return gotos;
}
void BuildTree(Flow::CFG& cfg, Flow::Function& function, u32& label_id,
std::vector<Node>& gotos, Node function_insert_point,
std::optional<Node> return_label) {
Statement* const false_stmt{pool.Create(Identity{}, IR::Condition{false})};
Tree& root{root_stmt.children};
std::unordered_map<Flow::Block*, Node> local_labels;
local_labels.reserve(function.blocks.size());
for (Flow::Block& block : function.blocks) {
Statement* const label{pool.Create(Label{}, label_id, &root_stmt)};
const Node label_it{root.insert(function_insert_point, *label)};
local_labels.emplace(&block, label_it);
++label_id;
}
for (Flow::Block& block : function.blocks) {
const Node label{local_labels.at(&block)};
// Insertion point
const Node ip{std::next(label)};
// Reset goto variables before the first block and after its respective label
const auto make_reset_variable{[&]() -> Statement& {
return *pool.Create(SetVariable{}, label->id, false_stmt, &root_stmt);
}};
root.push_front(make_reset_variable());
root.insert(ip, make_reset_variable());
const u32 begin_offset{block.begin.Offset()};
const u32 end_offset{block.end.Offset()};
IR::Block* const ir_block{block_pool.Create(inst_pool, begin_offset, end_offset)};
root.insert(ip, *pool.Create(ir_block, &root_stmt));
switch (block.end_class) {
case Flow::EndClass::Branch: {
Statement* const always_cond{pool.Create(Identity{}, IR::Condition{true})};
if (block.cond == IR::Condition{true}) {
const Node true_label{local_labels.at(block.branch_true)};
gotos.push_back(
root.insert(ip, *pool.Create(Goto{}, always_cond, true_label, &root_stmt)));
} else if (block.cond == IR::Condition{false}) {
const Node false_label{local_labels.at(block.branch_false)};
gotos.push_back(root.insert(
ip, *pool.Create(Goto{}, always_cond, false_label, &root_stmt)));
} else {
const Node true_label{local_labels.at(block.branch_true)};
const Node false_label{local_labels.at(block.branch_false)};
Statement* const true_cond{pool.Create(Identity{}, block.cond)};
gotos.push_back(
root.insert(ip, *pool.Create(Goto{}, true_cond, true_label, &root_stmt)));
gotos.push_back(root.insert(
ip, *pool.Create(Goto{}, always_cond, false_label, &root_stmt)));
}
break;
}
case Flow::EndClass::IndirectBranch:
root.insert(ip, *pool.Create(SetIndirectBranchVariable{}, block.branch_reg,
block.branch_offset));
for (const Flow::IndirectBranch& indirect : block.indirect_branches) {
const Node indirect_label{local_labels.at(indirect.block)};
Statement* cond{pool.Create(IndirectBranchCond{}, indirect.address)};
Statement* goto_stmt{pool.Create(Goto{}, cond, indirect_label, &root_stmt)};
gotos.push_back(root.insert(ip, *goto_stmt));
}
root.insert(ip, *pool.Create(Unreachable{}));
break;
case Flow::EndClass::Call: {
Flow::Function& call{cfg.Functions()[block.function_call]};
const Node call_return_label{local_labels.at(block.return_block)};
BuildTree(cfg, call, label_id, gotos, ip, call_return_label);
break;
}
case Flow::EndClass::Exit:
root.insert(ip, *pool.Create(Return{}));
break;
case Flow::EndClass::Return: {
Statement* const always_cond{pool.Create(Identity{}, block.cond)};
auto goto_stmt{pool.Create(Goto{}, always_cond, return_label.value(), &root_stmt)};
gotos.push_back(root.insert(ip, *goto_stmt));
break;
}
case Flow::EndClass::Kill:
root.insert(ip, *pool.Create(Kill{}));
break;
}
}
}
void UpdateTreeUp(Statement* tree) {
for (Statement& stmt : tree->children) {
stmt.up = tree;
}
}
void EliminateAsConditional(Node goto_stmt, Node label_stmt) {
Tree& body{goto_stmt->up->children};
Tree if_body;
if_body.splice(if_body.begin(), body, std::next(goto_stmt), label_stmt);
Statement* const cond{pool.Create(Not{}, goto_stmt->cond)};
Statement* const if_stmt{pool.Create(If{}, cond, std::move(if_body), goto_stmt->up)};
UpdateTreeUp(if_stmt);
body.insert(goto_stmt, *if_stmt);
body.erase(goto_stmt);
}
void EliminateAsLoop(Node goto_stmt, Node label_stmt) {
Tree& body{goto_stmt->up->children};
Tree loop_body;
loop_body.splice(loop_body.begin(), body, label_stmt, goto_stmt);
Statement* const cond{goto_stmt->cond};
Statement* const loop{pool.Create(Loop{}, cond, std::move(loop_body), goto_stmt->up)};
UpdateTreeUp(loop);
body.insert(goto_stmt, *loop);
body.erase(goto_stmt);
}
[[nodiscard]] Node MoveOutward(Node goto_stmt) {
switch (goto_stmt->up->type) {
case StatementType::If:
return MoveOutwardIf(goto_stmt);
case StatementType::Loop:
return MoveOutwardLoop(goto_stmt);
default:
throw LogicError("Invalid outward movement");
}
}
[[nodiscard]] Node MoveInward(Node goto_stmt) {
Statement* const parent{goto_stmt->up};
Tree& body{parent->children};
const Node label{goto_stmt->label};
const Node label_nested_stmt{SiblingFromNephew(goto_stmt, label)};
const u32 label_id{label->id};
Statement* const goto_cond{goto_stmt->cond};
Statement* const set_var{pool.Create(SetVariable{}, label_id, goto_cond, parent)};
body.insert(goto_stmt, *set_var);
Tree if_body;
if_body.splice(if_body.begin(), body, std::next(goto_stmt), label_nested_stmt);
Statement* const variable{pool.Create(Variable{}, label_id)};
Statement* const neg_var{pool.Create(Not{}, variable)};
if (!if_body.empty()) {
Statement* const if_stmt{pool.Create(If{}, neg_var, std::move(if_body), parent)};
UpdateTreeUp(if_stmt);
body.insert(goto_stmt, *if_stmt);
}
body.erase(goto_stmt);
switch (label_nested_stmt->type) {
case StatementType::If:
// Update nested if condition
label_nested_stmt->cond = pool.Create(Or{}, variable, label_nested_stmt->cond);
break;
case StatementType::Loop:
break;
default:
throw LogicError("Invalid inward movement");
}
Tree& nested_tree{label_nested_stmt->children};
Statement* const new_goto{pool.Create(Goto{}, variable, label, &*label_nested_stmt)};
return nested_tree.insert(nested_tree.begin(), *new_goto);
}
[[nodiscard]] Node Lift(Node goto_stmt) {
Statement* const parent{goto_stmt->up};
Tree& body{parent->children};
const Node label{goto_stmt->label};
const u32 label_id{label->id};
const Node label_nested_stmt{SiblingFromNephew(goto_stmt, label)};
Tree loop_body;
loop_body.splice(loop_body.begin(), body, label_nested_stmt, goto_stmt);
SanitizeNoBreaks(loop_body);
Statement* const variable{pool.Create(Variable{}, label_id)};
Statement* const loop_stmt{pool.Create(Loop{}, variable, std::move(loop_body), parent)};
UpdateTreeUp(loop_stmt);
body.insert(goto_stmt, *loop_stmt);
Statement* const new_goto{pool.Create(Goto{}, variable, label, loop_stmt)};
loop_stmt->children.push_front(*new_goto);
const Node new_goto_node{loop_stmt->children.begin()};
Statement* const set_var{pool.Create(SetVariable{}, label_id, goto_stmt->cond, loop_stmt)};
loop_stmt->children.push_back(*set_var);
body.erase(goto_stmt);
return new_goto_node;
}
Node MoveOutwardIf(Node goto_stmt) {
const Node parent{Tree::s_iterator_to(*goto_stmt->up)};
Tree& body{parent->children};
const u32 label_id{goto_stmt->label->id};
Statement* const goto_cond{goto_stmt->cond};
Statement* const set_goto_var{pool.Create(SetVariable{}, label_id, goto_cond, &*parent)};
body.insert(goto_stmt, *set_goto_var);
Tree if_body;
if_body.splice(if_body.begin(), body, std::next(goto_stmt), body.end());
if_body.pop_front();
Statement* const cond{pool.Create(Variable{}, label_id)};
Statement* const neg_cond{pool.Create(Not{}, cond)};
Statement* const if_stmt{pool.Create(If{}, neg_cond, std::move(if_body), &*parent)};
UpdateTreeUp(if_stmt);
body.insert(goto_stmt, *if_stmt);
body.erase(goto_stmt);
Statement* const new_cond{pool.Create(Variable{}, label_id)};
Statement* const new_goto{pool.Create(Goto{}, new_cond, goto_stmt->label, parent->up)};
Tree& parent_tree{parent->up->children};
return parent_tree.insert(std::next(parent), *new_goto);
}
Node MoveOutwardLoop(Node goto_stmt) {
Statement* const parent{goto_stmt->up};
Tree& body{parent->children};
const u32 label_id{goto_stmt->label->id};
Statement* const goto_cond{goto_stmt->cond};
Statement* const set_goto_var{pool.Create(SetVariable{}, label_id, goto_cond, parent)};
Statement* const cond{pool.Create(Variable{}, label_id)};
Statement* const break_stmt{pool.Create(Break{}, cond, parent)};
body.insert(goto_stmt, *set_goto_var);
body.insert(goto_stmt, *break_stmt);
body.erase(goto_stmt);
const Node loop{Tree::s_iterator_to(*goto_stmt->up)};
Statement* const new_goto_cond{pool.Create(Variable{}, label_id)};
Statement* const new_goto{pool.Create(Goto{}, new_goto_cond, goto_stmt->label, loop->up)};
Tree& parent_tree{loop->up->children};
return parent_tree.insert(std::next(loop), *new_goto);
}
ObjectPool<IR::Inst>& inst_pool;
ObjectPool<IR::Block>& block_pool;
ObjectPool<Statement>& pool;
Statement root_stmt{FunctionTag{}};
};
IR::Block* TryFindForwardBlock(const Statement& stmt) {
const Tree& tree{stmt.up->children};
const ConstNode end{tree.cend()};
ConstNode forward_node{std::next(Tree::s_iterator_to(stmt))};
while (forward_node != end && !HasChildren(forward_node->type)) {
if (forward_node->type == StatementType::Code) {
return forward_node->code;
}
++forward_node;
}
return nullptr;
}
[[nodiscard]] IR::U1 VisitExpr(IR::IREmitter& ir, const Statement& stmt) {
switch (stmt.type) {
case StatementType::Identity:
return ir.Condition(stmt.guest_cond);
case StatementType::Not:
return ir.LogicalNot(IR::U1{VisitExpr(ir, *stmt.op)});
case StatementType::Or:
return ir.LogicalOr(VisitExpr(ir, *stmt.op_a), VisitExpr(ir, *stmt.op_b));
case StatementType::Variable:
return ir.GetGotoVariable(stmt.id);
case StatementType::IndirectBranchCond:
return ir.IEqual(ir.GetIndirectBranchVariable(), ir.Imm32(stmt.location));
default:
throw NotImplementedException("Statement type {}", stmt.type);
}
}
class TranslatePass {
public:
TranslatePass(ObjectPool<IR::Inst>& inst_pool_, ObjectPool<IR::Block>& block_pool_,
ObjectPool<Statement>& stmt_pool_, Environment& env_, Statement& root_stmt,
IR::BlockList& block_list_)
: stmt_pool{stmt_pool_}, inst_pool{inst_pool_}, block_pool{block_pool_}, env{env_},
block_list{block_list_} {
Visit(root_stmt, nullptr, nullptr);
IR::Block& first_block{*block_list.front()};
IR::IREmitter ir{first_block, first_block.begin()};
ir.Prologue();
}
private:
void Visit(Statement& parent, IR::Block* continue_block, IR::Block* break_block) {
Tree& tree{parent.children};
IR::Block* current_block{nullptr};
for (auto it = tree.begin(); it != tree.end(); ++it) {
Statement& stmt{*it};
switch (stmt.type) {
case StatementType::Label:
// Labels can be ignored
break;
case StatementType::Code: {
if (current_block && current_block != stmt.code) {
IR::IREmitter{*current_block}.Branch(stmt.code);
}
current_block = stmt.code;
Translate(env, stmt.code);
block_list.push_back(stmt.code);
break;
}
case StatementType::SetVariable: {
if (!current_block) {
current_block = MergeBlock(parent, stmt);
}
IR::IREmitter ir{*current_block};
ir.SetGotoVariable(stmt.id, VisitExpr(ir, *stmt.op));
break;
}
case StatementType::SetIndirectBranchVariable: {
if (!current_block) {
current_block = MergeBlock(parent, stmt);
}
IR::IREmitter ir{*current_block};
IR::U32 address{ir.IAdd(ir.GetReg(stmt.branch_reg), ir.Imm32(stmt.branch_offset))};
ir.SetIndirectBranchVariable(address);
break;
}
case StatementType::If: {
if (!current_block) {
current_block = block_pool.Create(inst_pool);
block_list.push_back(current_block);
}
IR::Block* const merge_block{MergeBlock(parent, stmt)};
// Visit children
const size_t first_block_index{block_list.size()};
Visit(stmt, merge_block, break_block);
// Implement if header block
IR::Block* const first_if_block{block_list.at(first_block_index)};
IR::IREmitter ir{*current_block};
const IR::U1 cond{VisitExpr(ir, *stmt.cond)};
ir.SelectionMerge(merge_block);
ir.BranchConditional(cond, first_if_block, merge_block);
current_block = merge_block;
break;
}
case StatementType::Loop: {
IR::Block* const loop_header_block{block_pool.Create(inst_pool)};
if (current_block) {
IR::IREmitter{*current_block}.Branch(loop_header_block);
}
block_list.push_back(loop_header_block);
IR::Block* const new_continue_block{block_pool.Create(inst_pool)};
IR::Block* const merge_block{MergeBlock(parent, stmt)};
// Visit children
const size_t first_block_index{block_list.size()};
Visit(stmt, new_continue_block, merge_block);
// The continue block is located at the end of the loop
block_list.push_back(new_continue_block);
// Implement loop header block
IR::Block* const first_loop_block{block_list.at(first_block_index)};
IR::IREmitter ir{*loop_header_block};
ir.LoopMerge(merge_block, new_continue_block);
ir.Branch(first_loop_block);
// Implement continue block
IR::IREmitter continue_ir{*new_continue_block};
const IR::U1 continue_cond{VisitExpr(continue_ir, *stmt.cond)};
continue_ir.BranchConditional(continue_cond, ir.block, merge_block);
current_block = merge_block;
break;
}
case StatementType::Break: {
if (!current_block) {
current_block = block_pool.Create(inst_pool);
block_list.push_back(current_block);
}
IR::Block* const skip_block{MergeBlock(parent, stmt)};
IR::IREmitter ir{*current_block};
ir.BranchConditional(VisitExpr(ir, *stmt.cond), break_block, skip_block);
current_block = skip_block;
break;
}
case StatementType::Return: {
if (!current_block) {
current_block = block_pool.Create(inst_pool);
block_list.push_back(current_block);
}
IR::IREmitter ir{*current_block};
ir.Epilogue();
ir.Return();
current_block = nullptr;
break;
}
case StatementType::Kill: {
if (!current_block) {
current_block = block_pool.Create(inst_pool);
block_list.push_back(current_block);
}
IR::Block* demote_block{MergeBlock(parent, stmt)};
IR::IREmitter{*current_block}.DemoteToHelperInvocation(demote_block);
current_block = demote_block;
break;
}
case StatementType::Unreachable: {
if (!current_block) {
current_block = block_pool.Create(inst_pool);
block_list.push_back(current_block);
}
IR::IREmitter{*current_block}.Unreachable();
current_block = nullptr;
break;
}
default:
throw NotImplementedException("Statement type {}", stmt.type);
}
}
if (current_block) {
IR::IREmitter ir{*current_block};
if (continue_block) {
ir.Branch(continue_block);
} else {
ir.Unreachable();
}
}
}
IR::Block* MergeBlock(Statement& parent, Statement& stmt) {
if (IR::Block* const block{TryFindForwardBlock(stmt)}) {
return block;
}
// Create a merge block we can visit later
IR::Block* const block{block_pool.Create(inst_pool)};
Statement* const merge_stmt{stmt_pool.Create(block, &parent)};
parent.children.insert(std::next(Tree::s_iterator_to(stmt)), *merge_stmt);
return block;
}
ObjectPool<Statement>& stmt_pool;
ObjectPool<IR::Inst>& inst_pool;
ObjectPool<IR::Block>& block_pool;
Environment& env;
IR::BlockList& block_list;
};
} // Anonymous namespace
IR::BlockList VisitAST(ObjectPool<IR::Inst>& inst_pool, ObjectPool<IR::Block>& block_pool,
Environment& env, Flow::CFG& cfg) {
ObjectPool<Statement> stmt_pool{64};
GotoPass goto_pass{cfg, inst_pool, block_pool, stmt_pool};
Statement& root{goto_pass.RootStatement()};
IR::BlockList block_list;
TranslatePass{inst_pool, block_pool, stmt_pool, env, root, block_list};
return block_list;
}
} // namespace Shader::Maxwell